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Abstract

Analysis of splice variants from short read RNA-seq data remains a challenging problem.

Here we present a novel method for the genome-guided prediction and quantification of

splice events from RNA-seq data, which enables the analysis of unannotated and complex

splice events. Splice junctions and exons are predicted from reads mapped to a reference

genome and are assembled into a genome-wide splice graph. Splice events are identified

recursively from the graph and are quantified locally based on reads extending across the

start or end of each splice variant. We assess prediction accuracy based on simulated and

real RNA-seq data, and illustrate how different read aligners (GSNAP, HISAT2, STAR,

TopHat2) affect prediction results. We validate our approach for quantification based on

simulated data, and compare local estimates of relative splice variant usage with those from

other methods (MISO, Cufflinks) based on simulated and real RNA-seq data. In a proof-of-

concept study of splice variants in 16 normal human tissues (Illumina Body Map 2.0) we

identify 249 internal exons that belong to known genes but are not related to annotated

exons. Using independent RNA samples from 14 matched normal human tissues, we vali-

date 9/9 of these exons by RT-PCR and 216/249 by paired-end RNA-seq (2 x 250 bp).

These results indicate that de novo prediction of splice variants remains beneficial even in

well-studied systems. An implementation of our method is freely available as an R/Biocon-

ductor package SGSeq.

Introduction

More than 90% of genes in the human genome have multiple transcript isoforms [1, 2]. Tran-

script isoforms can be generated by alternative splicing of the primary mRNA transcript, tran-

scription from alternative promoters, and cleavage at alternative 30 polyadenylation sites [3].

Transcript variants can lead to protein isoforms with distinct function, changed UTRs with

altered regulatory potential, or nonfunctional transcripts that are subject to nonsense-mediated

decay (NMD). Alternative splicing plays an important role during development and in human
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diseases [4]. Moreover, genetic variation in the human population can affect the expression of

individual transcript isoforms, and differential isoform usage may thus contribute to pheno-

typic diversity [5, 6].

High-throughput sequencing of RNA (RNA-seq) has replaced microarrays for gene expres-

sion studies and has enabled global analyses of transcript isoform expression. In an RNA-seq

experiment, millions of short nucleotide sequence reads are generated from the ends of frag-

ments in a cDNA library. The resulting reads are distributed along the length of the transcripts

present in the sample, providing a comprehensive view of the selected transcriptome. Thus

RNA-seq is well suited for the study of both known and novel transcript isoforms.

Most available methods for the genome-guided analysis of transcript variants from RNA-

seq data fall into two categories: (1) Methods for the quantification of defined splice events

(e.g. inclusion or skipping of a cassette exon), and (2) methods for the reconstruction and

quantification of full-length transcripts. A detailed review of available tools can be found in [7].

Early studies of splicing based on RNA-seq data focused on the analysis of splice events [1].

Typically such studies consider a defined set of commonly occurring events, such as skipping

or inclusion of a single cassette exon, pairs of exons that are included in transcripts in a mutu-

ally exclusive manner, exon extension or shortening due to alternative 50 or 30 splice sites, and

alternative first or last exons. More generally the splice events of a gene can be described by its

splice graph [8], a directed acyclic graph with nodes corresponding to transcript starts, ends

and splice sites, and edges corresponding to exonic regions and splice junctions, directed from

the 50 to the 30 end. When full-length isoforms are known, the splice graph can be constructed

based on this information (Fig 1A). In the splice graph, regions shared between multiple iso-

forms are collapsed into a single path, while variant regions are represented by two or more

paths belonging to distinct isoforms. Although the splice graph does not describe full-length

isoforms, it describes all variant regions, and it has the advantage that sequence reads can be

assigned unambiguously to a unique position in the graph. Available methods for analyzing

splice events, such as MISO [9] or MATS [10], rely on annotation, and analyses are typically

restricted to common types of splice events.

In contrast to event-centric methods, transcript reconstruction methods attempt to predict

and quantify full-length transcripts. In this context, the short length of RNA-seq reads and the

high similarity between isoforms pose technical challenges. Since most reads cannot be unam-

biguously assigned to individual transcripts, quantification is indirect and requires probabilistic

models. Furthermore, transcript prediction and quantification often lead to identifiability

issues. This is particularly problematic for transcript reconstruction, where in all but the sim-

plest cases more than one set of transcripts can explain the observed data. To make the task

mathematically tractable, methods rely on assumptions. For example, Cufflinks relies on parsi-

mony, predicting a minimal set of transcripts consistent with the observed data [11]. Such

assumptions may not always be appropriate and can lead to inaccurate predictions. Indeed an

evaluation of 14 independent transcript reconstruction methods conducted by the RGASP con-

sortium concluded that such methods yield varying results and do not perform well in complex

organisms such as human [12].

Since most available event-centric methods do not perform prediction, hybrid approaches

have been employed, relying on full-length transcript reconstruction for prediction, followed

by an analysis of splice events based on predicted transcripts [13]. However, such approaches

can be impractical when analyzing large data sets. Furthermore, calculating relative splice vari-

ant usage based on transcript-level abundances can lead to inaccurate quantification of splice

events that could otherwise be quantified reliably from short read data.

To address the limitations of current approaches, we developed a novel method for the

genome-guided prediction and quantification of splice events from RNA-seq data, which is
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Fig 1. Splice graph and analysis workflow. A) Splice graph derived from four annotated transcript isoforms for gene SLC39A14. B) Schematic of analysis
workflow. Discrete transcript features (splice junctions and exons) are predicted from RNA-seq reads mapped to a reference genome and are assembled
into a splice graph. Splice events, characterized by two or more splice variants, are identified from the graph and estimates for relative variant usageΨ are
obtained based on reads spanning event boundaries.

doi:10.1371/journal.pone.0156132.g001
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implemented as an R/Bioconductor package SGSeq. We assess prediction accuracy based on

simulated and real RNA-seq data, and illustrate how four different read aligners affect predic-

tion results. We validate our approach for quantification based on simulated and real RNA-seq

data, and compare local estimates of relative splice variant usage with those from two published

methods. Furthermore, we demonstrate the utility of our approach by analyzing splice variants

in normal human tissues, predicting and validating novel splice variants in known genes.

Results

Computational method

An overview of our method is shown in Fig 1B. For the annotation-free analysis of splice

events, we predict exons and splice junctions from RNA-seq reads previously mapped to a ref-

erence genome, and assemble them into a genome-wide splice graph. Splice events are identi-

fied from the graph and are quantified locally based on reads that extend across the start or end

of each splice variant.

Initially splice junctions are extracted from split read alignments. The identified splice junc-

tions are filtered based on their normalized count in FPKM units, controlled by parameter α

(Fig 2A). Genomic regions flanked by a splice acceptor and a splice donor are candidate inter-

nal exons and are filtered based on their coverage with structurally compatible reads, controlled

by parameter β (Fig 2B). Genomic regions characterized by an intron on one side and a drop of

coverage on the other side are predicted as terminal exons, controlled by parameter γ (Fig 2C).

For the analyses described in this study, predicted terminal exons sharing a splice donor or

acceptor with a predicted internal exon are excluded. Prediction is performed on a per-sample

basis to ensure the approach is scalable to large data sets. For data sets with multiple samples,

per-sample predictions are subsequently merged to arrive at a common set of features that are

used for further analysis.

Once exons have been identified based on structurally compatible reads, overlapping exons

are split into disjoint exon bins. The resulting exon bins, together with the identified splice

junctions, define a genome-wide splice graph from which splice events can be identified. In our

framework, a splice event is characterized by a start node and an end node that are connected

by at least two paths, and there is no intervening node with all paths intersecting. To account

for events involving alternative transcript starts and ends, the subgraph for each gene is

extended by adding a unique source node connected to all transcript start nodes and a unique

sink node reachable from all transcript end nodes. Once events are identified in terms of their

start and end, alternative paths (or splice variants) can be described recursively (Fig 2D).

Prediction and quantification are performed in separate steps. For a set of features (predicted

or extracted from annotated transcripts) counts of compatible reads are obtained for each sam-

ple, resulting in a rectangular matrix of counts. For the quantification of splice variants, we are

interested in estimating the relative usage, or variant frequency, denoted byC. We obtain counts

for each variant based on structurally compatible reads extending across the start or end of the

variant (Fig 2D). Depending on the type of splice event, representative reads can be junction

reads as shown in Figs 1 and 2, or they can be unspliced reads that overlap adjacent disjoint exon

bins. Dividing the count for a variant by the total count for all variants belonging to the same

event yields a local estimate for relative usage at the start and end of the variant. Local estimates

are then combined using a weighted mean, to obtain a single estimate per variant (see Methods).

A complication arises in the case of overlapping events (Fig 2E). We say an event is left-

closed if a node that is part of the event can be reached from an external node through the

event start only. Similarly, we say an event is right-closed if all paths from nodes inside the

event to outside nodes must pass through the event end. For quantification of splice variants,
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counts at the event start and end are valid only if the event is right-closed and left-closed,

respectively.

Our approach is implemented as an open-source R/Bioconductor package SGSeq, which

is freely available from the Bioconductor project website (www.bioconductor.org) [14].

Prediction accuracy

To assess the performance of our algorithm in terms of prediction accuracy, we obtained

ENCODE RNA-seq data (89.5M read pairs) from a cell line HepG2 previously used for an

Fig 2. Transcript feature prediction and quantification of splice events. A) Splice junctions implied by split read alignments are filtered
based on read counts in FPKM units. B) Genomic regions flanked by identified introns are predicted as internal exons if the minimum
compatible coverage is at least β times the number of reads supporting the spliced exon boundaries. C) Genomic regions characterized by a
flanking intron on one side and drop of coverage on the other side are predicted as terminal exons, with exon coordinates determined by the
maximal region with compatible coverage at least γ times the number of reads supporting the spliced exon boundary. D) Nested events are
identified recursively and quantified using reads spanning event boundaries. E) Schematic of exon skipping events that are closed, left-closed,
right-closed or open. Informative event boundaries for which representative counts can be obtained are indicated with red triangles.

doi:10.1371/journal.pone.0156132.g002
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assessment of transcript reconstruction methods [12]. Our approach takes as input reads

mapped to a reference genome and is thus sensitive to the performance of the read alignment

program, in particular its ability to accurately map reads across exon-exon junctions without

prior knowledge of the underlying splice event [15]. We therefore considered four different

alignment methods for our benchmarking study. We mapped reads to the human reference

genome using GSNAP [16] (61.3M unique and concordant read pairs), HISAT2 [17] (57.8M

properly aligned read pairs), STAR [18] (72.2M properly aligned read pairs), and TopHat2

[19] (33.3M properly aligned read pairs). Prediction accuracy was evaluated in terms of false

discovery rate (FDR) with respect to known features in the refGene, knownGene, GENCODE

(v19) and lincRNA tables [20, 21]. Predicted splice junctions and internal exons were consid-

ered true if they are identical to splice junctions or internal exons in an annotated transcript.

Due to variability in read coverage, precise prediction of transcript starts and ends from RNA-

seq data is problematic [12]. We therefore used more relaxed criteria when assessing terminal

exon predictions, considering a predicted terminal exon true if its spliced boundary agrees with

that of an annotated terminal exon.

First we assessed FDR for splice junction prediction. Since some splice junctions observed in

aligned reads are the result of spurious alignments, additional filtering is required to control

FDR. This can be achieved by setting a minimum required FPKM using parameter α (Fig 3A).

Without filtering (α = 0) FDR is high (ranging between 19–59%, depending on the aligner) but

decreases rapidly for increasing α. For α = 2 the estimated FDR ranged between 1.1–2.7%,

depending on the alignment method. In the ENCODE data, a minimum FPKM of 2 corre-

sponded to a minimum read count of 19, 18, 22, 10 for GSNAP, HISAT2, STAR and TopHat2

alignments, respectively. Beyond FDR control, parameter α specifies the minimum expression

level for splice junctions of interest, and appropriate values therefore depend on the aims of a

particular analysis. Next we assessed the prediction of internal exons. Fig 3B illustrates the effect

of varying β, specifying the minimum required coverage relative to the number of reads spliced

at the exon boundaries. For α = 2 and β = 0.2 the estimated FDR ranged between 2.4–3.1%.

A limitation of the described benchmarking analysis, comparing predictions from real

RNA-seq data with annotated transcript features, is the fact that truly expressed transcripts are

unknown, and our set of annotated transcripts may be incomplete. We therefore used a com-

plementary benchmarking approach, by simulating 50 million RNA-seq read pairs from

refGene transcripts, using the FluxSimulator software [22]. We mapped simulated reads to the

human reference genome with the four alignment programs as previously, obtaining 39.8M,

37.0M, 41.6M and 26.1M mapped read pairs with GSNAP, HISAT2, STAR and TopHat2,

respectively. Results for splice junction predictions were mostly consistent with results from

real RNA-seq data (Fig 3C). For α = 2, FDR estimates ranged between 1.0–2.1% for GSNAP,

HISAT2 and STAR. However, FDR estimates for internal exon prediction were uniformly low,

even for small values of β, indicating a limitation of simulated data (Fig 3D). In real RNA-seq

data, reads can derive from introns of unspliced pre-mRNAs, and requiring sufficient read cov-

erage for exon prediction ensures that such reads do not adversely affect predictions. However,

in well-behaved simulated data lacking intronic reads, the effect of β on prediction results can-

not be properly assessed. The simulated data also allowed us to assess prediction sensitivity.

For α = 2, sensitivity estimates for splice junction predictions ranged between 72–84% and 82–

92% for transcripts expressed at FPKM>1 and FPKM>2, respectively (Fig 3E). For internal

exon predictions with α = 2 and β = 0.2, sensitivity estimates ranged between 69–80% and 78–

89% for transcripts expressed at FPKM>1 and FPKM>2, respectively (Fig 3F).

We observed that terminal exons were predicted with reasonable sensitivity (68–80% and

79–88% for 50- and 30-terminal exons for simulated reads from transcripts with FPKM>2,

respectively) but poor precision (FDR based on simulated data 35–44% and 30–37%,
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Fig 3. Prediction accuracy. A,B) Analysis of false discovery rate (FDR) based on real RNA-seq data,
assessing (A) the effect of minimum required FPKM (α) for splice junction prediction, and (B) the effect of
minimum required relative coverage (β) for internal exon prediction. C,D) Analysis of FDR based on
simulated RNA-seq data, otherwise as in (A, B). E,F) Analysis of sensitivity based on simulated RNA-seq
data, for prediction of splice junctions (E) and internal exons (F). Solid and dashed lines in (E,F) correspond
to values obtained with transcripts expressed at FPKM >1 and 2, respectively. Colors correspond to different
read mapping programs as indicated in the color key.

doi:10.1371/journal.pone.0156132.g003
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respectively) (data not shown). The high FDR in this case was due to internal exons with low

read coverage being predicted as terminal exons. Indeed, when accepting a predicted 50-(30-)

terminal exon as true if it shared a splice donor (acceptor) with either a terminal or internal

expressed exon, FDR dropped to 3.4–6.3% and 3.4–7.9% for 50- and 30-terminal exons, respec-

tively. This indicated that our approach was often unable to reconstruct the full splice graph of

a gene. However, it remains possible to identify and quantify splice events with sufficient read

coverage in the context of an incomplete splice graph.

Finally, parameter γ determines the unspliced boundary of predicted terminal exons, by

specifying a minimum read coverage relative to the number of spliced reads at the spliced exon

boundary. An assessment of sensitivity and precision at the base-level indicated that a required

relative coverage of γ = 0.2 achieved a good balance between sensitivity and precision (S1 Fig).

Splice variant quantification with SGSeq, MISO and Cufflinks

Next we assessed the accuracy of estimates for relative splice variant usage. For this purpose,

we obtained splice events implied by refGene transcripts (see Methods) and determined their

relative usage in our simulated data. We obtainedC estimates with SGSeq, as well as two previ-

ously published methods, MISO [9] and Cufflinks [11]. MISO estimatesC using a Bayesian

framework, while Cufflinks estimates expression levels for full-length transcripts and does not

estimateC directly. Since the abundance of a splice variant is equal to the total abundance of

transcripts containing the variant, it is possible to inferC estimates from transcript-level esti-

mates. For Cufflinks, we calculatedC estimates as the sum of expression levels for transcripts

containing the variant, divided by the sum of expression levels for transcripts that include vari-

ants belonging to the same event. Fig 4A illustrates that all three methods arrive at estimates

that, in most cases, closely match simulated values (SGSeq r = 0.94, MISO r = 0.89, Cufflinks

r = 0.95, Spearman correlation coefficient). Similar results were obtained with different align-

ment methods (S2 Fig).

Although all three methods were able to quantify relative splice variant usage for simulated

data, it is unclear how they perform when applied to real RNA-seq data, in particular when

expressed transcripts are not in agreement with the annotation used for quantification. We

therefore also quantified refGene splice events in the ENCODE cell line data, and comparedC

estimates for the three different methods. In most cases SGSeqC estimates agreed well with

those obtained with MISO (r = 0.88) and Cufflinks (r = 0.93) (Fig 4B, S3 Fig). However, for

some events SGSeq and Cufflinks differed substantially (Fig 4B), and we asked whether discrep-

ancies in these cases are due to event-centric compared to transcript-centric quantification.

Inspection of mapped reads at individual events confirmed that incomplete or incorrect

transcript models can have adverse effects on quantification. For example, Fig 4C illustrates

alternative first exons in GREB1 and IQSEC1, where transcription appears to be almost exclu-

sively from the downstream exon (SGSeq Ĉ ¼ 1 in both cases). However, since transcripts

including the upstream exon are in closer agreement with the RNA-seq data for other parts of

the transcript, Cufflinks estimates yieldC estimates of 0.12 for GREB1 and 0.06 for IQSEC1.

Similarly, two cassette exons inMAP3K9 and TBC1D5 appear to be absent or expressed at low

relative levels compared to flanking exons (SGSeq Ĉ ¼ 0 and Ĉ ¼ 0:03, respectively). How-

ever, refGene transcripts supporting inclusion or skipping of the cassette exons differ in other

parts of the transcripts, affecting their quantification. For example, in the case ofMAP3K9, all

transcripts including the cassette exon are transcribed from an upstream transcript start site

(TSS), while all transcripts skipping the cassette exon are transcribed from a downstream TSS.

In the test data,MAP3K9 appears to be transcribed exclusively from the upstream TSS, and

thus Cufflinks yields higher estimates for transcripts including the cassette exon.

Prediction and Quantification of Splice Events from RNA-Seq Data
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Fig 4. Splice variant quantification with SGSeq, MISO and Cufflinks. A) Comparison of estimates of relative splice variant usageΨ obtained
by SGSeq, MISO and Cufflinks with trueΨ values underlying simulated data. B) Comparison of estimates of relative splice variant usageΨ
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inferred from Cufflinks transcript-level estimates. Splice events (left) are highlighted in the context of full-length transcripts (right). Introns are not
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Identification of novel exons in normal human tissues

Annotation of the human transcriptome is continuously improving and becoming more com-

plete [23]. We therefore asked whether there is benefit in predicting gene models from RNA-

seq data, compared to the use of existing annotation. For a proof-of-concept study we obtained

paired-end RNA-seq data from 16 normal human tissues (Illumina Human Body Map 2.0)

and used SGSeq to perform a genome-wide prediction of transcript features (Table 1).

Predictions define a genome-wide splice graph for transcribed genomic loci, which include

both known and unannotated genes. For the purpose of this study, we focused on candidate

novel exons of known genes. In particular we performed a detailed analysis of predicted inter-

nal exons that belong to known genes, but do not overlap any annotated exons (n = 249, S1

Table).

Genes with candidate novel exons include several with known biological function. Fig 5

shows the predicted splice graphs for the kinesin-associated protein KIFAP3 and the ATP-bind-

ing cassette transporter gene ABCD3, together with expression of individual splice junctions

across normal human tissues. Predictions indicate a novel brain-specific cassette exon in

KIFAP3, as well as a novel exon in ABCD3 expressed in heart and skeletal muscle. The novel

exons show evidence for evolutionary conservation comparable to annotated exons (Fig 5) [24].

Validation of predicted novel exons

We selected nine candidate novel exons in eight different genes for validation by RT-PCR in

independent samples for 14 out of 16 tissues that were included in the RNA-seq data. The can-

didates include simple cassette exons, but also exons that are part of more complex splice

events. We designed primers against flanking constitutive exons, such that splice variants can

be distinguished based on the size of the PCR product. RT-PCR experiments verified the exis-

tence of all nine predicted exons, and the RT-PCR data showed tissue-specific expression simi-

lar to the RNA-seq data (Fig 6).

For KIFAP3 and FHOD1 (Fig 6A and 6H) RT-PCR results suggested the presence of addi-

tional splice variants. We therefore asked whether our initial genome-wide analysis was not

sensitive enough in these cases. Indeed, when re-analyzing the relevant loci with higher sensi-

tivity, additional splice variants could be identified and quantified in agreement with RT-PCR

results (S4 Fig).

For a more global validation of predicted exons, we performed paired-end RNA-seq experi-

ments (2 x 250 bp) on the 14 samples previously used for RT-PCR. When using the newly gen-

erated RNA-seq data to quantify the nine splice events described previously, we observed close

drawn to scale. RNA-seq read coverage is shown below events and transcripts. Results are based on GSNAP alignments. CufflinksΨ estimates
were inferred from transcript-level expression estimates.

doi:10.1371/journal.pone.0156132.g004

Table 1. Summary of transcript features predicted from 16 paired-end RNA-seq samples (Illumina BodyMap 2.0). Splice junctions and internal exons
were considered annotated if they are identical to annotated splice junctions or internal exons, respectively. 50/30-terminal exons were considered annotated
if they share a splice donor/acceptor with an annotated terminal or internal exon. Reported exons are predicted exons, prior to disjoining them into disjoint
exon bins.

Feature type Predicted Annotated % Annotated

Splice junction 192,288 178,320 92.7%

Internal exon 139,691 134,735 96.5%

50 exon 39,588 35,089 88.6%

30 exon 37,263 32,928 88.4%

doi:10.1371/journal.pone.0156132.t001
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agreement with the Illumina Body Map data and with the RT-PCR experiments, as expected

(Fig 6). To validate additional predicted candidate exons, we required an exon to be fully

sequenced. Specifically, we considered a predicted exon validated, if a single pair of reads cov-

ered the exon in its entirety (without gaps) and was split at the exon start and end, thus lending

support to its spliced boundaries. Using these criteria we were able to validate 216/249 (87%)

of the predicted candidate exons (S1 Table).

Potential function of novel coding exons

Among 249 candidate exons, 231 are spliced into protein-coding transcripts, and 198 are pre-

dicted to affect coding sequences (S1 Table). The same exon can have different effects on coding

potential, depending on the full-length transcript. Seventy-seven exons were predicted to cause

in-frame alterations for all annotated transcript isoforms, while 92 exons were predicted to

result in either a premature stop codon or a frame-shift with altered stop codon for all annotated

transcript isoforms. Stop codons can result in transcript degradation through the NMD pathway

if the stop codon is more than*50 nucleotides upstream of the 30-most exon-exon junction

[25]. In 31 of 92 cases that involved stop codon alterations, the new stop codon was situated

within 55 nucleotides of the 30-most exon-exon junction for some transcripts, suggesting that

these transcripts may escape NMD. This category includes the novel exon in KIFAP3 shown in

Fig 5. Predicted splice graph and splice junction expression forKIFAP3 and ABCD3. Heatmaps are based on splice junction expression on a
log2(FPKM + 1) scale. Grey and red indicate annotated and unannotated transcript features, respectively. Introns are not drawn to scale. PhastCons scores
indicating evolutionary conservation are shown in green below each splice graph. The position of Pfam domain ‘ABC transporter transmembrane region 2’
(PF06472.10) is indicated in blue below the splice graph for ABCD3.

doi:10.1371/journal.pone.0156132.g005
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Fig 6. Estimates of relative usageΨ for candidate novel exons across normal human tissues and validation by RT-PCR. A-I) Splice
graph of predicted events. Grey and red indicate annotated and unannotated transcript features, respectively. Introns are not drawn to
scale. PhastCons scores indicating evolutionary conservation are shown in green below each splice graph. Heatmaps illustrate estimates
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Fig 6A. Next we translated predicted in-frame exons in the context of their flanking exons, and

scanned the amino acid sequences for known protein domains in the Pfam database. In two

cases, novel exons appear to encode known Pfam domains (see Methods). In the case of

ABCD3, a novel exon occurs mutually exclusively with an annotated exon. Both exons are highly

evolutionary conserved, have identical length and both show homology to the same part of the

ABC transporter transmembrane domain (Fig 5B), suggesting that preferential inclusion of the

alternative exon in heart and skeletal muscle may confer a specialized function in these tissues.

Discussion

In this study, we present a novel method for the genome-guided prediction and quantification

of splice events from RNA-seq data. Previous studies allowed for unannotated splice junctions

between known exons, but did not account for unannotated exons [2, 26]. A recently published

method DiffSplice supports exon prediction, but was not available to us for testing due to

licensing restrictions by the authors [27]. Here we demonstrate that splice junctions and inter-

nal exons with sufficient read coverage can be predicted with high precision and sensitivity,

without relying on annotation.

Our approach does not attempt to predict the structure of full-length transcripts. Given the

read lengths obtained with widely used RNA-seq technologies, full-length transcript prediction

and quantification requires assumptions that may be inappropriate and can adversely affect

results (Fig 4C). Our comparison of event-level and transcript-level quantification illustrates

the limitations of transcript-centric methods and the advantages of local prediction and quanti-

fication. Specifically, local prediction avoids the problematic transcript reconstruction step,

and it is more robust to incomplete or inaccurate transcript annotation.

Despite large-scale efforts towards a complete annotation of the human transcriptome [28],

we were able to predict and validate unannotated exons expressed in normal human tissues.

Some of the candidate novel exons are included in a tissue-specific manner and likely confer

biological function. These findings illustrate that accounting for unannotated splice variants can

lead to new discoveries even in well-studied systems. Of the 249 candidate novel exons, 72 were

predicted in a previous analysis of the Illumina Body Map data using Cufflinks [13]. Exons not

identified in the previous study included exons in SVIL and ESYT2 validated by RT-PCR.

Our method enables the analysis of unannotated and complex splice events from short read

RNA-seq data. We anticipate that it will be beneficial for the study of organisms with incom-

plete transcript annotation, as well as in situations where unannotated splice events are

expected. We expect that it will be particularly useful for studies of genetic variation resulting

in unannotated splice variants, as well as for the study of diseases that lead to or are caused by

aberrant transcripts, such as human cancers.

Materials and Methods

RNA-seq read alignment

RNA-seq reads were mapped to the human reference genome (GRCh37/hg19). GSNAP

(2013-10-10) [16] was run with parameters -M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1

--pairmax-rna = 200000 --clip-overlap -a paired. Only unique and concor-

dant alignments were used for downstream analysis. HISAT2 (2.0.0) [17] was run with option

--dta-cufflinks. STAR (2.4.2a) [18] was run with option --outSAMstrandField

for variant frequencyΨ. In each panel, heatmaps for 14 tissues are based on RNA-seq data from the Illumina Body Map (bottom) and
validation samples (top). RT-PCR results were obtained with primers targeting flanking exons.

doi:10.1371/journal.pone.0156132.g006
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intronMotif to generate the XS strand attribute for spliced alignments. TopHat2 (2.0.13)

[19] was run with default parameters. Alignments from all programs were subsequently fil-

tered with samtools [29] to retain only properly paired reads.

Simulation

RNA-seq reads from refGene transcript were simulated with the FluxSimulator software

(1.2.1) [22] using the configuration file for ‘RNA hydrolysis protocol’ with the following modi-

fications: NB_MOLECULES 500000000, READ_NUMBER 100000000, READ_LENGTH

76, PAIRED_END YES, FASTA YES, ERR_FILE 76, UNIQUE_IDS YES.

Normalized read counts

Disjoint exon bins and splice junctions are quantified using normalized read counts in FPKM

units (fragments per kilobase and million) based on structurally compatible fragments. For sin-

gle-end and paired-end data, fragment counts are equivalent to counts of reads and read pairs,

respectively. FPKM was calculated as

x� ¼ xðlrÞ
�1

10
9;

where x is the number of structurally compatible fragments, ρ is the library size (number of

aligned fragments) and λ is the effective feature length defined as the number of possible posi-

tions for a compatible fragment. For single-end data

l ¼ l þ r � 1;

where l and r are feature length and read length, respectively (a splice junction has length l = 0).

In the paired-end case, effective length is given by

l ¼ l þ f � 1�maxði� l þ 1; 0Þ;

where l is as defined previously, and f and i are fragment length and distance between fragment

ends i = f − 2r, respectively. The last term accounts for the case when i� l and hence the align-

ment can overlap the feature without fragment ends overlapping it. Note that fragment length

is generally unknown, since the genomic region between paired alignments can include introns

that are absent from the transcript the fragment derived from. In the current implementation,

we obtain a per-sample estimate of f using the median insert size for aligned read pairs.

Quantification of splice events

Local estimates of relative splice variant usage are obtained at the start and/or end of each splice

variant. Consider an event with n variants. For each variant i (i = 1, . . ., n) we obtain xDi , the

number of compatible fragments with reads overlapping the splice donor at the start of the

event, and xAi , the number of compatible fragments with reads overlapping the splice acceptor

at the end of the event. LetmS ¼
P

k¼1;...;nx
S
k and calculate relative usage for variant i as

Ĉ
S
i ¼ xSi =m

S for S = D, A. For events starting at a source or ending at a sink node (involving

alternative transcript starts or ends), estimates are only obtained at the end and start of the

event, respectively. For events with two valid local estimates, local estimates are combined

using a weighted mean, giving higher weight to estimates that are based on higher counts

Ĉ i ¼
mD

mD þmA
Ĉ

D
i þ

mA

mD þmA
Ĉ

A
i ¼

xDi þ xAi
mD þmA

:
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Software implementation

Our method is implemented as an open-source R/Bioconductor package SGSeq and is freely

available from the Bioconductor project website (http://www.bioconductor.org) [14]. We make

extensive use of the genomic ranges infrastructure for sequence analysis [30] as well as the R

package igraph [31].

Benchmarking of quantification

We compared SGSeq (1.4.0) with MISO (0.5.2) [9] and Cufflinks (2.2.1) [11]. refGene tran-

scripts were quantified using cuffquant and cuffnorm. Splice events were extracted from

refGene annotation. Only closed binary events of type ‘skipped exon’, ‘alternative 50 splice site’,

‘alternative 30 splice site’, ‘alternative first exon’ and ‘alternative last exon’ were considered. We

considered MISO estimates with informative reads� 20 and confidence interval< 0.2, and

SGSeq estimates withmD +mA � 20.

Analysis of Illumina Body Map data

Illumina Body Map paired-end RNA-seq data were processed by trimming poor quality 30

bases, and removing poor quality reads, as well as ribosomal reads. Processed reads were

aligned with GSNAP (2013-10-10) [16] as described above, except that known splices were

provided using option -s (known splices were based on RefSeq transcripts, downloaded on 30

November 2011). Only unique and concordant alignments were considered. SGSeq was run

with default parameters (α = 2, β = 0.2, γ = 0.2). Among predicted internal exons, we selected

candidate novel exons in known genes. To simplify downstream analyses, we only considered

internal exons with fixed start and end coordinates (no alternative splice sites) and unambigu-

ous flanking splice junctions in our data set. Exons were required to (1) be connected to the

splice graph of a known gene, (2) overlap with the annotated gene locus, (3) be spliced to anno-

tated exons, and (4) not overlap any annotated exons.

Analysis of protein domains

For exons that were predicted to cause in-frame alterations for all annotated protein-coding

transcripts, we translated the altered full-length transcripts and obtained amino acid sequences

of the predicted exons, in the context of 10 upstream and 10 downstream flanking residues.

We used the hmmscan program in the HMMER (3.1b1) software package [32] to scan 77

amino acid sequences for protein domains in the Pfam database (Release 27.0) [33]. We

retained domain hits with independent E-value × 77< 0.2. This resulted in two hits for

domains ‘ABC transporter transmembrane region 2’ (PF06472.10) in ABCD3 and ‘Domain of

unknown function (DUF1908)’ (PF08926.6) inMAST3.

Normal human RNA samples

Total RNA from 14 normal human tissues were purchased from Ambion and BioChain. RNA

samples are de-identified and hence are not considered human subject research under the US

Department of Human and Health Services regulations and related guidance (45 CFR Part 46).

According to the Ambion website, all human tissues used for RNA isolation are obtained

through accredited organ/tissue procurement organizations that operate with Institutional

Review Board approval, and in accordance with regulations set forth by the US Department of

Health and Human Services. These regulations include donor consent and protection of pri-

vacy regulations. According to the BioChain website, BioChain complies with the relevant reg-

ulations from the various governing bodies when handling biomaterials and related patient
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information. This includes approval of the protocol by the Investigation Review Board, the

informed consent form for donors or participants, confidentiality/privacy of related informa-

tion, and quality assurance in the process.

RT-PCR experiments

RT-PCR experiments were performed using random hexamer, superscript II and platinum

Taq according to the manufacturer’s instructions (Invitrogen). The PCR products were visual-

ized on 3% agarose gels.

RNA-seq experiments

RNA-seq was carried out on total RNA from normal human tissue samples that were also sub-

jected to RT-PCR. Libraries were prepared using the TruSeq RNA Sample Preparation Kit

(Illumina) and sequenced on the Illumina HiSeq 2500 instrument. On average*70 million 2 x

250 bp paired reads were obtained for each sample.

Supporting Information

S1 Fig. Prediction accuracy for terminal exon boundaries. A,B) Analysis of false discovery

rate (FDR) at the nucleotide level based on real RNA-seq data, assessing the effect of minimum

required relative coverage (γ) on (A) 50- and (B) 30-terminal exons. C,D) Analysis of FDR at

the nucleotide level based on simulated RNA-seq data, otherwise as in (A, B). E,F) Analysis of

sensitivity at the nucleotide level, based on simulated RNA-seq data. Solid and dashed lines in

(E,F) correspond to values obtained with transcripts expressed at FPKM>1 and 2, respectively.

Colors indicate different alignment programs as described in the color key.

(EPS)

S2 Fig. Splice variant quantification with SGSeq, MISO and Cufflinks for simulated data.

Comparison of estimates for relative splice variant usageC obtained by SGSeq, MISO, Cuf-

flinks with trueC values underlying simulated data for different read alignment programs.

CufflinksC estimates were inferred from transcript-level expression estimates.

(EPS)

S3 Fig. Splice variant quantification with SGSeq, MISO and Cufflinks for real RNA-seq

data. Comparison of estimates for relative splice variant usageC obtained by SGSeq, MISO,

Cufflinks based on real RNA-seq data for different read alignment programs. CufflinksC esti-

mates were inferred from transcript-level expression estimates.

(EPS)

S4 Fig. Analysis of KIFAP3 and FHOD1 with more sensitive prediction parameters. Re-

analysis of splice events in KIFAP3 (A) and FHOD1 (B) based on predictions with high sensi-

tivity (α = 0.5, β = 0.2, γ = 0.2). Otherwise as in Fig 6.

(EPS)

S1 Table. Candidate novel exons in known genes. Candidate novel exons in known genes

predicted from Illumina Body Map RNA-seq data (see Methods).

(XLS)
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