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Abstract: 

Kinematic errors due to geometric inaccuracies in five-axis machining centers cause 

deviations in tool positions and orientation from commanded values, which consequently affect 

geometric accuracy of the machined surface. As is well known in the machine tool industry, 

machining of a cone frustum as specified in NAS979 standard is a widely accepted final perforance 

test for five-axis machining centers. A critical issue with this machining test is, however, that the 

influence of the machine’s error sources on the geometric accuracy of the machined cone frustum is 

not fully understood by machine tool builders and thus it is difficult to find causes of machining 

errors. To address this issue, this paper presents a simulator of machining geometric errors in five -

axis machining by considering the effect of kinematic errors on the three-dimensional interference 

of the tool and the workpiece. Kinematic errors of a five-axis machining center with tilting rotary 

table type are first identified by a DBB method. Using an error model of the machining center with 

identified kinematic errors and considering location and geometry of the workpiece, machining 

geometric error with respect to the nominal geometry of the workpiece is predicted and evaluated. 

In an aim to improve geometric accuracy of the machined surface, an error compensation for tool 

position and orientation is also presented. Finally, as an example, the machining of a cone frustum 

by using a straight end mill, as described in the standard NAS979, is considered in case studies to 

experimentally verify the prediction and the compensation of machining geometric errors in five -

axis machining.  
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1.  Introduction 

With a tremendously increasing need for machined components with geometric complexity 

and high dimensional accuracy, recently five-axis machining centers are extensively used in various 

manufacturing. Because of its versatile functionalities, a five-axis machining center offers notable 

benefits that include increased material removal rate, enhanced surface accuracy, and reduced 

effective machining time. However, it is well known that kinematic errors due to geometric 

inaccuracies of structural components in a five-axis machining center can cause significant errors 

on the tool position and orientation with respect to workpiece, hence leading to an inaccuracy of 

machined surface in actual cutting operation. 

As a standard describing the inspection of motion accuracy of a five-axis machine tool, ISO 

10791 [1] defines measurement schemes to evaluate kinematic errors using displacement sensors 

and artifacts for five-axis machine configurations having a universal head. For five-axis machine 

configurations having a tilting rotary table, ISO 230-7 [2] was recently published in 2005 

developing a measurement scheme of kinematic errors of rotary axes. Although it is crucial to 

evaluate each kinematic error by using such a measurement, typical machine tool users concern 

more the accuracy of a five-axis machine when it performs actual machining. NAS 979 [3] 

describes the evaluation of the machining accuracy of a five-axis machine by the machining of a 

cone frustum. Since it is only standard describing a machining test by five-axis machines well 

known in the machine tool industry, a machining test of a cone frustum is widely accepted to many 

machine tool builders as a final performance test for five-axis machines. A critical issue with this 

machining test is, however, that the influence of the machine’s error sources on the geometric 

accuracy of the machined cone frustum is not fully understood by machine tool builders. Therefore, 

it is generally very difficult for machine tool builders to find causes of geometric errors of the 

machined cone frustum. Unlike conventional 3-axis machining centers, it is difficult to intuitively 

understand the effect of the machine’s motions errors on the machining accuracy in five-axis 

machines. Another critical issue with NAS 979 is that it does not refer to the location of the 

workpiece to be machined. On five-axis machines, the influence of kinematic errors of each axis on 

the overall positioning error of the tool with respect to the workpiece may significantly differ 

depending on the position of each axis. 

The effect of kinematic errors on motion accuracy in various types of five-axis machines has 

been investigated by constructing their kinematic model [4-7]. There has been also numerous 

research works reported in the literature on the identification of kinematic errors based on the 

measurement of the machine’s motion error. The telescoping double ball bar (DBB) measuring 

device has been applied to identify kinematic errors on five-axis machines [8-13]. Lei and Hsu [14] 

applied a 3D probe ball device to identify some of kinematic errors. Bringmann and Knapp [15] 
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showed the ‘R-Test’ measurement device, where the three-dimensional displacement of the tool 

center is measured by using a sphere attached to the spindle tip, and four displacement sensors 

pointed to the center of the sphere. In all these approaches, kinematic errors are identified from the 

measured positioning error of the machine based on its kinematic model. 

While research works reviewed above have focused on the measurement of kinematic errors, 

no or little work is available in literature, focusing on the explicit analysis on the effect of kinematic 

errors in five-axis machining centers on the machining geometric accuracy. In particular, it is of a 

practical importance to exploit the effect of kinematic errors on the geometric error of a cone 

frustum machined by using a five-axis machine, as a basis to establish a diagnosis methodology of 

errors sources from machining results or to implement a compensation scheme of machining errors. 

Although some latest papers [16, 17] discuss the effect of kinematic errors on the machining error 

of a cone frustum, they only consider the displacement at the tool tip in the simulation, and thus do 

not consider the three-dimensional interference of the tool and the workpiece.  

The present research work proposes a simulator of machining errors in five-axis machining by 

considering the effect of kinematic errors on the three-dimensional interference of the tool and the 

workpiece. Assuming that kinematic errors of a five-axis machine are identified by applying one of 

the approaches reviewed above, the simulator presented in this paper predicts machining geometric 

errors with respect to the nominal geometry of the workpiece. Such a simulator is crucial to 

quantitatively evaluate the significance of each kinematic error on the machine’s overall machining 

accuracy. In order to enhance the geometric accuracy on machined workpiece surface, an error 

compensation for tool position and orientation is also presented. Finally, as an example, the 

machining of the cone frustum by using a straight end mill, as described in the standard NAS979, is 

considered in case studies to experimentally verify the prediction and compensation of machining 

errors in five-axis machining. 

 

2.  Kinematic modeling of five-axis machining centers 

 

2.1  Configurations of five-axis machining centers 

Generally a five-axis machining center has three linear axes and two controllable rotary axes. 

There are different types of five-axis machining centers currently available in the machine tool 

manufacturing market. Beside of some with special configuration, five-axis machining centers with 

three types of configuration are very commonly used in the industries [12]. The first is a universal 

head type with two rotary axes. The second is a tilting rotary table type with two rotary axes. And 

the third is a kind of combination of first and second types with a swivel head and a rotary table. 
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In this study, a five-axis machining center with the tilting rotary table type, or ZX/YAC 

configuration [18] is considered as the target. Figure 1 shows its basic configuration. As can be seen 

in Fig.1, the machine contains three linear-axis drives (X, Y, Z) for generating linear motions in X, 

Y, and Z directions and two rotary-axis drives (A,C) for generating rotary motions on the tilting-

rotary table about X and Z axes respectively. Although this paper only considers this most popular 

configuration of five-axis machine tools, it must be emphasized that simulation and compensation 

schemes of machining geometric errors presented in this paper can be straightforwardly extended to 

any configurations of five-axis machines. 

 

2.2  Definitions of kinematic errors 

Inasaki et al. [19] have pointed out that eleven kinematic errors are sufficient to define the 

relative location and orientation of all the linear and rotary axes in the configuration shown in Fig. 1.     

Namely, eight kinematic errors (αAY, βAY, γAY, βCA, δxAY, δyAY, δzAY, δyCA) are associated with rotary 

axes and three kinematic errors (γYX, αZY, βZX) are associated with linear axes. The definitions of 

these kinematic errors are briefly described as follows [19]:  

αAY is the angular error of A-axis with respect to Y-axis about X-axis. Similarly, βAY and γAY 

are the angular errors of A-axis about Y and Z-axes respectively. βCA is the angular error of C-axis 

with respect to A-axis about X-axis. δxAY, δyAY, and δzAY are linear shifts of A-axis with respect to 

Y-axis (or the origin of machine, XYZ) in X, Y and Z directions respectively. δyCA is the linear shift 

of C-axis with respect to A-axis in Y-direction. On the other hand, γYX, αZY, and βZX are defined as 

the orthogonality or squareness errors of three linear axes (XYZ) on X-Y, Y-Z, and Z-X planes 

respectively. Note that these eleven kinematic errors will be considered in error modeling of the 

machine tool and then, effects of them on machining accuracy will be evaluated as well. 

 

2.3  Kinematic modeling of five-axis machining center with kinematic errors 

 The kinematic model of the machine configuration in Fig. 1 is given in details in [12]. In this 

paper, the objective to employ the kinematic model of the machining center is to calculate the tool 

center location relative to the workpiece under the existence of kinematic errors. This section 

briefly reviews this calculation based on the kinematic model. Coordinate systems for the machine 

configuration shown in Fig. 1 are illustrated in Fig. 2. 

 First, the location of the tool center in the reference frame is calculated with kinematic errors. 

Here, the reference frame (XF-YF-ZF) is the coordinate system fixed to the machine frame or bed as 

shown in Fig. 2. When the command position of the tool center is given by ( ccc ZYX ˆ,ˆ,ˆ ), the actual 

tool center location in the reference frame under the influence of the machine’s kinematic 
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errors, 4ℜ∈t

r p , is given as follows. First three elements of t

r p  represent X, Y and Z coordinates 

and its fourth element is one. Note that the left-side superscript r denotes the vector defined in the 

reference frame.  

0

tx

z

z

r

t

r pTTp =                   (1) 

where  pt
0 
= [0 0 0 1]

T
. 44×ℜ∈z

rT is a homogeneous transformation matrix (HTM) [20] representing 

the motion of the Z axis in the reference frame. Similarly, 44×ℜ∈x

zT denotes a HTM representing 

the motion of the X axis with respect to the Z axis. They are respectively given by:  

)ˆ()()( 354

cZXZYz

r ZDDDT βα=                (2)       

)ˆ(1

cx

z XDT =                   (3) 

where, ZYα and ZXβ are kinematic errors defined in Section 2.2. D
1-6

(*) 44×ℜ∈  represent the HTMs, 

where D
1
(x), D

2
(y), and D

3
(z) respectively represent the HTM for linear motions in the X, Y, and Z 

directions, and D
4
(a), D

5
(b), and D

6
(c) respectively represent the HTM for angular motions about X, 

Y and Z axes. 

 Then, the transformation from the workpeice frame to the reference frame is considered. Note 

that the workpiece frame (Xw-Yw-Zw) is attached to the workpiece as shown in Fig. 2.  The HTM 

representing the transformation from the workpiece frame to the reference frame is given by:  

c

a

a

y

y

r

w

r TTTT =                            (4)                  

where the HTMs,  ,c

aT a

yT , and y

rT  are respectively given as:  

)ˆ()()( 652 CDDyDT CACAc

a βδ=                                                                                                          (5) 

)ˆ()()()()()()( 4654321 ADDDDzDyDxDT AYAYAYAYAYAYa

y γβαδδδ=                                               (6) 

)ˆ()( 26

cYXy

r YDDT −= γ                                                                                                                      (7) 

where, AYα , AYβ , AYγ , CAβ , AYxδ , AYyδ , AYzδ , CAyδ , and YXγ  are kinematic errors as defined in Section 

2.2. Â  and Ĉ  are the tool orientation angles about X and Z axes respectively represented in the 

workpiece frame. 

 Hence, the tool center location in the workpiece frame, 4ℜ∈t

w p , can be given as follows. 

Note that the left-side superscript w denotes the vector defined in the workpiece frame.   

t

r

w

r

t

w pTp 1)( −=                                                                                                                                 (8)                   
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3.  Simulation of five-axis machining accuracy 

 

3.1  Machining of cone frustum  

National Aerospace Standard Association specifies a cone frustum as the test workpiece for 

evaluating contouring accuracy of the multi-axis machining center (NAS979) [3]. In this standard, 

after machining, the test part is measured to evaluate the circularity error of circumference, the 

concentricity error of circumferences, and the angular error of side surface, showing an overall 

contouring performance of the machining center. The circularity error is defined as the difference 

between maximum and minimum radial errors of circumference of machined cone frustum. On the 

other hand, according to NAS979 standard, the difference between maximum and minimum radial 

errors between circumferences of machined cone frustum and pre-bored hole on the cone frustum is 

the concentricity error.  

In this study, a cone frustum as specified in the standard NAS979 is adopted as the test part to 

evaluate machining accuracy of the machining center with kinematic errors. Hence, the machining 

simulation on the cone frustum will be carried out. It must be emphasized that the simulation 

scheme of machining accuracy presented in the following section is not limited to the machining of 

a cone frustum. However, since the machining of a cone frustum is widely accepted as a practical 

machining performance test in the industry, this paper only present the evaluation of machining 

accuracy of a cone frustum as an application example of practical interest. 

 Figure 3 shows the machining configuration and parameters of the titled cone frustum to be 

considered in the present simulation study.  In Fig. 3, φ D, θ , and ϕ  are defined as the diameter of 

the cone frustum machining tool path in the workpiece frame, the taper angle, and the tilt angle of 

the cone frustum respectively, while (Cx,Cy,Cz) is the center location of the workpiece.  

 

3.2  Simulation of five-axis machining error 

By using the kinematic model presented in Section 2.3, for any given commanded tool 

position and orientation, one can compute the actual tool position and orientation by considering the 

effect of kinematic errors. For the computation of machining geometric errors, the three-

dimensional interference of the tool and the workpiece must be computed. Therefore, an error in the 

tool orientation must be evaluated as well as an error in the tool position. 

For the simulation of the workpiece geometry machined by an end mill, many commercial 

CAM or machining simulation software adopt a discrete modeling of the workpiece using e.g. the 

Z-map model [21] or the voxel model [22]. In this paper, the objective of applying the machining 

simulation is to evaluate the geometric accuracy of the machined workpiece along some given 

reference trajectories. For example, in the machining of a cone frustum, geometric errors of top and 
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bottom circular surfaces (including the circularity error of the circumference, the concentricity error, 

the flatness error, the parallelism error and so on) are of sole interest. Therefore, it is sufficient to 

construct the discretized model of workpiece geometry only on the region of interest, which makes 

it easy to minimize the simulation error due to the discretization by reducing the size of each unit 

model. In the case of a cone frustum, circumferences of top and bottom surfaces are discritized into 

a set of points, and the interference of the tool and the segment, which starts from each point on 

circumferences to the direction normal to the frustum surface, is geometrically calculated to 

compute the geometric error of the machined surface.  

First assume that a set of points that defines the nominal geometry of the region of interest, 

),...,1(3

wi NiW =ℜ∈ is given, as well as a set of unit vectors normal to the nominal geometry, 

),...,1(3

, wiw Niv =ℜ∈ . In the case of a cone frustum, iW and iwv , can be given as illustrated in Fig. 4. 

Also assume that the tool is a straight end mill, and is modeled simply as a cylinder of the tool 

radius, r. Suppose that the commanded trajectory of tool tip location in the workpiece frame is 

given by ),...,1(ˆ 3

pj

w Njp =ℜ∈ and the commanded tool orientation vector in the workpiece frame 

is given by ),...,1(ˆ 3

pj

w Njv =ℜ∈ . The detailed algorithm for the computation of geometric error of 

the machined surface is illustrated as follows.  

(1) For given j, compute the actual tool center position, 3ℜ∈j

w p , and the tool orientation 

vector, 3

, ℜ∈jt

wv , using the kinematic model presented in Section 2.3 with given kinematic errors. 

  (2) Define the plane, jΘ , that is parallel to both of the tool orientation vector, jt

wv , and the 

tool motion direction vector, j

w

j

w

jt ppM −= +1, , and is apart by the distance, r from the tool center, 

j

w p , as illustrated in Fig. 5.  The plane, jΘ , can be represented by the following equation. 

{ })(: ,,

3

jtjtj

w

j

w

j MvpqRq ⋅+⋅++=∈=Θ βαξ                                                                              (9) 

where j

wξ  is the vector that perpendicular to both jt

wv , and jtM , , and has the length of r. 

α , β ℜ∈ are parameters.  

(3) Find a set of iW ’s that is within some threshold distance from j

w p . For all these iW ’s, 

compute the intersection point, 3ℜ∈iq , of the line, iwi vW ,.γ+ , where R∈γ is a parameter, and the 

plane, jΘ . When the intersection, iq , is given in the above equation with 10 ≤≤ β , compute the 

distance, ijd , , as follows. 

 ⋅−= iiij qWd , sign )(γ (or ), γ=ijd                                                                                             (10) 

 (4) Make 1+= jj , and repeat (1) ~ (3) till pNj =  

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



 8

(5) For all i’s, take ij
Nj

i dd
p

,
,...,1

min
=

= . This gives the actual machined surface at the nominal 

workpiece point, iW , in the direction of iwv , . 

 

4.  Error compensation 

 When kinematic errors are accurately identified and thus the error in the tool position and 

orientation can be estimated by using the kinematic model, an error compensation can be applied to 

reach the ideal position and orientation by modifying the reference trajectory. In the literature, 

compensation schemes have been presented [23-25]. In this paper, we adopt the following simple 

error compensation scheme to cancel the effect of kinematic errors.  

When the commanded tool position and orientation in the workpiece frame are respectively 

given by t

w p̂ and, t

w v̂ , compute the actual tool position and orientation in the workpiece frame, t

w p  

and t

wv , under the influence of kinematic errors. Then, by simply modifying the commanded tool 

position and orientation as follows, the effect of kinematic errors can be cancelled, under the 

assumption that the error induced by kinematic errors is sufficiently small. 

The errors in tool position, t

w pδ , and orientation, t

w vδ , between erroneous and commanded 

tool path trajectories are respectively computed as: 

t

w

t

w

t

w ppp ˆ−=δ                                                                                                                                   (11) 

t

w

t

w

t

w vvv ˆ−=δ                                                                                                              (12) 

Then, the compensated tool center position, t

w p~ , and orientation, t

wv~ ,  in the workpiece frame 

is calculated by simply canceling the errors in tool position and orientation from those for the 

nominal tool path trajectory as follows: 

t

w

t

w

t

w ppp δ−= ˆ~                                                                                                                               (13)           

t

w

t

w

t

w vvv δ−= ˆ~                                                                                                              (14) 

 

 

5.  Case studies 

In order to justify the prediction and compensation of machining geometric errors on a five-

axis machining center with its kinematic errors, case studies with cutting experiments on the cone 

frustum workpiece are demonstrated. The machining tests are conducted by using a five-axis 

machining center with the configuration shown in Fig.1.   

 

5.1 Identification of kinematic errors 
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In this study, a DBB measurement method is applied to identify the kinematic errors 

considered. DBB tests with specific measurement patterns proposed by Tsutsumi and Saito [12] are 

carried out on the target five-axis machining center to identify its kinematic errors. This section 

briefly reviews the identification scheme of kinematic errors proposed in [12] and presents 

experimental results of DBB measurements. First, squareness errors associated with linear axes, 

namely, YXγ , ZYα , and ZXβ , can be identified by performing the DBB measurements on XY, YZ, 

and ZX planes with only linear axes driven.  

Then, four DBB tests are conducted by simultaneously controlling three-axis motion where 

two linear and one rotary axis motions exist, to estimate eight kinematic errors (αAY, βAY , γAY , βCA , 

δxAY , δyAY , δzAY ,δyCA ) associated with rotary axes (A,C) in the five-axis machining center. For the 

DBB measurement pattern 1, the ball bar is set on the work-table in parallel with the center line of 

the C-axis, and two linear axis motions on XY plane, and a rotary motion on C-axis are 

simultaneously controlled as shown in Fig. 6(a). The relationship between the center shift ( 1xe  

and 1ye ) of the measured displacement trajectory and the kinematic errors associated with the DBB 

measurement pattern 1 ( AYα , AYβ  and CAβ ) can be given as follows. 

  CACAYCx RRe ββ 111 +=                                                                                                                    (15) 

  AYCy Re α11 −=                                                                                     (16)                   

where, 1CR  is the distance between the center of the table-side ball and the center line of C-axis in 

the radial direction of C-axis. Similarly, DBB measurement patterns 2, 3 and 4 are illustrated in Fig. 

6(b), 6(c), and 6(d) respectively. When the center shift of the measured displacement trajectory in 

DBB measurement patterns 2, 3, and 4 is respectively given by ( 2ye , 2ze ), ( 3ye , 3ze ), and ( 4xe , 4ye ), 

their relationships with kinematic errors are given by:  

  YXCAYCy RRe γγ 222 +−=                                                                                                        (17) 

  ZXCAYCz RRe ββ 222 −=                 (18) 

  AYy ye δ−=3                                (19) 

  AYz ze δ−=3                          (20) 

  AYx xe δ−=4                                                 (21) 

  CAAYy yye δδ −−=4                         (22) 

where, 2CR is the distance between the center of the table-side ball and the center line of A-axis in 

the radial direction of A-axis. Total eight kinematic errors associated with rotary axes can be 

identified from measured center shifts )),),...(,(( 4411 yxyx eeee by using Eqs. (15) ~ (22). 
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With the above DBB measurement patterns, actual DBB tests are carried out on the 

machining center of the configuration shown in Fig. 1. During the DBB tests, the nominal length of 

the ball bar is kept 100 mm. Then, by using the identification equations described above, all the 

kinematic errors associated with both rotary and linear axes are identified. Table 1 summarizes the 

identified kinematic errors in the machining center.   

 

5.2 Prediction of machining errors 

Machining errors simulation and, then cutting experiments of a cone frustum are conducted 

with three different conditions on the location and the geometry of the workpiece. The machining 

conditions (Condition I, II, and III) used in both simulation and experiments are summarized in 

Table 2. During cutting tests in all the cases, a sintered carbide straight end mill of the radius 10mm 

is used. The workpiece material is the aluminum alloy. The side surface of the cone frustum is 

finished by a single path under the following cutting conditions: the feedrate of 1000mm/min, the 

spindle speed of 5000min
-1

(in Condition I) and 5500min
-1

(in Condition II and III) and the radial 

depth of cut of 0.01mm. After the finishing, surface measurements taken by a roundness measuring 

system (Talycenta1000 by Taylor Hobson, Ltd.) are carried out to measure machining errors on 

bottom and top surfaces of the machined cone frustum workpiece surface.  

Figures 7, 8, and 9 show simulated and measured machining error trajectories with respect to 

the nominal trajectory for the bottom and top surfaces of the machined cone frustum workpiece. 

The errors are magnified by 1000 times on both top and bottom surface trajectories. The simulated 

error trajectories are computed by using the simulator presented in Section 3.2 and identified 

kinematic errors shown in Table 1. From the figures, we can observe in all the conditions that rough 

geometries of measured and simulated machining errors trajectories well agree, verifying the 

effectiveness of the prediction of machining errors.    

A comparison of the circularity error and the concentricity error obtained from the simulated 

and measured machining error trajectories of the machined cone frustum under Condition I, II, and 

III is summarized in Table 3. It is seen that circularity errors of measured trajectories become larger 

on both top and bottom surfaces in the order of Condition I-II-III. The tendency in simulated 

trajectories well matches with this. As is observed in Figs. 7-9, rough geometries of simulated 

trajectories also well match with measured ones. However, there are still differences in terms of 

circularity and concentricity errors between simulated and measured trajectories of the machined 

cone frustum. This could be mostly attributable to higher frequency vibrations observed in 

measured trajectories, which are not included in the kinematic model used in the present simulation. 

Simulation errors may be also attributable to other causes, such as static or dynamic motion errors 
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of linear or rotary axes, or the tool vibration due to the cutting force. The inclusion of these possible 

error sources into simulation will be left for our future research. 

Notice that machining error trajectories in Condition III significantly differ from those in 

Condition I and II, which is mostly attributable to the difference in the tilt angle of the workpiece, φ. 

It clearly shows that, in the five-axis machining, the effect of kinematic errors on the machine’s 

positioning error may significantly differ depending on the location, the orientation, and the 

geometry of the workpiece. In all the conditions tested in case studies, simulated machining errors 

well match with measured ones. Even in Condition I, where circularity errors are as small as 

7.1~9.3μm, simulated trajectories still show a good match with measured trajectories. This indicates 

that the machine’s kinematic errors have notable effect on the machining geometric accuracy even 

under such a condition. 

 

5.3 Compensation of machining errors 

 In order to justify its effectiveness, the presented error compensation scheme is demonstrated 

to the case study under Condition III. Cutting experiments for error compensation is carried out 

using the same cutting conditions as in the machining under Condition III. Figure 10 shows the 

compensated machining error trajectories for both bottom and top surfaces of the machined cone 

frustum. Compared to Fig. 9, it is seen that by applying the error compensation scheme, circularity 

errors are reduced from 17.3μm to 10.1μm at bottom and 19.5μm to 11μm at top surfaces of the 

machined cone frustum, and hence machining accuracy is improved significantly. 

 

 

6 Conclusions 

This paper presents a scheme to predict and evaluate the machining accuracy of a five-axis 

machining center with its kinematic errors. Three kinematic errors associated with linear axes and 

eight kinematic errors associated with rotary axes of the machining center are considered and 

identified practically by a DBB method. By using an error model with the kinematic errors, three-

dimensional interference of the tool and the workpiece is calculated along the tool path to simulate 

the machining geometric error under the influence of the machine’s kinematic errors. As an 

application example, the present scheme is applied to the machining of a cone frustum, which is 

described in the standard NAS979 and is widely accepted in the machine tool industry as a 

machining performance test for five-axis machines. Case studies with cutting experiments on the 

target five-axis machining center verify the effectiveness of the prediction of machining errors in 

five-axis machining. Further, in order to enhance machining accuracy, an error compensation for 

tool position and orientation is presented. Experiments for error compensation show a significant 
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improvement in machining accuracy in terms of reduction of circularity errors of the machined 

surface. 
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Table 1 Identified kinematic errors by the DBB tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 kinematic errors with rotary axes 3 squareness errors with linear axes 

Error parameter Value Error parameter Value 

αAY +0.0001° γYX -0.0034° 

βAY -0.0071° αZY +0.0054° 

γAY -0.0081° βZX +0.0037° 

βCA +0.006°   

δxAY +0.10 μm   

δyAY - 4.0 μm   

δzAY +2.8 μm   

δyCA +3.4 μm   
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Table 2 Machining conditions of the tilted cone frustum used in simulation and experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machining parameter of the 

cone frustum 

Condition I Condition II Condition III 

Diameter of the cone frustum 

machining tool path, Dφ  (mm)

194 210 206 

Tilt angle, φ (°) 7.5 15 75 

Taper angle, θ (°) 15 30 30 

Center location of workpiece 

(Cx,Cy,Cz) (mm) 

(0,-100,43) (0,-100,53) (0,-103,93) 
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Table 3 Summary of circularity and concentricity errors of the machined cone frustum in finishing 

under Condition I, II and III 

  

Condition I Condition II Condition III  

Simulated Measured Simulated Measured Simulated Measured 

Circularity error at 

bottom (μm) 

6.3 7.1 7.2 9.3 13.3 17.3 

Circularity error at 

top (μm) 

5.8 9.3 6.7 8.8 13.0 19.5 

Concentricity error 

(μm) 

0.85 5.4 1.0 0.6 3.8 1.9 
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Figure 1 Configuration of a five-axis machine tool of tilting rotary table type 
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Figure 2 Coordinate systems for the kinematic chain of a five-axis machining center with a tilting 

rotary table [12] 
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Figure 3 Machining configuration for the tilted cone frustum 
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Figure 4 Nominal geometry of bottom and top surfaces of the cone frustum and their normal vectors 
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Figure 5 Algorithm for the computation of the machining geometric errors 
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                   (a) DBB measurement pattern 1                         (b) DBB measurement pattern 2 

 

 

 

 

  

 

 

 

 

 

 

 

                 (c) DBB measurement pattern 3                        (d) DBB measurement pattern 4 

 

Figure 6 DBB measurement patterns used to identify kinematic errors 
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Figure 7 Simulated and measured machining error trajectories of the machined cone frustum surface 

in finishing under Condition I 
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Figure 8 Simulated and measured machining error trajectories of the machined cone frustum surface 

in finishing under Condition II 
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Figure 9 Simulated and measured machining error trajectories of the machined cone frustum surface 

in finishing under Condition III 
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Figure 10 Compensated machining error trajectories of the machined cone frustum in finishing 

under Condition III 
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