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Abstract—Robust and fast 3D tracking of deformable objects,
such as heart, is a challenging task because of the relatively
low image contrast and speed requirement. Many existing 2D
algorithms might not be directly applied on the 3D track-
ing problem. The 3D tracking performance is limited due to
dramatically increased data size, landmarks ambiguity, signal
drop-out or complex non-rigid deformation. In this paper we
present a robust, fast and accurate 3D tracking algorithm:
Prediction Based Collaborative Trackers (PCT). A novel one-
step forward prediction is introduced to generate the motion
prior using motion manifold learning. Collaborative trackers
are introduced to achieve both temporal consistency and failure
recovery. Compared with tracking by detection and 3D optical
flow, PCT provides the best results. The new tracking algorithm
is completely automatic and computationally efficient. It requires
less than 1.5 seconds to process a 3D volume which contains mil-
lions of voxels. In order to demonstrate the generality of PCT, the
tracker is fully tested on three large clinical datasets for three 3D
heart tracking problems with two different imaging modalities:
endocardium tracking of the left ventricle (67 sequences, 1134
3D volumetric echocardiography data), dense tracking in the
myocardial regions between the epicardium and endocardium
of the left ventricle (503 sequences, roughly 9000 3D volumetric
echocardiography data), and whole heart four chambers tracking
(20 sequences, 200 cardiac 3D volumetric CT data). Our datasets
are much larger than most studies reported in the literature and
we achieve very accurate tracking results compared with human
experts’ annotations and recent literature.

Index Terms—Tracking, Ultrasound, CT, Heart, Left Ventricle,
Motion Learning.

I. INTRODUCTION

The 3D echocardiography and cardiac computed tomogra-

phy (CT) are emerging diagnostic tools among modern imag-

ing modalities for visualizing cardiac structure and diagnosing

cardiovascular diseases. The echocardiography [1] is real-time,

noninvasive imaging modality which is less expensive than CT

and magnetic resonance imaging (MR). Ultrasound normally

produces noisy images with poor object boundaries. Compared

with other imaging modalities (such as ultrasound and MR),

cardiac CT can provide detailed anatomic information about

the heart chambers, large vessels, and coronary arteries [2].
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Recently, the problem of automatic detection, segmentation

and tracking of heart chambers in 3D radiological imag-

ing, such as ultrasound and CT, have received considerable

attentions. A multiple-template based tracking approach is

proposed in [3] for tracking cardiac structure in MRI. A new

deformable model technique based on a snake-like approach

and Fourier shape descriptors parameterization is used in

[4] for MRI, and a statistical point distribution model based

deformable model is proposed in [5] for both MRI and CT.

A 3D slice cut algorithm is proposed in [6] which transfers

the 3D segmentation problem into several 2D segmentation

problems in orthogonal planes. Marginal space learning [7]

and collaborative trackers [8] are proposed for fast and robust

segmentation and tracking of heart chambers, in 3D CT and

ultrasound, respectively. The accurate tracking of the human’s

heart motion has clear clinical significance for radiologists to

evaluate dangerous cardiac disease, such as acute myocardial

infarction. Compared with traditional 2D tracking applications,

one of the major considerations for developing a practically

useful 3D tracking algorithm is speed, as the computational

demand is much higher for 3D volumetric data compared with

2D.

The widely used 2D tracking algorithms [9] won’t provide

good results if directly applied on 3D tracking applications.

In order to achieve robust tracking in 3D radiology images,

learning based detector and boundary classifiers are proposed

to robustly track the boundary of the heart in each frame. This

tracking by detection strategy can avoid accumulating errors

and is proven to be quite effective in recent literature [10],

[11], [12]. However, it still has several problems:

• The boundary classifiers are sensitive to initial positions

[13] and good initializations have to be provided because

we can not exhaustively search all the possible configura-

tions in the whole 3D volume due to speed consideration.

• Tracking by detection applies a universal description of

the objects without considering any temporal relationship,

which leads to temporal inconsistence between adjacent

frames.

In this paper, we propose a fast and novel automatic

3D tracking algorithm called Predication Based Collaborative

Trackers (PCT), which addresses these difficulties. PCT ap-

plies a motion prior learned on a low dimensional manifold

to constrain the collaborative trackers including a detection

tracker and a template tracker. Robust information fusion is
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Fig. 1. The flow chart of the predication based collaborative trackers (PCT)
using one step forward prediction, marginal space learning, motion manifold
learning and detection/template trackers.

applied to generate the joint posterior probability. Motion pre-

diction is performed using registration guided one step forward

prediction. The whole procedure is performed periodically. A

flowchart of the PCT is shown in Figure 1.

The contributions of this paper are:

• A novel one-step forward prediction using motion mani-

fold learning, which respects the geodesic distances of

both the shape and motion of the heart. The motion

priors can provide good initial positions for the boundary

classifiers.

• A collaborative 3D template tracker is applied to erase

the temporal inconsistence introduced by 3D detection

tracker.

• A rectangle filter is used to reject outliers and achieve

robust data fusion. Smooth boundary tracking is obtained

by projecting the tracking points in each frame to the

constrained PCA shape boundary.

• The algorithm can process a 3D volume, e.g., 160 ×
144×208 voxels, in less than 1.5 seconds and we obtain

subvoxel tracking accuracy.

• The algorithm is a general framework which can be ap-

plied to diverse tracking applications in different imaging

modalities, as we shown in the experimental part.

To our knowledge, this is the first report to illustrate the

usage of motion manifold learning to provide the one step

forward motion prior for a set of collaborative trackers in

heart chamber’s tracking. This is also a novel and critical step

which increases not only the accuracy but also the tracking

speed. The paper is organized as follows. Section 2 introduces

the Bayesian tracking framework. The learning methods and

tracking algorithm are described in Section 3 and Section

4, respectively. Section 5 provides the experimental results

for endocardium tracking, dense myocardial region tracking

between endocardium and epicardium, and the whole four

chambers tracking. Section 6 concludes the paper.

II. BAYESIAN TRACKING FRAMEWORK

Define xt as the true position of each 3D boundary point

of the heart at time t and let zt represent the measurement.

The tracking problem can be formulated as an estimation of a

posteriori probability p(xt|z1:t), where z1:t = {z1, ..., zt} rep-

resents the past t measurements. Sequential Bayesian tracking

based on Markovian assumption is performed recursively in a

prediction

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

and updating step

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1). (2)

Bayesian tracking assumes that the following densities are

known. The p(x0) denotes the distribution of the 3D LV

surface points in the first frame. In our algorithm p(x0)
is automatically calculated using the trained detector and

boundary classifiers. The p(xt|xt−1) represents the motion

prior (state model) and is predicted for the next frame. The

p(zt|xt) represents the measurement density.

Both the Kalman filter and particle filter [14], [15] assume a

Markov model, which only considers the previous state xt−1

to estimate the density of current state xt. In real tracking

problems, the motion prior (state model) p(xt|xt−1, z1:t−1)
may not follow a Markovian assumption and it could be of any

form. In our algorithm, we model the p(xt|xt−1, z1:t−1) to be

dependent on both xt−1 and z1:t−1. One-step forward predic-

tion using motion manifold learning is applied to estimate this

critical motion prior.

For the measurement densities p(zt|xt), we select two

collaborative trackers: the detection tracker and the template

tracker, which can mutually benefit each other. The detection

tracker can discriminate the 3D target from background in low

image quality and noisy environment. The template tracker

respects the local image information and preserves the tem-

poral consistence between adjacent frames. The trackers are

modeled as rk, k = 1 for the detection tracker and k = 2 for

the template tracker, then

p(zt|xt) = p(zt|xt, r1)p(r1) + p(zt|xt, r2)p(r2). (3)

Substituting (3) in (2) and replacing p(xt|xt−1) with

p(xt|xt−1, z1:t−1) in (1), the final posterior probability

p(xt|z1:t) is obtained from the robust data fusion and the

xt = argmaxxt p(xt|z1:t).

III. MOTION LEARNING AND CLASSIFIERS TRAINING

The proposed prediction based collaborative trackers (PCT)

is not restricted to any specific heart chamber. It can be

used for the endocardium of the left ventricle, the myocardial

region between the endocardium and epicardium, the right

ventricle (RV), the left atrium (LA) and right atrium (RA),

or the arbitrary combination of four heart chambers. In the

experimental part, we will report three applications: tracking

of the endocardium of the left ventricle, dense tracking of the

myocardial region of the left ventricle, and the four chambers

tracking in 3D cardiac CT, using the proposed collaborative

tracking and motion learning algorithm.

For illustration purpose, tracking the endocardium of the left

ventricle is utilized as an example to describe the proposed

method. The tracking of the myocardial region and the other

chambers follow the same training and testing procedures.
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(a) (b)

Fig. 2. Manifold embedding for heart motion patterns. (a) Two left ventricle surface mesh sequences. (b) 11 sequences embedded in a 2D subspace. Note:
The end diastolic (ED) phase has larger volumes and represented as stars in (b), while the end systolic (ES) phase has smaller volumes and represented as
squares in (b).

Furthermore, in the algorithm description part, although we

just use the endocardium of the left ventricle as an example,

we refer to left ventricle tracking throughout the paper for

simplicity.

Each left ventricle training sequence contains a heart motion

cycle which starts from the end-diastolic (ED) phase, passes

through the end-systolic (ES) phase and comes back to ED.

The learning contains three steps. First the motion modes are

learned using manifold learning and hierarchical K-means.

Next, an ED detector is trained to locate the position of the

object in the first frame. Finally, two boundary classifiers

(one for ED and one for ES) are trained using the annotated

sequences to delineate the boundary.

A. Learning the Motion Modes

In this section we explain the learning steps using the left

ventricle (LV) as an example. After motion alignment, multiple

motion modes are learned using motion manifold learning and

hierarchical K-means.

1) Motion Alignment Using 4D Generalized Procrustes

Analysis: The training sequences contain 11-25 time frames

from one cardiac cycle, and each sequence is resampled

to 16 frames using interpolation along the timeline. In this

way we generate 4D motion vectors containing the same

dimensionality d, where d = Nf × 3 × 16, Nf = 289 is

the number of boundary points and three represents x, y and

z dimensions.

Generalized Procrustes analysis (GPA) is used to align all

resampled motion vectors to remove the translation, rotation

and scaling [16, ch. 5]. Please be aware that the shape

variations and motion patterns inside the motion vectors are

still kept, GPA just removed the difference of the training

motion vectors in the global coordinate systems. After the

4D GPA, these aligned motion vectors are decomposed into

separated 3D shapes. All the following learning steps are

performed on the aligned 3D shape vectors.

2) Motion Manifold Learning: Because the actual number

of constraints that control the LV motion are much less than

its original dimensionality, the aligned 3D shape vectors lie

on a low-dimensional manifold, where geodesic distance has

to be used to measure the similarities. Given the whole set of

3D training shape vectors, M = {m0, ...,mi, ...,mn} where

mi ∈ Rd, there exists a mapping ̥ which represents mi in

the low-dimensions as

mi = ̥(vi) + ui i = 1, 2, ..., n, (4)

where ui ∈ Rd is the sampling noise and vi ∈ Rq denotes

the original i-th shape mi in the low-dimensional manifold.

The nonlinear mapping ̥ is the transformation from the low-

dimensional manifold to the original space.

Unsupervised manifold learning is capable of discovering

the nonlinear degrees of freedom that underlie complex natural

observations. We apply ISOMAP [17] to embed the nonlinear

manifold into a low-dimensional subspace. We start by finding

the seven closest neighbors (seven was found to be the best)

of each point mi in the original space Rd and connect the

neighbors to form a weighted graph G. The weights are

calculated based on the Euclidean distance between each

connected pair of vectors. We then calculate the shortest

distance dG(i, j) between any pair of points mi and mj in

the graph G. The final step is to apply the standard multiple

dimensional scaling (MDS) to the matrix of graph distance

{dG(i, j)}. In this way, the ISOMAP applies a linear MDS on

the local patch but preserves the geometric distance globally

using the shortest path in the weighted graph G.

Figure 2a shows two annotated LV motion sequences.

Figure 2b shows several LV motion representations in a low-

dimensional manifold. An interesting but expected observation

is illustrated in Figure 2b. The LV motion is almost periodic

because one cycle of heart beat starts from ED and returns

to ED. In total we applied manifold learning on 36 annotated

LV motion sequences from the total 67 sequences. In order

to make the figure readable, we only show 11 sequences in
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Figure 2b.

3) Hierarchical K-means Clustering: Given all the motion

cycles shown on the embedded subspace, a hierarchical K-

means clustering method is proposed to learn the motion

modes. First, we apply K-means on all the training ED shapes.

After this step, we align all the trained motion sequences

by moving their motion vectors to their own cluster center

based on the ED clustering results. In this way we cancel the

translation among training motions with similar ED shapes,

and different cluster center represents the difference among

the ED shapes of the left ventricle. In the second round of

K-means, the learning procedure focuses on separating those

left ventricles with similar ED shapes, but different motion

patterns. Each aligned motion sequence is transformed to a

q × 16 dimensional vector, where q represents the reduced

dimensionality and 16 represents the number of frames. K-

means is applied again within each group, and the K-means

cluster center in this round represents a learned motion mode.

Each motion mode is a weighted sum of all sequences that are

clustered into the same group. The weights are proportional to

their Euclidean distance from the cluster center. The geodesic

distance in the original space is modeled by Euclidean dis-

tance in this embedded low-dimensional manifold. In the

left ventricle tracking, we tested different dimensions, such

as two, three and four as the dimensionality in the low

dimensional manifold, and no big difference is discovered

regards to the performance. Therefore q = 2 is chosen as the

reduced subspace dimensionality for the left ventricle tracking

in 3D echocardiograpy. For the twist motion tracking in the

myocardial region which contains large degree of freedoms,

we performed the motion manifold learning on a manifold

with higher dimension q = 20. The dimensionality of the

embedded manifold depends on the application and can be

determined heuristically. We want to clarify that low dimen-

sional nonlinear motion manifold is just used in the training

stage to cluster the motion patterns. After the clustering is

done, we will record the clustering index of each motion,

and the averaged motions with original dimensionality (e. g.

289× 3× 16 for left ventricle) are used as the learned motion

patterns. The one-step forward motion prior is generated by

nonlinear registration between the learned motion patterns and

the testing data (shown in details in Section IV-B).

B. Learning the ED Detector

In this step we train a 3D detector to locate the pose

of the left ventricle (LV) in the motion sequence. We first

calculate a mean shape by averaging all the left ventricles

in the ED frames of the annotated training sequences. A

principal component analysis (PCA) shape space is calculated

for all the ED shapes at the same time and the first 100

components are kept. In order to automatically initialize the

tracker, we need to find the similarity transformation from the

mean shape to the LV in the ED frame for each sequence

as the testing volume can have arbitrary pose. Discriminative

learning based approaches have proven to be efficient and

robust for 2D object detection [18]. The object is found by

scanning the classifier over an exhaustive range of possible

(a) (b)

(c) (d)

Fig. 3. The positive (a), (c) and negative samples (b), (d) used for training.
(a) and (b) Training samples for the detector. (c) and (d) Training samples
for the boundary classifiers.

locations, orientations and scales in an image. However, it is

challenging to extend them to 3D objection detection problems

since the number of hypotheses increases exponentially with

respect to the dimensionality of the parameter space. As the

posterior distribution is often clustered in a small region, it is

not necessary to search the parameter space exhaustively.

Recently, we proposed marginal space learning (MSL) [19],

[7] to efficiently detect a 3D anatomic structure in various

medical imaging modalities. Here, we apply MSL to learn an

ED detector to locate the LV in the first frame efficiently.

The idea for MSL is to incrementally learn classifiers on

projected marginal spaces. We split the estimation into position

detection, position-orientation detection and full similarity

transformation detection. The MSL reduces the number of

testing hypotheses by six orders of magnitude in our appli-

cations, which makes the directly training of the detector on

3D volumetric data a feasible procedure.

C. Learning the Boundary Classifiers

After we obtain the pose of the LV in the ED frame, we need

to segment its boundary to automatically start the trackers.

The active shape model (ASM) [13] is used to deform an

initial estimate of a nonrigid shape. The non-learning based

boundary classifier in the original ASM does not work in our

application due to the complex background and weak edges

in 3D ultrasound. Learning based methods can exploit image

evidences to achieve robust boundary detection. Boundaries

with different orientation are usually detected on pre-rotated

images [20]. Since 3D volume rotation is very time consuming,

we use steerable features [7] for boundary detection and avoid

rotating the 3D volume. For each boundary point (289 in total),

we sample several points from the volume around it under a

special pattern, which embed the orientation information into

the distribution of the sampling points. A few local features

at each sampling point, such as voxel intensity and gradients,

etc., are calculated. The advantages of steerable features are

that they combine the advantages of both local and global

features.
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Fig. 4. The four canonical views and a 3D representation of the segmentation
result (automatic tracking initialization) of LV.

Two boundary classifiers, one for LV motion close to the

ED phase and the other for LV motion close to ES, are trained

using the probabilistic boosting tree (PBT) [21]. The PBT

ensembles many strong classifiers into a tree structure. The

widely used cascade boosting [18] can be treated as a special

case in PBT. The learned boundary classifiers are used to

automatically segment the boundary of the LV, to initialize

the trackers, and also used as the detection tracker for the

following frame. In Figure 3 we show some positive and

negative training samples used for training both the detector

and the boundary classifiers.

IV. TRACKING PROCEDURE

The tracking procedure on a testing sequence contains four

steps. The p(x0) is initialized using the learned ED detector

and the ED boundary classifier. At time t−1, registration based

reverse mapping and one-step forward prediction are used

to estimate the next state p(xt|xt−1, z1:t−1). We then apply

two collaborative trackers and robust data fusion to estimate

the measurement density p(zt|xt). In order to obtain smooth

tracking of the LV, each boundary point is mapped to a shape

constrained 3D boundary. The final results are obtained by

maximizing the posterior probability in Equation (2). These

prediction (1) and updating (2) steps are performed recursively

for each frame in a sequence.

A. Initialization of Tracking

In order to initialize the boundary tracking of the LV in

an automatic manner, we need to automatically detect and

segment the LV in the ED frame of a testing sequence. Given

the ED frame, all positions are scanned by the trained position

detector. The top 100 candidates (xi, yi, zi), i = 1, 2, ..., 100
are kept. Each candidate is then expanded using 1000 hy-

pothesis on orientations (ψij , φij , θij), j = 1, 2, ..., 1000.

The trained position-orientation detector is applied for each

candidate and the best 50 are kept. These 50 candidates

are expanded using 1000 scale hypothesis (sxkl, sykl, szkl),
k = 1, 2, ..., 50, l = 1, 2, ..., 1000. Evaluated by the position-

orientation-scale detector, the best 100 candidates are averaged

to produce the final similarity transformation estimation.

After the similarity transformation is calculated, the LV

mean shape is registered and superimposed on the ED frame of

the testing sequence as the initial position. For each boundary

point we search ±12 mm range on the normal directions of

the boundary. (The value ±12 mm was set considering both

speed and accuracy.) The learned boundary classifier is used

to move each boundary point to its optimal position where the

estimated boundary probability is maximized. Figure 4 shows

the tracking initialization result.

B. One Step Forward Prediction

In this step we calculate the motion prior (state model)

p(xt|xt−1, z1:t−1) using the learned motion modes. At time

t−1, we first transform the current 3D shape p(xt−1|z1:t−1) to

the corresponding frame of each motion mode in the 4D GPA

coordinate system. Thin plate spline (TPS) transformation [22]

is applied to perform this mapping. The TPS is a nonrigid

transformation between two 3D point sets. The transformation

T contains an affine mapping plus a warping coefficient ma-

trix. We used 72 uniformly sampled points from 289 boundary

points to estimate the TPS transformation T by minimizing

ETPS(T ) =

72∑
i=1

‖wi − T (bi)‖
2
+ λf(T ), (5)

where wi denotes the 3D mesh point on the learned mo-

tion modes and bi denotes the point on the testing object’s

boundary. The f(T ) is a function containing a kernel which

represents the internal structure relationship of the point set.

The regularization parameter λ is chosen as 1.5. We refer the

readers to [22] for more details.

The prediction is applied on the motion mode which min-

imizes the previous 1 to t − 1 accumulated TPS registration

errors

I = argmin
i

t−1∑
j=0

min
T
ETPS(xj , qi,j , T ), (6)

where i = 1, ..., Q represents the number of motion modes.

The qi,j is the i-th motion mode in the j-th frame and the

ETPS(xj , qi,j , T ) is the registration error.

After we found the correct motion mode qI,t using (6), the

final prediction result in the real world coordinate system of

the p(xt|xt−1, z1:t−1) is obtained using the reverse mapping

T−1. A motion mode generated by reverse mapping using TPS

is shown in Figure 5.

There could be motion mode changes during the prediction

when the prediction starts from one motion mode and jumps

to another mode during tracking. This corresponds to the LV

motion which starts from an ED shape in one learned motion

mode, but has a motion trajectory close to another mode. This

is the reason we calculated the accumulated TPS registration

error, and just perform one-step forward prediction instead of

calculating the whole cycle motion prior one time. The one-

step forward prediction step (illustrated in Figure 6) provides

accurate motion prior in PCT.
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Fig. 5. The LV boundaries in 3D world coordinates of a motion mode. The
results are calculated using TPS reverse mapping and superimposed in the
two-dimensional reduced motion manifold.

Fig. 6. The procedure for one step forward prediction in PCT.

C. Collaborative Trackers

Given the motion prior p(xt|xt−1, z1:t−1) learned using one-

step forward prediction on the motion manifold, for each

boundary point the learned boundary classifiers are used to

search in its ±12 mm range on the normal direction. The opti-

mal position is found by maximizing the boundary probability.

The ED boundary classifier is used when the frame index is

close to ED and the ES boundary classifier is used when it

is close to ES. The final position using detection tracker is

obtained by maximizing p(zt|xt, r1) in (3).

In order to compensate the disadvantages of detection track-

ing mentioned in the introduction, a 3D template tracker is also

applied. Given xt a 3D boundary point and its neighborhood

N(xt), let G(N(xt), µ) denotes the transformation of the

template. (The neighborhood was chosen to be a cube of

13 × 13 × 13 voxels based on experiments.) The goal is to

search the best transformation parameters µ which minimize

the error between N(xt) and G(N(xt), µ).

µ = argmin
µ

∑
xt∈N(xt)

[G(N(xt), µ)−N(xt)]
2
. (7)

Because there is only a small change of parameter µ
between adjacent frame, the minimization of (7) can be solved

by linearizing the expression

G(N(xt), µ) = G(N(xt)) +
∂G(N(xt), µ)

∂µ
dµ. (8)

At the end the result p(zt|xt, r2) is obtained.

Although the template matching algorithm is not robust

and only works under the assumption of small inter-frame

motions, it preserves temporal consistence and its disadvan-

tages can be compensated by the one-step forward prediction

and the detection tracker. Template updating is a key issue

Fig. 7. The prior p(r1) for detection tracker (red solid line) and p(r2) for
template tracker (blue dotted line). The ED phase has frame index zero and
ES phase is around frame six.

in template tracking. If we update the template in each

frame only based on the previous template tracking result,

the error will be inevitably accumulated and finally results

in the template drifting [23], [24]. Generally it is difficult

for template tracking to recover from drifting without special

processing. In our method we update the template using the

previous collaborative tracking result. Because the learned

motion prior is enforced and detection is used, this updating

scheme can help the template tracker to recover from the

template drifting. As shown in [25], [26], [27], learned motion

prior is quite effective to help tracking to recover from failures.

Collaborative kernel trackers are also successfully used in [28].

D. Data Fusion

Fusion of the collaborative tracking is obtained by defining

prior distribution p(r1), p(r2) in (3). Based on domain expert’s

knowledge, both priors were designed as the exponential

functions of t, which is illustrated in Figure 7. We show only

one heart beat cycle which contains 16 frames. In order to

reject outliers and achieve robustness, we apply a rectangle

filter of [−12 12]3 mm on the final data fusion results to

erase the motion replacements which are larger than this size

between adjacent frames. The corresponding position of the

eliminated boundary point is recalculated based on the bicubic

interpolation of its neighbors. After this step we obtained the

p(zt|xt).

E. Postprocessing and Projection

Due to speed considerations, the detection tracker is de-

signed to search on the normal direction of the boundary, and

the template tracker is searching along the direction of the gra-

dients. Both of them can not provide smooth tracking results.

Let Bf denotes the 3D boundary point-set after the data fusion

step. We project Bf onto the PCA shape space calculated from

the training stage, and obtain a smooth boundary point set

Bs. Please be aware that here the PCA shape model indicates

the heart chamber models built for the ASM based boundary

classifier in Section III-C. The first 100 components are saved

to keep enough details and provide smooth boundaries as well.

A surface of the smooth boundary Bs is constructed using the

3D triangulation. Each boundary point P on Bf is projected

onto the smooth surface by finding the triangle S ∈ T = {all
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Fig. 8. The working flow chart of the automatic endocardium tracking of the left ventricle and the measurement of the ejection fraction and volume-time
curve.

triangles of Bs} which minimize the square distance

dist(s, t) = [S(s, t)− P ]
2
, (9)

where S(s, t) = b+ se0 + te1 with (s, t) ∈ D = {(s, t) : s ∈
[0 1], t ∈ [0 1], s+t ≤ 1}. Here, b is one vertex in the triangle

and e0 and e1 represent two edges. In this way, we maintain

both the tracking accuracy and the mesh smoothness.

V. EXPERIMENTAL RESULTS

The proposed predication based collaborative tackers (PCT)

is a general framework which can be applied to track individ-

ual heart chamber, the combination of heart chambers, the

epicardium and endocardium or the myocardial region, etc. In

this section, we demonstrate the experimental results applying

PCT on endocardium tracking, the myocardial region dense

tracking, and four chambers whole heart tracking.

A. Endocardium Tracking of The Left Ventricle

In total 67 3D ultrasound endocardium motion sequences

are collected. Each subject contributes one sequence, therefore

we have 67 different subjects. Each 4D (x, y, z, t) motion

sequence contains from 11 to 25 3D frames from one cardiac

cycle. In total we have 1143 ultrasound 3D volumetric data.

Our dataset is much larger than those reported in the literature,

e.g., 29 cases with 482 3D frames in [5], 21 cases with about

400 3D frames in [29] and 22 cases with 328 3D frames in

[30], etc. The working procedure is shown in Figure 8.

The imaging protocols are heterogeneous with different

capture ranges and resolutions along each dimension. The

dimensionality of 27 sequences is 160×144×208 and the other

40 sequences is 160 × 144 × 128. The x, y and z resolution

ranges are [1.24 1.42], [1.34 1.42] and [0.85 0.90] mm. In our

experiments, we randomly select 36 sequences for training and

the rest are used for testing.

The accuracy is measured by the point-to-mesh (PTM)

error. All 3D points on each frame of the testing sequence

are projected onto the corresponding annotated boundary of

the test set. In order to make the measurement symmetric

we also calculate the reverse mapping distance. The average

projection distance from the point to boundary is recorded as

the PTM error, eptm. For a perfect tracking, the eptm should

be equal to zero for each 3D frame. In Table I, we compared

the quantitative eptm using the proposed predication based

collaborative trackers (PCT) with tracking by 3D optical flow

and tracking by detection.

The 80% column in Table I represents the 80-th percentile of

the sorted eptm, and is commonly used by doctors to evaluate

the usability of the system. For example, if the doctor can

tolerate an error of 1.5 mm, they normally expect 80% of

the errors to be smaller than this number. The mean eptm we

obtained is 1.28 mm with a 80% error below 1.47 mm. In this

experiment we show that collaborative trackers is obviously

superior to each individual detection or template tracker.

In Table II we list the quantitative comparison results with

other eight algorithms. PCT provides one of the best results

in the recent heart segmentation/tracking literature. Although

the algorithm in [31] reports better mean PTM errors, there

are several differences between these two studies: 1) PCT is

completely automatic including the initialization step while

[31] initializes the tracker in a semi-automatic manner; 2) PCT

is roughly three times faster than [31]; 3) PCT contains 67

patients which is two times larger; 4) The best resolution of

the data that PCT had is 1.24×1.34×0.85mm while the data

in [31] had resolution 1×1×0.7mm; 5) The accuracy reported

in PCT is based on a random half training, half testing manner

while [31] reports the leave-one-out result.

The systolic-diastolic function can be visualized using the

volume-time curve which represents continuous endocardium

volume change over the time t. It is an important diagnosis

term to evaluate the health condition of the heart. In Figure 9,

we illustrate one heart cycle of two systolic-diastolic functions.

The curves for all three tracking algorithms and the ground-

truth annotation are shown. Our algorithm (PCT) provides the

most similar functions to the ground truth curves. Given the

systolic-diastolic functions, we had calculated the ejection-

fraction (EF) rate compared with the ground-truth annotations

and the results are listed in Table III. The ejection fraction

is defined as EF = (vED − vES)/vED, where vED and

vES represent the volumes of the left ventricle at the ED

and ES phase, respectively. A normal LV ejection fraction

is 55% to 70% percent. The decreased ejection fraction may

indicate problems such as weakness of heart muscle, problem

with heart’s valves or long-standing, uncontrolled high blood

pressure, etc.

Two types of errors are frequent in tracking endocardium

in 3D ultrasound. The first type is the leakage error, eleakage,
which often happens on the mitral valve region. This is intro-

duced by the similar appearance of the mitral valve compared

to the endocardium boundary. A good left ventricle boundary

tracking algorithm should not follow the motion of the leaflets

of the mitral valve. Tracking by detection failed on frame 8

(row 3, columns 3 and 4 in Figure 10b) because it always

searches for what it learned in the training stage, but ignores

all the local image information and temporal consistency.

The second type is the shrinkage error, eshrink, which often
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TABLE I
THE point-to-mesh (PTM) ERRORS MEASURED IN MILLIMETERS USING THREE TRACKING ALGORITHMS.

Mean Variance Median Min Max 80%

3D optical flow 2.68 1.28 2.39 0.94 10.38 3.23

Tracking by detection 1.61 1.24 1.31 0.59 9.89 1.89

PCT 1.28 1.11 1.03 0.38 9.80 1.47

TABLE II
THE point-to-mesh (PTM) ERRORS OF PCT COMPARED WITH EIGHT DIFFERENT SEGMENTATION AND TRACKING ALGORITHMS. EMPTY

FIELD MEANS THE INFORMATION IS NOT AVAILABLE. BY DEFAULT THE ERROR IS MEASURED WITH MILLIMETERS. IN [32] THE AUTHOR

ONLY REPORTS VOXEL ERROR WITHOUT RESOLUTION INFORMATION AVAILABLE, AND IT WAS TEST ON 10 SCANS FROM THE SAME

SUBJECT, DENOTED AS 1(10) IN THE TABLE.

Zhu [30] Wolf [33] Myronenko[32] Lin [34] Hansegård1 [35] Hansegård2 [36] Orderud [29] Leung [31] PCT

Mean 1.45 3.44 1.03 voxel 1.64 3.4 2.2 2.7 1.19 1.28

Variance 0.3 1.18 0.63 voxel 0.50 2.3 0.56 0.47 1.11

Segmentation × × × × × × × ×

Tracking × × × × × ×

#Subjects 22 20 1(10) 24 36 21 21 35 67

Figure 9. Two volume-time curves demonstrate the whole cardiac cycle,
which includes the systole stage and the diastole stage.

happens on the apex region. The 3D optical flow failed on

frame 6 (row 2, columns 5 and 6 in Figure 10c) because of

the low image quality around the apex region. This proves

that motion prior is necessary to obtain enough shrinkage for

endocardium tracking in the 3D echocardiography because of

the low quality of ultrasound imaging.

Using our algorithm, shown in Figure 10a, neither of the

errors are observed. Therefore we achieve more accurate

tracking results both visually and quantitatively.

The most important practical consideration for 3D tracking

is computational complexity. One of the major reasons to pro-

pose marginal space learning, steerable features, registration

based reverse mapping and one-step forward prediction in PCT

is the speed consideration. The currently C++ implementation

of PCT requires 1 − 1.5 seconds to process one 3D volume

containing 160 × 148 × 208 = 4, 925, 440 voxels. It takes

about 20 seconds for the whole motion sequence. PCT is at

least two times faster than the slice-cut algorithm presented in

[6] which is even not directly working on 3D volumetric data,

three times faster than [31], and about hundreds of times faster

than [32] which reported using a MATLAB implementation.

TABLE III
THE ejection-fraction (EF) RATE ESTIMATION ERRORS (%) AND

LEFT VENTRICLE VOLUME ESTIMATION ERROR (ML) USING PCT
COMPARED WITH THE GROUND-TRUTH.

Mean Std Median Min Max 80%

EF(%) 1.01 5.23 0.82 0.22 9.89 1.41

Volume(ml) 1.32 6.27 1.15 0.25 9.54 1.53

B. Dense Myocardial Region Tracking of The Left Ventricle

In this section, we demonstrate the performance of the

proposed tracking algorithm for dense tracking in myocar-

dial region. The extension of the endocardium tracking to

myocardial region tracking is straightforward. In the starting

frame (typically the end-systole or end-diastole cardiac phase),

we initialize the tracking process automatically by detecting

the endocardial and epicardial boundary of the left ventricle

(LV), the same tracking procedure described in Section IV

is followed to track the epicardium, endocardium and the

myocardial region of the left ventricle. The final dense tracking

results are achieved by tessellating the whole myocardium into

a 3D dense mesh. The procedure is shown in Figure 11.

In the myocardial region dense tracking, high frame-rate 3D

ultrasound motion sequences were acquired with the average

volume size of 200 × 200 × 140. The average temporal

resolution is 44 frames per second.

1) In-Vitro Study: To evaluate the accuracy of PCT for

dense myocardial region tracking, we performed an in-vitro

experiment on animals. The ground-truth motion was gener-

ated by a rotation device and a water pump controlling the

stroke volume. Two crystals were implanted in the apical and

middle regions of the left ventricle, respectively, to measure

the myocardial movement. The average distance between two

crystals is 30mm. Four volumetric ultrasound sequences were
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(a) (b) (c)

Figure 10. Comparative tracking results on a testing sequence with 12 frames. (a) Tracking results using the proposed method. (b) Tracking by detection.
(c) Tracking using 3D optical flow. The rows correspond to frame indices 1, 6, 8 and 10, respectively.

Figure 11. Example initializations of the endocardial and epicardial boundary of the left ventricle (LV). From left to right, the endo- and epi-cardial mesh
shown in multi-planar reformatted planes (MPRs): apical four chamber plane, apical three chamber plane, apical two chamber plane, and short axis middle
plane. The last subfigure shows the resulting tessellated 3D mesh.

(a) (b) (c)

Figure 12. Many clinically relevant measurements can be calculated after myocardium tracking, including: (a) strain (a) strain, (b) velocity,
and (c) displacement values in the longitudinal, radial, and circumferential direction respectively.
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TABLE IV
IN-VITRO EXPERIMENTS ON BOTH (A) ROTATION AND (B) DISPLACEMENT DATA.

Rotation(degrees) 10 15 20 25

Estimation 9.3 13.5 18.1 21.8
Accuracy 93% 90% 91% 87%

Displacement(mm) 0.82 1.29 2.02

Estimation 0.9 1.54 2.31
Accuracy 90% 81% 91%

(a) Rotation Data (b) Displacement Data

acquired with 10, 15, 20, and 25 rotation degrees, respectively,

and three sequences with different stroke volumes. As reported

in Table IV, our tracking results are consistent with the ground-

truth measurements on both rotation and displacement data.

The displacements in Table IVb were computed based on a

30mm reference length.

Furthermore, to evaluate the PCT tracking results for my-

ocardial strain estimation, we compare them against the crystal

measurements for the same subjects in the in-vitro study.

The ground-truth longitudinal Lagrangian strain [37] can be

computed based on the displacement reported in Table IVb,

where the two crystals were implanted in the apical and middle

regions of the left ventricle, respectively. Table V reports the

comparison between our estimated strain values and the ones

from crystal measurements. The two crystals were implanted

in the apical and middle regions of the left ventricle, such that

the longitudinal Lagrangian strain can be computed based on

the displacement as the ground-truth measurement in the top

row. The estimation results in the middle row are computed

based on the proposed tracking method. The low difference

values in Table V show clearly that the results from our method

are consistent with the clinical measurements.

2) In-Vivo Study: To evaluate the robustness of the algo-

rithm, we tested it on a large data set including 503 volumetric

ultrasound sequences from human subjects. The data set was

randomly split into a training set and a testing set, where

the training set was used to train the detectors, generate

the shape model and produce the motion priors in Section

III, while the testing set reflected the performance of the

algorithm for unseen data. The results on both the training and

testing sets are reported in Table VI. In the first experiment,

the data set was evenly split into a training set with 239
sequences and a testing set with the remaining 264 sequences,

while in the second experiment the training set (434) and the

testing set (69) were not balanced. The error measurements

were computed as the point-to-mesh (PTM) error, defined in

Section V-A, between our estimated mesh and the ground-truth

annotations provided by experts. The low error values on both

the training and testing data demonstrate the high accuracy

and robust performance of the proposed tracking algorithm on

both seen and unseen data. An example of strain, velocity and

displacement estimation results is shown in Figure 12. In the

top row, the left picture in each pair shows the estimated values

mapped to the endocardial boundary of the left ventricle, while

the right one shows the direction and magnitude of the dense

velocity field. The apical, middle, and basal regions are marked

in red, green, and blue, respectively. The bottom row shows

the plot on each region, where the horizontal axis is time, and

the vertical axis is the estimated mechanical parameter value.

The vertical blue bar indicates the time stamp of the frame

displayed in the top row. Please note that in Figure 12c the

recovered rotation motion in the apical and basal regions are in

opposite directions, which shows that our method can recover

the twist motion of the left ventricle.

TABLE V
COMPARISON OF THE LONGITUDINAL STRAIN ESTIMATION

BETWEEN OUR METHOD AND THE CRYSTAL MEASUREMENTS IN

THE in-vitro STUDY.

Longitudinal Strain 2.63% 4.11% 6.68%

Estimation 3.43% 5.19% 8.25%

Difference 0.8% 1.08% 1.57%

C. Four Chambers Tracking of The Heart

In order to show the generality of PCT in handling different

imaging modality, we also tested it on four chambers tracking

in 3D cardiac CT. The same procedures described in Section

IV are applied on each heart chamber separately, and the whole

heart mesh is a tessellation of each individual heart chamber’s

mesh.

The ED detector and boundary classifier were trained on

323 static cardiac CT volumes from 137 patients with various

cardiovascular diseases. The cardiac motion model was trained

on additional 20 sequences (each with 10 frames). Our dataset

is much larger than those reported in the literature, e.g., 13 in

[38], 18 in [5], 27 in [39], and 30 in [40].

The data was collected from 27 institutes over the world

(mostly from Germany, the USA, and China) using Siemens

Somatom Sensation or Definition scanners. The imaging pro-

tocols are heterogeneous with different capture ranges and

resolutions. A volume may contain 80 to 350 slices, while

the size of each slice is the same with 512 × 512 pixels.

The resolution inside a slice is isotropic and varies from 0.28

mm to 0.74 mm for different volumes. The slice thickness

(distance between neighboring slices) is larger than the in-

slice resolution and varies from 0.4 mm to 2.0 mm for different

volumes.

The four chambers mesh models are shown in Figure 13.

The left ventricle, including both epicardium (magenta) and

endocardium (green), is shown in Figure 13a. The left atrium

is represented by an open mesh separated by a mitral valve,

shown in Figure 13b. The combined left heart mesh is shown in

Figure 13c. The right ventricle has a more complicated shape

and its model is represented by an open mesh, shown in Figure

13d. The mesh model for the right atrium and the combined

mesh are shown in Figure 13e and Figure 13f, respectively.

The detailed mesh modeling can be found in [41].

The motion model for each chamber in Figure 13 is learned

using the same motion manifold learning method described

in Section III-A. Object detector and boundary classifier are
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TABLE VI
PERFORMANCE ANALYSIS OF MYOCARDIUM TRACKING ON A LARGE DATA SET INCLUDING 503 3D+T ULTRASOUND MOTION

SEQUENCES.

measure(mm) training (239) testing (264) training (434) testing (69)

mean/std 2.21/1.57 2.68/2.63 2.26/1.42 2.64/2.23

(a) (b) (c) (d) (e) (f)

Figure 13. The heart mesh models for the four chambers (a) The mesh model for the left ventricle (LV), with green for the LV endocardium and magenta
for the LV epicardium. (b) The mesh model for the left atrium (LA). (c) The combined LV and LA mesh. (d) The mesh model for the right ventricle (RV).
(e) The mesh model for the right atrium (RA). (f) The combined mesh model for both RV and RA.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. The four chambers tracking results on a testing 3D CT sequence with 8 frames. (a)-(h) represent the 1-8 frame index of the whole sequence.

trained for each heart chamber, respectively. In the tracking

stage, the same one step forward prediction procedure de-

scribed in Section IV is utilized to provide motion prior during

the tracking procedure. The robust data fusion is applied

to calculate the final motion displacement. The 3D cardiac

CT four chambers (LV-epicardium, LV-endocardium, LA, RV,

and RA) tracking results for each frame in a CT sequence

containing eight frames are shown in Figure 14.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a robust, fast and accurate

predication based collaborative track (PCT) and tested in

both 3D ultrasound and CT. PCT can process a 3D volume

in less than 1.5 seconds and provides subvoxel accuracy.

We demonstrated that PCT increases the tracking accuracy

and especially speed dramatically. The final accurate results

are achieved by introducing the one-step forward prediction

motion prior. The robustness to complex background and weak

edges is obtained from the learned discriminative detector and

boundary classifiers. The temporal consistency is preserved by

the template tracker in the collaborative trackers.

Instead of building specific models manually, all the shape

priors and motion patterns in PCT are based on learning.

The algorithm is therefore general enough to be extended to

other 3D medical tracking problems. The generality of PCT is

already proven by a diverse and extensive experiments using

three challenging heart tracking applications. Currently, we are

working on extending PCT to other tracking applications, such

as lung tumor tracking in continuously acquired fluoroscopic

video sequences.

REFERENCES

[1] B. Anderson, Echocardiography: The Normal Examination and

Echocardiographic Measurements, 2nd ed. MGA Graphics, Australia,



JOURNAL OF IEEE TRANSACTION ON MEDICAL IMAGING 12

2007.

[2] P. Schoenhagen, S. S. Halliburton, A. E. Stillman, and R. D. White,
“CT of the heart: Principles, advances, clinical uses,” Cleveland Clinic

Journal of Medicine, vol. 72, no. 2, pp. 127–138, 2005.

[3] M. Dewan, C. H. Lorenz, and G. D. Hager, “Deformable motion tracking
of cardiac structures (DEMOTRACS) for improved MR imaging,”
Proc. IEEE International Conference on Computer Vision and Pattern

Recognition, 2007.

[4] P. F. U. Gotardo, K. L. Boyer, J. Saltz, and S. V. Raman, “A new
deformable model for boundary tracking in cardiac MRI and its appli-
cation to the detection of intra-ventricular dyssynchrony,” Proc. IEEE

International Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 736–743, 2006.

[5] M. P. Jolly, “Automatic segmentation of the left ventricles in cardiac
MR and CT images,” International Journal of Computer Vision, vol. 70,
no. 2, pp. 151–163, 2006.

[6] W. Hong, B. Georgescu, X. S. Zhou, S. Krishnan, Y. Ma, and D. Co-
maniciu, “Database-guided simultaneous multi-slice 3D segmentation
for volumeric data,” Proc. European Conference on Computer Vision,
vol. 4, pp. 397–409, 2006.

[7] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu,
“Fast automatic heart chamber segmentation from 3D CT data using
marginal space learning and steerable features,” Proc. IEEE Interna-

tional Conference on Computer Vision, 2007.

[8] L. Yang, B. Georgescu, Y. Zheng, P. Meer, and D. Comaniciu, “3D
ultrasound tracking of the left ventricle using one-step forward prediction
and data fusion of collaborative trackers,” Proc. IEEE International

Conference on Computer Vision and Pattern Recognition, 2008.

[9] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM

Computer Survey, vol. 38, no. 4, pp. 13.1–13.45, 2006.

[10] S. Avidan, “Ensemble tracking,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 29, no. 2, pp. 261–271, 2007.

[11] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, “Tracking in
low frame rate video: A cascade particle filter with discriminative
observers of different lifespans,” Proc. IEEE International Conference

on Computer Vision and Pattern Recognition, 2007.

[12] T. Zhao and R. Nevatia, “3D tracking of human locomotion: A tracking
as recognition approach,” Proc. IEEE International Conference on

Pattern Recognition, pp. 1054–1060, 2002.

[13] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape
models: Their training and application,” Computer Vision and Image

Understanding, vol. 61, no. 1, pp. 38–59, 1995.

[14] M. Isard and A. Blake, “CONDENSATION — Conditional density
propagation for visual tracking,” International Journal of Computer

Vision, vol. 28, no. 1, pp. 5–28, 1998.

[15] Z. Khan, T. Balch, and F. Dellaert, “An MCMC-based particle filter
for tracking multiple interacting targets,” Proc. European Conference

on Computer Vision, vol. 4, pp. 279–290, 2004.

[16] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. John Wiley
and Sons, 1998.

[17] J. Tenebaum, V. de Silva, and J. Langford, “A global geometric frame-
work for nonlinear dimensionality reduction,” Science, vol. 290, no.
5500, pp. 2319–2323, 2000.

[18] P. Viola and M. J. Jones, “Rapid object detection using a boosted cascade
of simple features,” Proc. IEEE International Conference on Computer

Vision and Pattern Recognition, vol. 1, pp. 511–518, 2001.

[19] A. Barbu, V. Athitsos, B. Georgescu, S. Boehm, P. Durlak, and
D. Comaniciu, “Hierarchical learning of curves application to guidewire
localization in fluoroscopy,” Proc. IEEE International Conference on

Computer Vision and Pattern Recognition, 2007.

[20] P. Dollar, Z. Tu, and S. Belongie, “Supervised learning of edges and
object boundaries,” Proc. IEEE International Conference on Computer

Vision and Pattern Recognition, vol. 2, pp. 1964–1971, 2006.

[21] Z. Tu, “Probabilistic boosting-tree: Learning discriminative models for
classification, recognition, and clustering,” Proc. IEEE International

Conference on Computer Vision, vol. 2, pp. 1589–1596, 2005.

[22] J. Lim and M. Yang, “A direct method for modeling non-rigid motion
with thin plate spline,” Proc. IEEE International Conference on Com-

puter Vision and Pattern Recognition, vol. 1, pp. 1196–1202, 2005.

[23] J. Chen and Q. Ji, “Online spatial-temporal data fusion for robust
adaptive tracking,” Proc. IEEE International Conference on Computer

Vision and Pattern Recognition, 2007.

[24] I. Matthews, T. Ishikawa, and S. Baker, “The template update problem,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 6,
pp. 810–815, 2004.

[25] D. Ormoneit, M. J. Black, T. Hastie, and H. Kjellström, “Representing
cyclic human motion using functional analysis,” Image and Vision

Computing, vol. 23, no. 14, pp. 1264–1276, 2005.
[26] R. Urtasun, D. J. Fleet, and P. Fua, “Temporal motion models for

monocular and multiview 3D human body tracking,” Computer Vision

and Image Understanding, vol. 104, pp. 157–177, 2006.
[27] S. Zhou, J. Shao, B. Georgescu, and D. Comaniciu, “Pairwise active ap-

pearance model and its application to echocardiography tracking,” Proc.

International Conference on Medical Image Computing and Computer

Assisted Intervention, vol. 4190, pp. 736–743, 2006.
[28] Z. Fan, Y. Wu, and M. Yang, “Multiple collaborative kernel tracking,”

Proc. IEEE International Conference on Computer Vision and Pattern

Recognition, vol. 2, pp. 502–509, 2005.
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