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Abstract. The key challenge in the design of wireless sensor networks
is maximizing their lifetime. The information about the amount of
available energy in each part of the network is called the energy map
and can be useful to increase the lifetime of the network. In this paper,
we address the problem of constructing the energy map of a wireless
sensor network using prediction-based approaches. We also present an
energy dissipation model that is used to simulate the behavior of a
sensor node in terms of energy consumption. Simulation results compare
the performance of the prediction-based approaches with a naive one in
which no prediction is used. The results show that the prediction-based
approaches outperform the naive in a variety of parameters.
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1 Introduction

Wireless sensor networks are those in which nodes are low-cost sensors that
can communicate with each other in a wireless manner, have limited computing
capability and memory and operate with limited battery power. These sensors
can produce a measurable response to changes in physical conditions, such as
temperature or magnetic field. The main goal of such networks is to perform
distributed sensing tasks, particularly for applications like environmental mon-
itoring, smart spaces and medical systems. These networks form a new kind of
ad hoc networks with a new set of characteristics and challenges.

Unlike conventional wireless ad hoc networks, a wireless sensor network po-
tentially comprises of hundreds to thousands of nodes [14]. The sensors have to
operate in noisy environments and, in order to achieve good sensing resolution,
higher densities are required. Therefore, in a sensor network, scalability is a cru-
cial factor. Different from nodes of a customary ad hoc network, sensor nodes
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are generally stationary after deployment. Although the nodes are static, these
networks still have dynamic network topology. During periods of low activity, the
network may enter a dormant state in which many nodes go to sleep to conserve
energy. Also, nodes go out of service when the energy of the battery runs out or
when a destructive event takes place [9]. Another characteristic of these networks
is that the sensors have limited resources, such as limited computing capability,
memory and energy supplies, and they must balance these restricted resources
in order to increase the lifetime of the network. In addition, the sensors will
be battery powered and it is often very difficult to change or recharge batteries
for these nodes. Therefore, in sensor networks, we are interested in prolonging
the lifetime of the network and then the energy conservation is one of the most
important aspects to be considered in the design of these networks.

The information about the remaining available energy in each part of the
network is called the energy map and could aid in prolonging the lifetime of the
network. We could represent the energy map of a sensor network as a gray level
image, in which light shaded areas represent regions with more remaining energy,
and regions short of energy are represented by dark shaded areas. Using the en-
ergy map, a user may be able to determine if any part of the network is about to
suffer system failures in near future due to depleted energy [17]. The knowledge
of low-energy areas can aid in incremental deployment of sensors because addi-
tional sensors can be placed selectively on those regions short of resources. The
choice of the best location for the monitoring node can be made also based on
the energy map. A monitoring node is a special node responsible for collecting
information from the sensor nodes. Typically this node is named observer or end
user and it is interested in obtaining information from the sensor nodes about the
observed phenomenom. We know that nodes near the monitoring node probably
will spend more energy because they are used more frequently to relay packets
to the monitoring node. Consequently, if we move the monitoring node to areas
with more remaining energy, we could prolong the lifetime of the network. Rout-
ing protocols can also take advantage of the available energy information in each
part of the network. A routing algorithm can make a better use of the energy re-
serves if it selectively chooses routes that use nodes with more remaining energy,
so that parts of the network with small reserves can be preserved. It can also
form a virtual backbone based on connecting high energy islands. Other possible
applications of the energy map are reconfiguration algorithms, query processing,
data fusion, etc. In fact, it is difficult to think of an application and/or an al-
gorithm that does not need to use an energy map. Therefore, the energy map
is an important information for sensor networks. However, the naive approach,
in which each node sends periodically only its available energy to the monitor-
ing node, would spend so much energy due to communications that probably
the utility of the energy information will not compensate the amount of energy
spent in this process. For that reason, better energy-efficient techniques have to
be devised to gather the information about the available energy in each part of
a sensor network.
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In this paper, we focus on proposing mechanisms to predict the energy con-
sumption of a sensor node in order to construct the energy map of a wireless
sensor network. There are situations in which the node can predict its energy
consumption based on its own past history. If a sensor can predict efficiently
the amount of energy it will dissipate in the future, it will not be necessary to
transmit its available energy often. This node can just send one message with its
available energy and the parameters of the model that describe its energy dis-
sipation. With this information, the monitoring node can update often its local
information about the available energy of this node. Clearly the effectiveness of
this paradigm is dependent on the accuracy with which prediction models can
be generated. We analyze the performance of probabilistic and statistical mod-
els, and compare them with a naive approach in which no prediction is used. In
order to evaluate the approaches to construct the energy map, we have to have
a clear idea of how is the energy drop in a sensor node. Thus, we also propose
an energy dissipation model that is used to simulate the behavior of a sensor
node in terms of energy consumption. Simulation results show that the use of
prediction-based models decreases the amount of energy necessary to construct
the energy map of wireless sensor networks.

The remainder of this article is organized in the following way. In Section 2,
we briefly survey the related work. Section 3 describes the model that we propose
to describe the behavior of a sensor node and, consequently, to simulate its energy
drop. In Section 4, we describe two approaches to construct a prediction-based
energy map for wireless sensor networks. We evaluate the performance of our
approaches in Section 5 and conclude by giving directions for our future work in
Section 6.

2 Related Work

In [1,7,10,12] the authors explore issues related to the design of sensors to be as
energy-efficient as possible. In particular, the WINS [1,10] and PicoRadio [12]
projects are seeking ways to integrate sensing, signal processing, and radio ele-
ments onto a single integrated circuit. The SmartDust project [7] aims to design
millimeter-scale sensing and communicating nodes.

The energy efficiency is the primary concern in designing good media access
control (MAC) protocols for the wireless sensor networks. Another important
attribute is scalability with respect to network size, node density and topology.
A good MAC protocol should easily accommodate such network changes [16]. In
addition, a lot of energy-aware routing schemes have been proposed for wireless
sensor networks. Directed diffusion, proposed in [6], is a new paradigm for com-
munication between sensor nodes. In this paradigm, the data are named using
attribute-value pairs and data aggregation techniques are used to dynamically
select the best path for the packets. This enables diffusion to achieve energy
savings.

The work proposed in [17] obtains the energy map of sensor networks by
using an aggregation based approach. A sensor node only needs to report its
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local energy information when there is a significant energy level drop compared
to the last time the node reported it. Energy information of neighbor nodes
with similar available energy are aggregated in order to decrease the number of
packets in the network. In [17], each node sends to the monitoring node only its
available energy, whereas in our work each node sends also the parameters of
a model that tries to predict the energy consumption in the near future. Thus,
in our approach, each node sends to the monitoring node its available energy
and also the parameters of the model chosen to represent its energy drop. With
these parameters, the monitoring node can update locally its information about
the current available energy at each node, decreasing the number of energy
information packets in the network.

3 Energy Dissipation Model

In order to build the energy maps, we have to know how is the energy dissipation
in the sensor nodes. To this end, we use an energy dissipation model that tries to
describe the energy drop at each sensor node. To our knowledge, there is only one
work that has addressed this problem [17]. In that work, two energy dissipation
models are proposed. The first one is the uniform dissipation model. During a
sensing event, each node n in the network has a probability p of initiating a local
sensing activity, and every node within a circle of r centered at n consumes fixed
amount of energy e. The other one is the hotspot dissipation model, where there
are h fixed hotspots uniformly distributed randomly on the sensor field. Each
node n has a probability of p = f(d) to initiate a local sensing activity, and every
node within a circle of r centered at n consumes fixed amount of energy e, where
f is a density function and d = min∀i{|n − hi|} is the distance from n to the
nearest hotspot. The main drawback of these models is that they do not take
into account the fact that a lack of energy in these networks will influence their
behaviors. For example, to conserve energy, some sensors have to sleep during
some part of the time. Other problems include the assumption that all nodes
working in a sensing event will consume the same amount of energy and that all
events have the same radius of influence. In this work, we propose a model that
tries to represent more realistically the behavior of a sensor network in terms of
energy dissipation. In the following we describe our energy dissipation model.

The conservation of energy is the paramount issue to be considered in the
design of sensor networks. The best way to save energy is to make unused compo-
nents inactive whenever possible. This can be achieved in a framework in which
the nodes have different modes of operation with different levels of activation
and consequently different levels of energy consumption and, as soon as possible,
they have to go to a mode that consumes less energy. In sensor networks, the
nodes will have to change between different states of activation. Using this idea,
we propose a model to describe the behavior of a sensor node and, consequently,
to evaluate and simulate its energy dissipation. In this model, each node has
four modes of operation: state 1 : sensing off and radio off; state 2 : sensing on
and radio off; state 3 : sensing on and radio receiving; state 4 : sensing on and
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Fig. 1. Diagram of the state transition model: 1, 2, 3, and 4 represent the modes of
operation of each node; ST and AT are synchronous and asynchronous timers respec-
tively.

radio transmitting. These modes represent the simplicity of the hardware found
in sensor nodes.

In this model, the following parameters are used: λ: arrival rate of the events;
sleep−time: time in which the node will sleep; sleep−prob: when a node is not act-
ing in a sensing event it will be in state 1 with probability sleep−prob, and in state
2 with probability (1− sleep−prob); event−radius−min and event−radius−max :
the radius of each event will be a random variable uniformly distributed between
event−radius−min and event−radius−max ; event−duration−min and event−du-
ration−max : the duration of each event will be a random variable uniformly dis-
tributed between event−duration−min and event−duration−max ; statei−prob:
probability of being in state i during an event; dist−line: distance of influence
when an information is relayed to the monitoring node.

The behavior of the sensor node can be described by the diagram depicted
in Figure 1. At the beginning of the simulation, each node goes to state 1 with
probability sleep−prob or to state 2 with (1−sleep−prob).

When a node goes to state 1, it will be sleeping for sleep−time seconds.
During this period, this node will be saving energy but it will not be able to
communicate or to sense any event. After sleep−time seconds, the node wakes
up and goes to state 3 to see if there is any event for it or if there is any
node trying to communicate with it. If there is an event, the node will go to
states 1, 2, 3 or 4 with probabilities state1−prob, state2−prob, state3−prob and
state4−prob, respectively. If there is no event, the node will go to state 1 with
probability sleep−prob and to state 2 with (1−sleep−prob).
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If a node goes to state 2, it will be in this state for sleep−time seconds, but
unlike in state 1, a node that is in state 2 can see the occurrence of an event
because in this state the sensing is on. If an event occurs during the sleep−time
seconds, the node will go to states 1, 2, 3 or 4 with probabilities state1−prob,
state2−prob, state3−prob and state4−prob, respectively. If the time sleep−time
ends and no event has happened, the node goes to state 3 to see if there is
any node trying to communicate with it and again it will go to state 1 with
probability sleep−prob and to state 2 with (1−sleep−prob).

In this model, the events are simulated by a Poisson process with parameter
λ. Therefore, the number of events in each second of simulation is described by
the random variable:

P (X = x) =
λxe−λ

x!
. (1)

When an event occurs, a position (X, Y ) is randomly chosen for it. The radius
of influence of each event is a random variable uniformly distributed between
event−radius−min and event−radius−max and all nodes within the circle of in-
fluence of an event will be affected by it. This means that when these nodes
realize that there is an event for them (the nodes have to be in states 2, 3 or 4),
they will go to states 1, 2, 3 or 4 with probabilities state1−prob, state2−prob,
state3−prob and state4−prob, respectively. The duration of each event is uni-
formly chosen between event−duration−min and event−duration−max seconds.
After that time, the data have to be propagated to the monitoring node. We
simulate this behavior making all nodes distant dist−line for the straight line
between the point (X, Y ) and the monitoring node go for a short time to state
3 and after to state 4.

The states transition described above tries to capture the behavior of a sensor
node specially in terms of energy consumption. As there are no real large sensor
networks implemented already, we have no information about the real energy
dissipation of a sensor node. But, we believe that, for our purposes, this model
can represent the energy drop in an acceptable way.

4 Prediction-Based Energy Map

As described earlier, the knowledge of the available energy reserves in each part
of the network is an important information for sensor networks. The more natural
way of thinking about the energy map construction is one in which periodically
each node sends to the monitoring node its available energy. We call this the naive
approach. As the sensor networks have lots of nodes with limited resources, the
amount of energy spent in the naive approach will be prohibitive. For that reason,
better energy-efficient techniques have to be designed to gather the information
about the available energy at each part of a sensor network.

In this section, we discuss the possibilities of constructing the energy map
using prediction-based approaches. Basically, each node sends to the monitoring
node the parameters of the model that describes its energy drop and the mon-
itoring node uses this information to update locally the information about the
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available energy at each node. The motivation that guided us to this work is
that if a node is able to predict the amount of energy it will spend, it can send
this information to the monitoring node and no more energy information will
be sent during the period that the model can describe satisfactorily the energy
dissipation. Then, if a node can efficiently predict the amount of energy it will
dissipate in the future time, we can save energy in the process of constructing
the energy map of a sensor network.

In order to predict the dissipated energy, we studied two models. In Sec-
tion 4.1, we describe a probabilistic model based on the Markov chains, and,
in Section 4.2, we present a statistical model in which the energy level is rep-
resented by a time series and the ARIMA (Autoregressive Integrated Moving
Average) model is used to make the predictions.

4.1 Probabilistic Model

In this section, we claim that each sensor node can be modeled by a Markov
chain. In this case, the node modes of operation are represented by the states
of a Markov chain and the random variables represent the probability of staying
at each state in a certain time. Then, if each sensor node has M modes of
operations, each node will be modeled by a Markov chain with M states.

Using this model, at each node, we have a sequence of random variables
X0, X1, X2, ... that represents its states during the time. Then, if Xn = i, we
say that the sensor node is in mode of operation i at time-step1 n. In addition,
at each time the node is in state i, there is some fixed probability, Pij , that the
next state will be j. This probability can be represented by: Pij = P{Xm+1 =
j|Xm = i}. We can also define the n-step transition probability, P

(n)
ij , that a

node presently in state i will be in state j after n additional transitions [13]:
P

(n)
ij =

∑M
k=1 P

(r)
ik P

(n−r)
kj , for any value of 0 < r < n.

With the knowledge of the probabilities P
(n)
ij for all nodes and the value of

X0 (initial state of each node), it is possible to estimate some information about
the network that can be useful in many tasks. In this work, we will use these
probabilities to predict the energy drop of a sensor node. The first step to make
this prediction is to calculate for how many time-steps a node will be in a state
s in the next T time-steps. If the node is in state i (X0 = i), the number of
time-steps a node will stay in the state s can be calculated by:

∑T
t=1 P

(t)
is . Also,

if Es is the amount of energy dissipated by a node that remains one time-step in
state s, and the node is currently in state i, then the expected amount of energy
spent in the next T times, ET , is:

ET =
M∑

s=1

(
T∑

t=1

P
(t)
is ) × Es. (2)

1 A time-step is a small amount of time. We suppose that all state transitions occur
at the beginning of any time-step.
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Using the value ET , each node can calculate its energy dissipation rate (∆E)
for the next T time-steps. Each node then sends its available energy and its ∆E
to the monitoring node. The monitoring node can maintain an estimation for
the dissipated energy at each node by decreasing the value ∆E periodically for
the amount of remaining energy of each node. The better the estimation the
node can do, the fewer the number of messages necessary to obtain the energy
information and, consequently, the fewer the amount of energy spent in the
process of getting the energy map.

4.2 Statistical Model

In this section, we present the statistical model used to forecast the energy level
in the sensor nodes. In this model, we represent the energy drop of a sensor
node as a time series. A time series is a set of observations xt, each one being
recorded at a specific time t [3]. A discrete- time time series is one in which the
set T0 of times at which observations are made is a discrete set. Continuous-time
time series are obtained when observations are recorded continuously over some
time interval. There are two main goals of time series analysis [15]: identifying
the nature of the phenomenon represented by the sequence of observations, and
forecasting (predicting future values of the time series variable). In this work,
we are interested in using the time series analysis to forecast future values of the
available energy in a sensor node. We will use the discrete-time time series in
such a way that each node will verify its energy level in a discrete time interval.

We can observe that the time series which represents the energy drop of a
sensor node has a clear decreasing trend2 (we suppose that there is no replace-
ment in the battery) and no seasonality3. The decreasing trend will also imply
in a decreasing mean and then the energy level will also be a nonstationary time
series4.

In this work, we will use the ARIMA (Autoregressive Integrated Moving Av-
erage) model to predict future values of the time series. The ARIMA models were
proposed by Box and Jenkins [2] and they consist of a systematic methodology
for identifying and estimating models that could incorporate both autoregres-
sive and moving average approaches. This makes ARIMA models a powerful
and general class of models [8]. The “Integrated” part of the model is due to the
differencing step necessary to make the series stationary.

The first step in developing an ARIMA model is to determine if the series
is stationary. When the original series is not stationary, we need to difference it
to achieve stationarity. Given the series Zt, the differenced series is a new series
Xt = Zt − Zt−1. The differenced data contain one less point than the original
one. Although one can difference the data more than once, a small number of

2 Trend refers to a gradual, long-term movement in the data.
3 Seasonality refers to periodic fluctuations that are generally related to weather fac-

tors or to human-made factors such as holidays and vacations.
4 A stationary time series is one whose statistical properties such as mean, variance,

and autocorrelation, are all constant over time.
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differences is usually sufficient to obtain a stationary time series [8]. The number
of differencing applied in the original series is represented by the parameter d.

The next step in the construction of the ARIMA model is to identify the
AR terms. An autoregressive model is simply a linear regression of the current
value against one or more prior values of the series. The value of p is called
the order of the AR model. Then, an autoregressive model of order p can be
summarized by: Xt = φ1Xt−1 +φ2Xt−2 + ...+φpXt−p +Zt, where Xt is the time
series, φ1, φ2, ..., φp are the autoregressive model parameters, and Zt represents
normally distributed random errors.

After defining the differencing and the autoregressive parameters, we have to
identify the MA terms. A moving average model is essentially a linear regression
of the current value of the series against the random shocks of one or more
prior values of the series [8]. The random shocks at each point are assumed to
come from the same distribution, typically a normal distribution, with constant
location and scale. The distinction in this model is that these random shocks
are propagated to future values of the time series. A moving average model of
order q is represented by: Xt = Zt + θ1Zt−1 + θ2Zt−2 + ... + θqZt−q, where Xt is
the time series, θ1, θ2, ..., θq are the moving average model parameters and the
Zt are random shocks to the series.

Then, in order to use the ARIMA model we have to identify the values of
p (order of the autoregressive model), d (number of differencing required to
achieve stationarity), q (order of the moving average model) and the coefficients
of the autoregressive and moving average models. Thus, a time series Tt can be
represented by an ARIMA(p,d,q) model if, after differencing this series d times,
we find a stationary time series Xt, such that for every t: Xt = φ1Xt−1 + ... +
φpXt−p + Zt + θ1Zt−1 + ... + θqZt−q.

When using equation above, we can predict the value of the time series in
time t using the previous values and some random variables that represent the
errors in the series. In general, the estimation of these parameters is not a trivial
task. In [8,15], the authors describe some techniques to help in the process of
parameters identification.

5 Simulation Results

In order to analyze the performance of the proposed schemes, we implemented
the prediction-based energy maps in the ns-2 simulator. The approaches imple-
mented were: the Markov, in which each node sends periodically to the moni-
toring node its available energy and its predicted energy consumption rate; and
the ARIMA, in which each node sends to the monitoring node its available en-
ergy and the parameters of this model. These approaches are compared with the
naive one in which each node sends periodically to the monitoring node only its
available energy.

In our simulations, we use the energy dissipation model, presented in Sec-
tion 3, to describe the behavior of sensor nodes and, consequently, to simulate
their energy dissipation. Therefore, each node has four modes of operation: state
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1 (sensing off, radio off), state 2 (sensing on, radio off), state 3 (sensing on, radio
receiving) and state 4 (sensing on, radio transmitting). The values of power con-
sumption for each state were calculated based on information presented in [5]:
state 1: 25.5 µW, state 2: 38.72 mW, state 3: 52.2 mW and state 4: 74.7 mW.
These values will be used throughout all simulations.

In the Markov model, each node sends its available energy and its energy
dissipation rate to the monitoring node. To obtain its energy dissipation rate,
each node locally calculates its own probabilities, P

(n)
ij . In this case, Pij will be

the number of times the node was in state i and went to state j divided by the
total number of time-steps the node was in state i. With these probabilities, each
node uses equation (2) to find its energy dissipation rate. If each node can predict
efficiently its energy dissipation rate, this approach can save energy compared
with the naive, because no more energy information packet has to be sent while
the energy dissipation rate describes satisfactorily the energy drop in this node.

In the implementation of the ARIMA model, we have to identify the param-
eters p, d, q and to estimate the coefficients of the AR and MA models. The first
step in fitting an ARIMA model is the determination of the order of differencing
needed to stationarize the series (parameter d). Normally, the correct number
of differencing is the lowest order of differencing that yields a time series which
fluctuates around a well-defined mean value and whose autocorrelation function
plot decays fairly rapidly to zero, either from above or below [4]. If the series still
exhibits a long-term trend, i.e., a lack of tendency to return to its mean value,
or if its autocorrelations are positive out to a high number of lags, it needs a
higher order of differencing. In general, the optimal order of differencing is often
the one at which the standard deviation is lowest [4]. In addition, if the lag 1 au-
tocorrelation is −0.5 or more negative, the series may be over-differenced. In our
simulation, we choose the smallest value of d that produces the lowest standard
deviation in such a way that the lag 1 autocorrelation is not more negative than
−0.5. The number of AR and MA terms was found using the autocorrelation
and partial autocorrelation functions. The lag at which the partial autocorrela-
tion function cuts off indicates the number of AR terms, and the number of MA
terms is determined by the lag at which the autocorrelation function cuts off.
The values of the coefficients of the AR and MA models were calculated based
on a CSS-ML (minimize conditional sum-of- squares and maximum likelihood)
method implemented in [11].

In all simulations we use the parameter threshold that determines the accu-
racy required or the maximum error acceptable in the energy map. If we define a
threshold of 3%, a node will send another energy information to the monitoring
node only when the error between the energy value predicted by the monitoring
node and the correct value is greater than 3%. Each node can locally deter-
mine this error by just keeping the parameters of the last prediction sent to the
monitoring node. Then, adjusting the value of the threshold, we can control the
precision at which the energy maps are constructed.

The numerical values chosen for the base case of our simulations can be seen
in Table 1. Unless specified otherwise, these values are used as the parameters
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Table 1. Default values used in the simulations.

Parameter Value Parameter Value
λ 0.5 state1−prob 0.01

sleep−time 10 sec state2−prob 0.2
sleep−prob 0.7 state3−prob 0.45

event−radius−min 10 m state4−prob 0.34
event−radius−max 30 m Threshold 3%

event−duration−min 10 sec Initial Energy 100 J
event−duration−max 50 sec Communication Range 20 m

dist−line 20 m Time-steps 1 sec

throughout the remainder of this work. Moreover, in all simulations, the moni-
toring node is positioned at the middle of the field at position (50, 50), and all
nodes are immobile and can communicate with other nodes within their com-
munication range.

In order to analyze the performance of the approaches in situations where
it is necessary an energy map with very low error (small threshold) and also
when we can tolerate a greater error (big threshold), we changed the value of
the parameter threshold. We ran the naive, Markov and ARIMA algorithms for
200 nodes in a 100×100m2 field in which the average degree of each node is 22.7.
Figure 2–a shows the average number of energy information packets that each
node had to send to the monitoring node, during 1000 second simulation, in or-
der to construct an energy map with an error no greater than the corresponding
threshold. These results correspond to an average of these values and a 95% con-
fidence interval. We can see that the Markov approach is better than the other
two for all values of threshold. But its performance is very close to the ARIMA
model, meaning that both approaches have similar power of prediction for all
values of threshold. However, the graph of Figure 2–a is not a fair way of compar-
ing the three approaches because when a node, running the naive algorithm, has
to send an energy information packet, the size of the extra information required
is only 4 bytes (its available energy). In the Markov algorithm, the overhead is
of 8 bytes (its available energy and its current power consumption) and in the
ARIMA model the overhead is about 40 bytes (with the parameters p, d, q and
the coefficients of the AR and MA models). In order to perform a fair compar-
ison between the three approaches, we have to analyze the average number of
bytes that each node has to send when running the naive, Markov and ARIMA
algorithms. Thus, the metric used to define energy efficiency will be the number
of bytes transmitted. Figure 2–b compares the average number of bytes that
each node had to send to the monitoring node if the normal packet size (or the
per-packet header overhead) of a sensor network is 30 bytes. In this situation,
each time a node has to send its energy information, it will have to send 34
bytes (30 bytes of the normal packet plus 4 bytes of the naive overhead) in the
naive algorithm, 38 in the Markov and 70 bytes in the ARIMA. We can see that
when we compare the number of bytes instead of the number of packets, the
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Fig. 2. Comparison between the three approaches when we change the value of the
threshold.

performance of the ARIMA is closer to the naive, and the Markov is still the
best of the three. Figures 2–c and 2–d show what happens when the normal size
of a packet is 60 and 120 bytes, respectively. As the normal packet size increases,
the naive becomes even worse because, in these situations, the overhead of the
large amount of information required by the ARIMA has a smaller impact in
the total number of bytes sent. Then, for all values of threshold analyzed, the
Markov model was more energy-efficient than the other two models, and for sen-
sor networks whose size of the packet is small, the performance of the ARIMA
is very close to the naive approach.

Next we altered the value of the parameter λ in order to study the behavior
of each approach when the number of events increases. We executed the three
approaches using the same scenario described above, during 1000 seconds of
simulation. Figure 3–a shows the average number of packets when we increase
the number of events in the network. In these simulations, the threshold was
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Fig. 3. Comparison between the three approaches when we change the value of the
parameter λ.

fixed in 3%. We can see that the power of making prediction of the Markov
model is very similar to the ARIMA, but still better for all values of λ. Also, as
the network becomes more active, the difference between the number of packets
required by the naive and by the prediction-based approaches is getting bigger.
Nevertheless, as described above, to do a fair comparison, we have to analyze
the number of bytes transmitted by each approach. These results are shown in
Figures 3–b, 3–c and 3–d. We can see that the Markov approach is still better
than the other two for all values of packet size, and also that when the packet
size increases, the difference between the number of bytes transmitted by the
prediction-based approaches and the naive increases. One interesting fact is that
the prediction approaches have a better behavior when the number of events
is very small or big. The worst case of these approaches happens for medium
values of λ. This means that the fact of having more events does not make
the problem of prediction more difficult. The more difficult situations for the
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prediction approaches are when there is a medium number of events. On the
other hand, in the naive approach, as more events happen, more energy will be
spent by a node and more often it will have to send energy information packets
to the monitoring node. Then, the prediction approaches scale well when the
number of events increases or, the power of making prediction does not decrease
when the activity of the network increases.

Due to the nondeterministic characteristic of the sensor networks, it is better
to perform predictions that are simple both in terms of the computation required
to find the parameters of the prediction model and, mainly, in terms of the num-
ber of parameters that have to be sent to the monitoring node. This feature
becomes clear when we compare the two prediction techniques. Even though
both present similar capacity of making prediction, the Markov approach is bet-
ter because, in this model, only one parameter describes the energy dissipation
in a sensor node, and consequently only the available energy and the current
dissipation rate have to be sent to the monitoring node. Thus, in the construc-
tion of prediction-based energy maps, it is better to use simple models instead
of sophisticated predictions that demand a lot of communication between the
sensors and the monitoring node.

6 Conclusions and Future Directions

In this work, we have studied the problem of constructing the energy map for
wireless sensor networks. We analyzed two prediction-based energy maps based
on probabilistic and statistical models. In the prediction-based energy maps,
each node tries to estimate the amount of energy it will spend in the near future
and it sends this information, along with its available energy, to the monitoring
node. Using the energy dissipation model proposed in this paper, simulations
were conducted in order to compare the performance of the two prediction-
based approaches with a naive one, in which only the available energy is sent
to the monitoring node. Simulation results indicate that the prediction-based
approaches are more energy-efficient than the naive model, and also that these
approaches are more scalable with respect to the number of sensing events.

As discussed here, prediction-based techniques are a good approach to con-
struct the energy map for wireless sensor networks. We intend to extend this
work by examining and evaluating other prediction models for obtaining the
energy map.
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