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Prediction and generation of binary Markov processes:
Can a finite-state fox catch a Markov mouse?

Joshua B. Ruebeck,1,a) Ryan G. James,2,b) John R. Mahoney,2,c) and James P. Crutchfield2,d)
1Department of Physics and Astronomy, Carleton College, One North College Street, Northfield,
Minnesota 55057, USA
2Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue,
Davis, California 95616, USA

(Received 1 September 2017; accepted 28 November 2017; published online 10 January 2018)

Understanding the generative mechanism of a natural system is a vital component of the scientific

method. Here, we investigate one of the fundamental steps toward this goal by presenting the

minimal generator of an arbitrary binary Markov process. This is a class of processes whose

predictive model is well known. Surprisingly, the generative model requires three distinct

topologies for different regions of parameter space. We show that a previously proposed generator

for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first

quantitative light on the relative (minimal) costs of prediction and generation. We find, for

instance, that the difference between prediction and generation is maximized when the process is

approximately independently, identically distributed. Published by AIP Publishing.

https://doi.org/10.1063/1.5003041

Imagine a mouse being chased by a fox. Survival suggests
that the mouse should generate a path that is difficult for
the fox to predict. We might imagine that the mouse
brain is designed or trained to maximize the fox’s diffi-
culty and, similarly, that the fox somehow has optimized
the task of predicting the mouse’s path. Are these two
tasks actually distinct? If so, do there exist escape paths
that are easier to generate than predict? Every animal
has limited computational resources, and we might rea-
sonably suppose that the mouse has fewer than the fox.
Given that mice clearly continue to survive, we can ask
whether this disparity in resources exists in tension with
the disparity in task-complexity—path-generation versus
path-prediction.

I. INTRODUCTION

In lieu of mouse paths, we consider the space of discrete

stationary stochastic processes—objects consisting of tempo-

ral sequences that span the range from perfectly ordered to

completely random. We then frame resource questions quan-

titatively via hidden Markov model (HMM) representations

of these processes. We focus on two particular HMM repre-

sentations of any given process: the minimal predictive

HMM—its computational mechanics’ �-machine1—and its

minimal generative HMM. We then find two primary mea-

sures of memory resource: Cl—defined as the �-machine’s

state-entropy—quantifies the cost of prediction, while Cg—

the state entropy of the generative machine—quantifies the

cost of generation. Introduced over two and a half decades

ago, the �-machine predictive representation is well studied

and can be constructed for arbitrary processes.2 The genera-

tive machine offers more challenges, as it involves a noncon-

vex constrained minimization over high-dimensional spaces.

While there are several known bounds on Cg and restrictions

on the construction of generative HMMs,3–6 they have

received significantly less attention than the predictive case

and, as a consequence, are markedly less well understood.

The following presents the first construction of the mini-

mal generators for an arbitrary stationary binary Markov pro-

cess. This allows for the analytic calculation of Cg and other

properties of generative models. These models elucidate the

differences between the tasks of generation and prediction.

The techniques introduced here should also lead to minimal

generators for other process classes.

II. MODELS

We represent stochastic processes using edge-emitting

(Mealy) hidden Markov models (HMMs). Such a representa-

tion is specified by a set of states, a set of output symbols, a

set of labeled transition matrices, and a stationary distribu-

tion over states. We consider stationary processes so that the

invariant state distribution is unique and is therefore redun-

dantly determined from the labeled transition matrices,

assuming that the state transition structure is mixing.

Clearly, not every HMM corresponds to any given pro-

cess. If a model is to correspond to a particular process, its

states must yield conditional independence between the pro-

cess’ past and future. That is, the past X–1:0 and future X0:1

random variable chains yielded by a model must be rendered

independent by the model’s current state R0. Information

theoretically, the past-future mutual information, conditioned

on the state vanishes: I½X�1:0 : X0:1jR0� ¼ 0. The (uncondi-

tioned) mutual information E ¼ I½X�1:0 : X0:1� between

past and future is called the excess entropy. Among other

uses, it is the amount of uncertainty about the future one may
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reduce through knowledge of the past. Intuitively then, the

state of a correct model must “capture” E bits of informa-

tion; see Fig. 1. (For brevity, the following suppresses infi-

nite variable indices.)

There are an infinity of such models for a given stochas-

tic process. Depending on context, certain models will have

merits above those of others. The ability to predict is one

such context.

III. PREDICTIVE MODELS

What is prediction? Loosely speaking, prediction has to

do with a relation between two variables, one which we think

of as input and the other as output. In our context of stochas-

tic processes, the input is the past X:0 and the output is the

future X0:. By prediction, we mean that given some instance

of the past x:0, the task is to yield the exact conditional prob-

ability distribution PrðX0:‘jx:0Þ for any length ‘.

A. �-Machine construction

The minimal predictive model of a process P is known

as its �-machine, and its construction is straightforward. The

theory of computational mechanics provides a framework

for the detailed characterization of �-machines in topological

and information-theoretic terms.1

The kernel underlying this construction is the causal

equivalence relation ��. This is a relation over the set {x:0}

of semi-infinite pasts such that two pasts, x:0 and x0
:0, belong

to the same equivalence class if their conditional futures

agree

x:0 �� x
0
:0 () PrðX0:jx:0Þ ¼ PrðX0:jx

0
:0Þ :

Each equivalence class is a state of the system, encapsulating

in minimal form the degree to which the past influences the

future. Thus, we refer to the classes as causal states and

denote by St the causal state at time t. The memory required

by the �-machine to implement the act of prediction is

Cl ¼ H½S�—the statistical complexity. (This notion of mem-

ory applies in the ensemble setting. Single-shot or single-

instance memory is also of interest and is studied in Ref. 10).

Then, transitions Tk
i;j between these states follow directly

from the equivalence relation

Tk
i;j ¼ PrðX0 ¼ k;S1 ¼ jjS0 ¼ iÞ :

As previously stated, the excess entropy E is the amount

of information shared between past and future. The causal

equivalence relation induces a particular random variable S
that “captures” E. Importantly, E is not itself the entropy of

a random variable.11 Thus, the causal-state random variable

cannot generally be of size E bits. We might then think of

the difference v¼Cl – E, also known as the crypticity, as

the predictive overhead.12 It is an interesting fact that a non-

zero predictive overhead v is generic in the space of all

processes.

B. Binary Markov processes

Let us now narrow our focus and construct the predic-

tive models for the particular class of binary Markov pro-

cesses. More specifically, we consider all stationary

stochastic processes over the symbol set {0, 1} with the

Markov property

PrðX0jX�1:0Þ ¼ PrðX0jX�1Þ :

Applying the causal equivalence relation, we find that the

causal state is completely determined by the previous single

symbol, a simple consequence of the process’ Markovity.

This leads directly to the �-machine in Fig. 2.

Its stationary state distribution is

p ¼
1� q

2� p� q
;

1� p

2� p� q

� �

:

The informational properties of this class of processes—

entropy rate, excess entropy, and statistical complexity—can

be stated in closed form

hl ¼ pAH pð Þ þ pBH qð Þ;

E ¼ p� hl;

Cl ¼ Eþ hl ;

where HðpÞ ¼ �ðp log pÞ þ �ðð1� pÞ log ð1� pÞÞ denotes

Shannon’s binary entropy function.8 The simple relation

among these measures follows from the fact that any (non-

trivial) binary Markov process is also equivalent to a spin

chain—a restricted class of Markov chains.12

This class of binary Markov processes spans a variety of

structured processes, summarized in Fig. 3. At the extremes

of either p¼ 0 or q¼ 0, we have a period-1 (constant) pro-

cess. If either p¼ 1 or q¼ 1, we have Golden Mean

Processes, where 0 s or 1 s occur in isolation, respectively. If

FIG. 1. Information diagram7 of the X:0 �R0 � X0: (past-state-future)

Markov chain.8 The state R of a generating model shields the past X:0 and

future X0:, rendering them conditionally independent. This is reflected by the

overlap E between the past and future being entirely captured by (contained

within) the system state entropy H½R�—the circle labeled R. The past and

future further segment H½R� into the crypticity v, gauge information u, and

oracular information f, quantities whose interpretation is explored further in

Ref. 9.

FIG. 2. �-Machine for all binary Markov processes. Cases with p¼ 1 – q or

p¼ 0 or q¼ 0 are single-state �-machines that are minimal in all respects:

predictive or generative, entropic, or dimensional.
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p¼ 1 – q, the process loses its dependence on the prior sym-

bol, and it becomes a biased coin described by an �-machine

with a single causal state.

IV. GENERATIVE MODELS

Let us now return to our original topic and describe the

second type of process representation—generative models.

The only requirement of a generative model is that it be able

to correctly sample from the distribution PrðX0:Þ over futures.
More specifically, we require that, given any instance x:0 of

the past, the generative model yields a next symbol X0 with

the same probability distribution PrðX0jX:0 ¼ x:0Þ as specified
by the process.

Note that, on the one hand, it may seem obvious that pre-

diction subsumes generation. On the other, it is not so obvious

how these two tasks might require distinct mechanisms.

Like the �-machine causal state, a generative state R
must also render past and future conditionally independent.

Importantly, as a consequence of the causal equivalence rela-

tion �-machines are unifilar which, when paired with their

minimality, implies that the causal states are functions of the

prior observables. Generative models, however, need not

have this restriction. Consequently, a given sequence of past

symbols (finite or semi-infinite) may induce more than one

generative state.

Generative models are much less well understood than

their predictive cousins. This is due in large part to the lack

of constructive methods for working with and otherwise con-

structing them. This is why our results here, although

addressing only a relatively simple class of processes, mark

a substantial step forward.

V. L€OHR EXAMPLE

Let us now focus on a subclass of binary Markov pro-

cesses—the Perturbed Coin Processes for which

0< p¼ q< 1/2; refer to the orange line in Fig. 3. Reference

4 offers up a three-state HMM generator for this class, which

we refer to as the L€ohr model; see Fig. 4. We see from the

HMM that when probability p is near 1/2, the process is

nearly independent, identically distributed (IID). An IID pro-

cess has only a single causal state and therefore zero statisti-

cal complexity, Cl¼ 0. However, for any deviation from

p¼ 1/2, the statistical complexity is a full bit, Cl¼ 1. Why is

it that a generator of a nearly IID process—that is, a nearly

memoryless process—still needs a full bit of memory?

The motivation for constructing this three-state model is

that it might concentrate the IID behavior into a single state and

use the other states only for those infrequent deviations that

“make up the difference”. So, the state-entropy may be reduced

even though there are three states instead of two. A priori it is

not obvious that it is possible to yield the correct process in this

construction. It is, however, straightforward to check that the

L€ohr model produces the correct conditional statistics. It is a

generator of the process. Note that in general it is sufficient to

check these probabilities for all words of length 2N – 1, where

N ¼ maxðjSj; jRjÞ (Ref. 13, Corollary 4.3.9).
We find that the L€ohr model has the stationary state

distribution

p ¼ 1=2� p; 2p; 1=2� p½ � :

As noted, the statistical complexity Cl¼ 1 for p’s entire

range. The state entropy H½R� ¼ H½p� of the L€ohr model is

strictly smaller than Cl¼ 1 for the parameter range p 2
(0.38645…, 0.5). Importantly, this is sufficient to show that

prediction and generation are generally different tasks—they

(must) have different optimal solutions. This was previously

shown in Ref. 4. However, the question remained whether or

not the L€ohr model is minimal. Surprisingly, although subse-

quent works on generative complexity have appeared, to the

best of our knowledge, this example is the only HMM pub-

lished that is entropically smaller than the (finite-state) �-
machine.

We will now construct the provably minimal generator for

these processes. Furthermore, we extend our analysis not only to

the range p> 1/2 but also to the entire (p, q) domain of Fig. 3.

A. Bounds

Recall that, for some p, the L€ohr model is entropically

smaller than the �-machine and it achieves this while having

FIG. 3. Process space spanned by binary Markov processes. When either

p¼ 0 or q¼ 0, the process is constant, repeating 0 s or 1 s, respectively. In the

limit p¼ q¼ 0, the process is nonergodic (labeled N-E above), realizing only

one or the other of the two constant processes. When either p¼ 1 or q¼ 1, the

expressed processes are known as Golden Mean Processes, characterized by

isolated 0 s or 1 s, respectively. When p¼ 1 and q¼ 1, the process is period 2

(labeled P-2 above). Along the line p¼ 1 – q, the process is a biased coin.

Along the line p¼ q, the process is known as a Perturbed Coin, where states A

and B each represent an oppositely biased coin and the process switches

between the two biases based on the symbol just emitted.

FIG. 4. L€ohr model: A three-state HMM that generates the same process as

that in Fig. 2 when 0� p¼ q� 1/2. Its principle interest arises since it has a

smaller state entropy than the �-machine for a range of p values: H½R� � Cl.

Supplementary Material Sec. I gives the relationship between the Lohr states

and causal states.
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three states instead of two. The important point is that mini-

mization of entropy in the generative context does not limit

the number of states in the same way as in the predictive

one. (Recall that among predictive models, the �-machine is

minimal in both entropy and state number.2)

A recent result shows that the maximum number of states

in an entropically minimal channel Z is jZj � min

jXjjYj; 2min jXj;jYjf g � 1
� �

, where X and Y are the channel input

and output processes and j � j is the size of the random varia-

ble’s event set.14 Since a generative model is a form of com-

munication channel from the past to the future, we find that

the number of states of the minimal generative model is

bounded by jRj � min jX:0jjX0:j; 2
min jX:0j;jX0:jf g � 1

� �

. Of

course, this result is useless on its own: jX:0j and jX0:j are
generically infinite.

This bound can be made practical by combining the data

processing inequality for exact common information G[X:

Y]14 with the existence of the following two Markov chains:15

X:0 � Sþ � S� � X0: ; and

Sþ � X:0 � X0: � S�:

We denote forward- and reverse-time causal states Sþ and

S�, respectively. Combined, these tell us that G½X:0 : X0:�

¼ G½Sþ
: S��. Therefore, the bound can be tightened to

jRj � min jSþjjS�j; 2min jSþj;jS�jf g � 1

n o

. This is a particu-

larly helpful application of causal states.

B. Binary Markov chains

In the particular case of processes represented by binary

Markov chains, the reverse process is also represented by a

binary Markov chain. So, both jSþj ¼ 2 and jS�j ¼ 2. From

the above bounds, we find that jRj � 3. Closely following

the proof in Ref. 14, one can then show that no three-state

representation is minimal. Since a single state model can

only represent IID processes, this leaves only models with

FIG. 5. Parametrized HMM for the complete set of 2-state machines that

generate the space of binary Markov chain processes when 0 � a � min

q; 1� pf g and 1 � b � max q; 1� pf g, and we assume a < b. A second

isomorphic class follows from the assumption b < a.

FIG. 6. Two-parameter process space of binary Markov processes and their generators: Consider three points within this space. For each, there is a two-

parameter model space. Within each model space, we examine the model’s state entropy and identify the global minima. We exhibit the corresponding

HMMs. Topological changes in these minimal HMMs induce a three-region partition on process space.
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two states as the possible minimal representations. Thus,

L€ohr’s model cannot be entropically minimal.

To find the entropically minimal representation, we

begin with the assumption that an observation X0 maps sto-

chastically to a state R0, which then stochastically maps to a

symbol X1. Constraining this pair of channels to produce

observations X0 and X1 consistent with the binary Markov

chain yields the parametrized hidden Markov model found in

Fig. 5. (Supplementary Material Sec. III gives the back-

ground calculations.)

For each point (p, q) in the binary Markov process-space

(Fig. 3), we now have a two-parameter model-space of

HMMs, specified by (a, b). The constraint that conditional

probabilities be between zero and one restricts our model-

space parameters to a rectangle 0 � a � min q; 1� pf g and

1 � b � max q; 1� pf g. One can now compute the state

entropy within this constrained model-space and identify the

minima.

Since the entropy is concave in a and b and the allow-

able regions in (a, b)-space are convex (rectangles), it is suf-

ficient to search for local minima along the boundary.

Figure 6 illustrates this for three different points in pro-

cess space. We find that at each of the points (p¼ 1/4, q¼ 1/

2) and (p¼ 1/2, q¼ 1/4), there is a single global minimum.

For the point (p¼ 3/4, q¼ 3/4), we find that there are two

minima equivalent in value but corresponding to nonisomor-

phic HMMs. Both representations are biased toward produc-

ing a periodic sequence with fluctuations interjected at

different phases of the period.

In this way, one can discover the minimal generator for

any binary Markov chain. Examining these minimal topolo-

gies at each point, we find that process-space is divided into

three triangular regions with topologically distinct generators.

This is in somewhat surprising contrast with the fact that this

model class requires only one predictive topology (Fig. 2).

Let us briefly return to the restricted process previously con-

sidered—the Perturbed Coin (Fig. 3). We may now quantita-

tively compare the three state-entropies of interest. In Fig. 7, we

see that the statistical complexity Cl¼ 1 everywhere, except at

p¼ 1/2, where it vanishes, Cl¼ 0. The L€ohr model state-

entropy CL falls below Cl but only for a subset of p values.

However, the generative complexity Cg (a continuous function)

is everywhere less than both Cl and CL. (The generative models

for p< 1/2 and p> 1/2 fromwhichCg is calculated are shown at

the top of Fig. 7.) This demonstrates that the proposed L€ohr

model is not the generative model for any value of p.

As implied by the conditional independence requirement,

the excess entropy E remains a lower bound on each of these

state-entropies. L€ohr4 constructed a tighter lower bound

(denoted L in Fig. 7) on any model of the Perturbed Coin. We

see that Cg is slightly larger than this bound. It may be useful

to generalize this lower bound for other processes.

The minimal generators are defined over all of (p, q)-

space. We can compare the cost Cl of prediction with the

cost Cg of generation and the information necessarily cap-

tured by a model—the excess entropy E. This comparison is

seen in Fig. 8.

Focusing on the upper two panels of Fig. 8, we see that

both Cl and Cg display p $ q symmetry. Furthermore, Cg

has a discontinuous derivative along this line of symmetry

but only in the southwest (SW).

For Cl, the line pþ q¼ 1 is special in that it marks a

causal-state collapse—two causal states merge into one

FIG. 7. State entropy of various models of the Perturbed Coin Process: The

excess entropy E is the amount of information any model of a process must

possess. A stronger lower bound L claimed by L€ohr is also plotted.

Entropies of the three models: Cl for the �-machine, CL for L€ohr’s model,

and Cg for the generative model. (The HMMs used to calculate the latter are

displayed at the top.) While CL is less than Cl for some values of p, Cg is

less than both Cl and CL everywhere.
FIG. 8. State complexity of the two canonical models: �-machine and gener-

ative machine. The predictive overhead, Cl – Cg, quantifies the information

required to enable prediction above and beyond generation. The generative

overhead, Cg – E, quantifies the amount of information a model of a process

requires beyond that minimally required by the observable correlations.
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under the equivalence relation. For Cg, however, this line

marks a qualitative change in behavior (SW versus NE).

Since the generative complexity is lower semi-continuous,3

we know that a predictive gap Cl – Cg must exist around this

line.

The lower two panels of Fig. 8 suggest that the costs of

generation and of prediction may have different causes. The

parameters for which Cg – E is high are disjoint from those

where Cl – Cg is high. Cg is high when p and q are correlated

(near the p–q symmetry line) but only for p, q< 1/2. In the

other half of parameter space, Cg is high when p and q are

anti-correlated and away from the causal collapse. In

contrast, Cl is high exclusively near the line of causal

collapse. (A fuller information diagram analysis is given in

supplementary material Sec. II.)

VI. CONCLUSION

We presented the minimal generators of binary Markov

stochastic processes. Curiously, the literature appears to con-

tain no other examples of generative models for processes

with finite-state �-machines. So, our contribution here is a

substantial step forward. It allows us to begin to understand

the difference between prediction and generation through

direct calculation. It also opens these new models to analysis

by a host of previously developed techniques including the

information diagrams presented here.

To put the results in a larger setting, we note that HMMs

have found application in many diverse settings, ranging

from speech recognition to bioinformatics. So, there are

many reasons to care about the states and information-

theoretic properties of these models, some obvious and some

not. It is common to imbue a state with greater explanatory

power than, say, a random variable that merely exhibits the

correct correlations for the observables at hand. For instance,

we may seek independent means of determining the state.

Whether or not this is appropriate, the fact remains that the

different tasks of prediction and generation are associated

with different kinds of state, each with different kinds of

explanatory usefulness. This distinction seems to us to be

rarely if ever made in HMM applications.

The concept of model state is central, for example, in

model selection. A simple and common method for selecting

one model over another is through application of a penalty

related to the number of states (or entropy thereof).16 Since

the predictive model will never have a lower entropy than

the corresponding generative one, an entropic penalty should

never yield the predictive model; however, a state-number

penalty might. Similarly, in model parameter inference, if

one distinguishes between the predictive and generative clas-

ses, the maximum likelihood estimated parameters will differ

between the two classes.

Finally, we close by drawing out the consequences for

fundamental physics. Understanding states bears directly on

thermodynamics. Landauer’s Principle states that erasing

memory comes at a minimum, unavoidable cost—a heat dis-

sipation proportional to the size of the memory erased.17

One can consider HMMs as abstract representations of

processes with memory (the states) that must be modified

or erased as time progresses. Applying Landauer’s Principle

assigns thermodynamic consequences to the HMM time evo-

lution. Which HMM (and corresponding set of states) is

appropriate, though? We now see that prediction and genera-

tion, two very natural tasks for a thermodynamic system to

perform, actually deliver two different answers. It is impor-

tant to understand how physical circumstances relate to this

choice of task—it will be expressed in terms of heat.

SUPPLEMENTARY MATERIAL

See supplementary material for details of the relationship

between the generative model and the L€ohr model, the infor-

mational structure of generative states, and their derivation.

ACKNOWLEDGMENTS

We thank the Santa Fe Institute for its hospitality during

visits, where J.P.C. is an External Faculty member. This

material was based upon work supported by, or in part by,

John Templeton Foundation Grant No. 52095, Foundational

Questions Institute Grant No. FQXi-RFP-1609, the U.S.

Army Research Laboratory and the U.S. Army Research

Office under Contract Nos. W911NF-13-1-0390 and

W911NF-13-1-0340, and the UC Davis Intel Parallel

Computing Center. J.R. was funded by the 2016 NSF

Research Experience for Undergraduates program.

1J. P. Crutchfield, “Between order and chaos,” Nat. Phys. 8(1), 17–24 (2012).
2C. R. Shalizi and J. P. Crutchfield, “Computational mechanics: Pattern and

prediction, structure and simplicity,” J. Stat. Phys. 104, 817–879 (2001).
3W. L€ohr, “Predictive models and generative complexity,” J. Syst. Sci.

Complexity 25(1), 30–45 (2012).
4W. L€ohr and N. Ay, “Non-sufficient memories that are sufficient for pre-

diction,” in International Conference on Complex Sciences (Springer,

2009), pp. 265–276.
5W. L€ohr and N. Ay, “On the generative nature of prediction,” Adv.

Complex Sys. 12(02), 169–194 (2009).
6A. Heller, “On stochastic processes derived from Markov chains,” Ann.

Math. Stat. 36, 1286–1291 (1965).
7R. W. Yeung, “A new outlook on Shannon’s information measures,” IEEE

Trans. Inf. Theory 37(3), 466–474 (1991).
8T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

(Wiley-Interscience, New York, 2006).
9J. P. Crutchfield, C. J. Ellison, J. R. Mahoney, and R. G. James,

“Synchronization and control in intrinsic and designed computation: An

information-theoretic analysis of competing models of stochastic

computation,” Chaos 20(3), 037105 (2010).
10C. Aghamohammadi and J. P. Crutchfield, “Minimum memory for gener-

ating rare events,” Phys. Rev. E 95, 032101 (2017).
11P. G�acs and J. K€orner, “Common information is much less than mutual

information,” Probl. Control Inf. Theory 2, 149–162 (1973).
12J. R. Mahoney, C. J. Ellison, R. G. James, and J. P. Crutchfield, “How hid-

den are hidden processes? A primer on crypticity and entropy con-

vergence,” Chaos 21(3), 037112 (2011).
13D. R. Upper, “Theory and algorithms for hidden Markov models and gen-

eralized hidden Markov models,” Ph.D. thesis (University of California,

Berkeley, 1997).
14G. R. Kumar, C. T. Li, and A. El Gamal, “Exact common information,” in

2014 IEEE International Symposium on Information Theory (ISIT) (IEEE,

2014), pp. 161–165.
15R. G. James, J. R. Mahoney, and J. P. Crutchfield, “Information trimming:

Sufficient statistics, mutual information, and predictability from effective

channel states,” Phys. Rev. E 95(6), 060102 (2017).
16H. Akaike, “An objective use of Bayesian models,” Ann. Inst. Stat. Math.

29A(9), 9–20 (1977).
17R. Landauer, “Irreversibility and heat generation in the computing proc-

ess,” IBM J. Res. Develop. 5(3), 183–191 (1961).

013109-6 Ruebeck et al. Chaos 28, 013109 (2018)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-008712
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-008712
https://doi.org/10.1038/nphys2190
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1007/s11424-012-9173-x
https://doi.org/10.1007/s11424-012-9173-x
https://doi.org/10.1142/S0219525909002143
https://doi.org/10.1142/S0219525909002143
https://doi.org/10.1214/aoms/1177700000
https://doi.org/10.1214/aoms/1177700000
https://doi.org/10.1109/18.79902
https://doi.org/10.1109/18.79902
https://doi.org/10.1103/PhysRevE.95.032101
https://doi.org/10.1063/1.3637502
https://doi.org/10.1103/PhysRevE.95.060102
https://doi.org/10.1147/rd.53.0183

	s1
	s2
	l
	n1
	n2
	n3
	n4
	s3
	s3A
	s3B
	f1
	f2
	s4
	s5
	s5A
	f3
	f4
	s5A
	s5B
	f5
	f6
	f7
	f8
	s6
	s7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

