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ABSTRACT The recognition of protein interac-
tion sites is an important intermediate step toward
identification of functionally relevant residues and
understanding protein function, facilitating experi-
mental efforts in that regard. Toward that goal, the
authors propose a novel representation for the rec-
ognition of protein–protein interaction sites that
integrates enhanced relative solvent accessibility
(RSA) predictions with high resolution structural
data. An observation that RSA predictions are
biased toward the level of surface exposure consist-
ent with protein complexes led the authors to inves-
tigate the difference between the predicted and
actual (i.e., observed in an unbound structure) RSA
of an amino acid residue as a fingerprint of interac-
tion sites. The authors demonstrate that RSA predic-
tion-based fingerprints of protein interactions
significantly improve the discrimination between
interacting and noninteracting sites, compared with
evolutionary conservation, physicochemical charac-
teristics, structure-derived and other features con-
sidered before. On the basis of these observations,
the authors developed a new method for the pre-
diction of protein–protein interaction sites, using
machine learning approaches to combine the most
informative features into the final predictor. For
training and validation, the authors used several
large sets of protein complexes and derived from
them nonredundant representative chains, with
interaction sites mapped from multiple complexes.
Alternative machine learning techniques are used,
including Support Vector Machines and Neural Net-
works, so as to evaluate the relative effects of the
choice of a representation and a specific learning
algorithm. The effects of induced fit and uncertainty
of the negative (noninteracting) class assignment
are also evaluated. Several representative methods
from the literature are reimplemented to enable
direct comparison of the results. Using rigorous vali-
dation protocols, the authors estimated that the new
method yields the overall classification accuracy of
about 74% and Matthews correlation coefficients of
0.42, as opposed to up to 70% classification accuracy
and up to 0.3 Matthews correlation coefficient for
methods that do not utilize RSA prediction-based
fingerprints. The new method is available at http://
sppider.cchmc.org. Proteins 2007;66:630–645. VVC 2006

Wiley-Liss, Inc.
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INTRODUCTION

Proteins perform their function by interacting with
other molecules, such as small ligands, lipids, nucleic
acids, and other proteins. Therefore, understanding pro-
tein interactions is pivotal for elucidating their function,
and for developing explanatory and predictive models of
biological systems. Stimulated by the importance of the
problem, computational studies on protein–protein inter-
actions encompass a wide array of methods. Examples of
such methods range from the prediction of protein interac-
tions based on the analysis of evolutionary relatedness1 or
protein pathways and networks2 to multimeric threading3

and protein binding site prediction using docking meth-
ods.4 These latter approaches rely on high resolution
structural data to identify protein–protein binding sites
and interaction partners, and to model protein–protein
complexes.5,6

Progress in structural genomics provides an opportu-
nity to further advance the field. For example, analysis of
protein complexes provides detailed information regard-
ing amino acid propensities to interaction interfaces. In
particular, it has been observed that interacting sites are
largely hydrophobic,7,8 with hot spots consisting of (often
conserved) polar residues.9–11 In addition, amino acid
biases and various physical criteria were used to identify
distinct types of complexes, including transient versus
obligatory and enzyme-binding versus other com-
plexes.12,13 These statistical biases and structural clues
are also being used to develop methods for the prediction
of protein–protein interaction (or binding) sites, even
when no information about binding partners is available.

Grant sponsors: Computational Medicine Center and Cincinnati
Children’s Hospital Research Foundation; Grant sponsor: NIH; Grant
numbers: AI055338, R01 AR050688, and 5R01GM067823-02.

*Correspondence to: Jarosław Meller, Division of Biomedical Infor-
matics, Children’s Hospital Research Foundation, 3333 Burnet Ave-
nue, Cincinnati, OH 45229. E-mail: jmeller@cchmc.org

Received 14 April 2006; Revised 26 July 2006; Accepted 5
September 2006

Published online 6 December 2006 in Wiley InterScience (www.
interscience.wiley.com). DOI: 10.1002/prot.21248

VVC 2006 WILEY-LISS, INC.

PROTEINS: Structure, Function, and Bioinformatics 66:630–645 (2007)



The recognition of protein–protein interaction sites can
be used to identify functionally important amino acid resi-
dues, facilitate experimental efforts to catalog protein
interactions, enhance computational docking studies and
drug design, as well as enable functional annotation for
the growing number of structurally resolved proteins of
unknown function.14,15 In general, the problem of recogni-
tion of protein–protein interaction sites (or protein–pro-
tein interface recognition) can be cast as a classification
problem, that is, each amino acid residue is assigned to
one of two classes: interacting (interfacial) or noninteract-
ing (noninterfacial) residues. Consequently, the problem
may be solved using statistical and machine learning
techniques, such as Neural Networks (NNs)16–19 or Sup-
port Vector Machines (SVMs).20–23

From the point of view of the representation (feature
space) used to capture characteristic signatures (or finger-
prints) of interaction interfaces, one may distinguish two
main groups of approaches. The first group of methods
attempts to predict interaction sites using just sequence
information,19,20,24 whereas the second group takes avail-
able structural information into account as well.17,25–27 In
the latter case, the problem typically involves the identifi-
cation of specific patches on the surface of an unbound
protein structure with residues that are either evolutio-
narily conserved or have a propensity for interaction
interfaces.7,17,28,29 While having an advantage of being
relatively insensitive to structural details, methods that
simply map sequence conservation, as encoded by multi-
ple alignments (MA), onto the known structure of an indi-
vidual protein chain17,30,31 have recently been shown to
achieve rather limited accuracies.32,33

On the other hand, structural information derived from
a resolved structure of an unbound protein allows one to
identify residues that are in contact in 3D and to define
potential interacting patches on the surface of a protein.
Geometric characteristics and the topology of these poten-
tial interacting patches can be taken into account, improv-
ing the accuracy of predictions.23,25,26 Furthermore, struc-
tural conservation was found to correlate with propensity
to interaction interfaces.27,34 In this work, we describe a
novel approach to the recognition of protein–protein inter-
action sites in the case when the structure of an isolated
protein chain (i.e., unbound structure) is known.
Our general approach builds on recently developed

accurate methods for relative solvent accessibility (RSA)
prediction.35,36 These methods use a relatively short slid-
ing window to represent an amino acid and its environ-
ment. While amino acid residues may become ‘‘buried’’
because of long-range contacts within the same chain,
they might as well be in contact with other chains. We
therefore hypothesize that the RSA prediction from short
sequence windows should lend itself to the prediction of
intermolecular interactions as well. We indeed observe
that RSA predictions tend to be consistent with the level
of surface exposure in protein complexes, rather than
unbound structures of individual protein chains. On the
basis of that observation, we propose novel fingerprints of
interaction sites that indicate their presence by RSA pre-

diction ‘‘errors,’’ that is, the difference between the pre-
dicted and observed (in an unbound structure) surface ex-
posure of an amino acid residue.

We use several machine learning approaches, including
SVM, NN, and Linear Discriminant Analysis (LDA), to de-
velop and assess a number of classifiers that combine
these novel fingerprints with other information derived
from sequence and structure. For training and validation,
we use several sets of nonredundant protein complexes as
well as representative chains derived from these com-
plexes. Rather than treating each interaction interface in-
dependently, all known interaction sites are mapped to
representative chains from multiple complexes that
involve homologs of representative chains. We also evalu-
ate the performance on a set of unbound structures that
were resolved independently, providing a more rigorous
validation and further assessment of the effects of induced
fit (largely neglected in some recent studies that rely
exclusively on the coordinates of a single chain obtained
from the corresponding complex26,27).

We show that the new RSA prediction-based finger-
prints yield significantly improved performance, com-
pared with other signatures of protein binding sites,
including evolutionary conservation, physicochemical
properties, and other structure-based features. Further-
more, we show that among real valued RSA prediction
methods assessed in this work, including PHDacc,37

RVPNet,38 PROF,39 and SABLE,35 the latter provides pre-
dictions that are most consistent with the RSA observed
in protein complexes, yielding the best discrimination
between interacting and noninteracting sites. Finally, we
suggest how these systematic biases in RSA prediction
may be enhanced by augmenting training sets for RSA
prediction methods with data derived from protein com-
plexes.

MATERIALS ANDMETHODS

Training and Control Sets

All protein complexes used here for training and testing
purposes have been derived from the Protein Data Bank
(PDB).40 An initial set of 1695 representative protein com-
plexes was obtained using the PDB as of March 2003 and
the following criteria: (i) PDB entry must contain at least
two chains; (ii) each chain should be at least 30 residues
long (thus excluding complexes with short peptides at this
stage); (iii) complexes containing either DNA or RNA
sequences were excluded; (iv) each complex should con-
tain at least one nonredundant chain with sequence iden-
tity less than 50% to any other chain within the set. These
nonredundant chains and associated with them complexes
will define, after further filtering and analysis, a set of
representative protein chains and their unbound struc-
tures with mapped binding sites to be used for the devel-
opment and assessment of methods considered here.

The initial set of complexes was processed as follows.
First, the Protein Quaternary Structure (PQS) server41

was used to filter out complexes that might contain small
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interfaces resulting from crystal packing. The PQS server
discriminates crystal packing from the functional pro-
tein–protein interaction using primarily the size of sol-
vent exposed area buried during association (with the cut-
off of 400 Å2 per chain), as well as the number of residues
buried at the interface, the number of salt and disulphide
bridges at the interface, and approximate solvation
energy difference upon complex formation.41 Next, NMR
structures, theoretical models, structures identified by
PQS as viral units, structures with missing side chain
coordinates, and proteins predicted using the MINNOU
server42 to have transmembrane domains were also
excluded from the consideration, resulting in a subset of
891 ‘‘unproblematic’’ complexes.
Finally, the BLAST program43 was used to compute

pairwise sequence alignments between all pairs of chains
and further exclude (using the E-value of 0.001) redun-
dant chains within and between protein complexes. In
addition, sequences redundant with respect to those
included in the set developed before for the training of the
SABLE method for RSA prediction35 were also excluded,
since SABLE is used to derive new fingerprints of interac-
tion sites. For a final filtering step we used UniProt44

annotations to exclude complexes that may not represent
functional interactions. We would like to comment that
while redundant sequences are excluded from considera-
tions when deriving sets of representative protein chains,
the corresponding complexes may still be used to identify
pairs of interacting chains and to map interaction sites to
these representative chains. This step is discussed in
details in Definition of an Interaction Site.
The resulting set of nonredundant protein chains,

which will be referred to as S435 throughout the paper,
consists of 435 protein chains (262 from heterocomplexes
and 173 from homocomplexes, referred to as S262 and
S173, respectively) and a total of 69509 surface residues,
using the threshold of 5% RSA to define exposed residues.
For comparison with some methods from the literature,
we also used an alternative threshold of 16% RSA, result-
ing in a decreased number of surface exposed residues
(see also Results). We next used the same protocol to
derive an independent control set of representative com-
plexes from structures submitted to the PDB server
between March 2003 and September 2004. After applying
internal redundancy checks, as described above, chains
redundant with respect to the S435 set were additionally
removed, so as to enable further validation of results for
predictors trained using the S435 set. As a result, a set of
149 representative chains (92 from heterocomplexes and
57 from homocomplexes, respectively) and a total of
19,977 surface exposed residues was obtained. This set
will be referred to as S149. These data sets, containing
both PDB entries with protein complexes and derived
from them representative chains, are available from
http://sppider.cchmc.org.
For S435 and S149 sets of representative chains, the

coordinates of unbound structures are derived from the
corresponding complexes by ignoring other chains.
Although an additional mapping of interaction sites from

alternative complexes involving a representative chain is
performed (see Definition of an Interaction Site), the
structures used for training may not represent unbound
conformations. Therefore, to evaluate the effects of
induced fit we also identified a subset of 21 nonredundant
protein chains from the S149 set, for which both mono-
meric (i.e., truly unbound) structures as well as multiple
complexes containing their homologs are known. This set
will be referred to as S21, if unbound structures are
derived from the representative complexes included in
S149, or S21a, if truly unbound structures derived from
the corresponding monomeric PDB entries are used.

For comparison with methods from the literature, we
also used two sets of complexes and interaction interfaces
developed before by Fariselli and colleagues17 and Nooren
and Thornton.45 These sets consist of 226 and 86 chains
(representing 113 and 43 interaction interfaces defined by
pairs of interacting chains), respectively, and will be
denoted as F226 and NT86. In addition, a nonredundant
subset of 59 chains was derived from the original F226 set
by applying the same sequence redundancy check and the
default BLAST E-value. This set will be denoted as F59.
Finally, we also used a set of Critical Assessment of PRe-
diction of Interactions (CAPRI) targets to assess the new
method and compare it with that of PPI-Pred predic-
tions.46

RSA and Its Prediction

The concept of RSA plays an important role in the sub-
sequent definition of an interaction site and novel finger-
prints of protein interactions considered here. RSA of the
i-th amino acid residue, RSAi, is defined as the ratio of the
solvent exposed surface area of that residue observed in a
given structure, SAi, and some maximum value of the sol-
vent exposed surface area for this kind of amino acid,
MSAi:

RSAi ¼ SAi

MSAi
100%

Hence, RSA adopts values between 0 and 100%, with 0%
corresponding to a fully buried and 100% to a fully acces-
sible residue.37 Unless specified otherwise (which may be
relevant for comparison with RSA prediction methods
from the literature), the maximum exposed surface areas
are taken from,47 and correspond to those observed in an
extended conformation of a tripeptide, with the residue of
interest as the central residue. The DSSP program48 is
used here to compute exposed surface areas. Also, unless
specified otherwise, we define surface exposed residues as
those that have RSA of 5% and more.

The level of solvent exposure is weakly conserved in
families of homologous structures, especially for exposed
residues.35,37 Thus, contrary to the prediction of second-
ary structures, the highly variable real valued RSA does
not support the notion of clearly defined distinct classes of
residues and suggests that a regression-based approach is
appropriate for this problem. We have recently developed
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several real valued RSA prediction methods, using linear
Support Vector Regression and NNs-based nonlinear
regression models.35,36 In rigorous tests, following an
EVA-like methodology49 for evaluation of the accuracy of
secondary structure prediction methods, the new methods
achieved significantly higher accuracy than previous
methods from the literature, with mean absolute errors
(MAEs) between 15.3 and 15.8% RSA and correlation coef-
ficients between 0.64 and 0.67 on different control sets.35

In two state projections (e.g., using 25% RSA as a thresh-
old between buried and exposed residues), regression-
based methods outperformed current state-of-the-art clas-
sification-based approaches.35,50 These accurate real val-
ued RSA predictions will be further put to the test in this
work in the context of protein interactions.

Definition of an Interaction Site

In this work, following in the footsteps of previous stud-
ies we define interaction sites based on the RSA change
upon complex formation, that is, RSA difference between
an unbound and bound (complex) structure of an individ-
ual chain.7,51 For each chain considered here, its coordi-
nates are first extracted from the corresponding complex
structure and the DSSP program is used to compute the
surface exposure of each amino acid residue in an
unbound structure of a single protein chain. Subse-
quently, residues that become buried at the interface upon
complex formation may be identified by recomputing the
level of surface exposure in the whole complex.
Specifically, an amino acid residue is regarded as an

interaction site if (i) it is surface-exposed when consider-
ing the structure of an individual protein chain; (ii) the
change in its RSA between the isolated chain and the cor-
responding complex structure is greater than 4% RSA,
and the change in its exposed surface area in absolute
terms is greater than 5 Å2. As with other arbitrary thresh-
olds, used in this work, we performed sensitivity analysis
to assess the effects of such arbitrary choices and we also
followed the literature as much as possible to enable com-
parison with other methods. In particular, the threshold
of 4% RSA for the relative change in surface exposure
between an isolated chain and complex structures corre-
sponds to a typical error in RSA prediction for buried resi-
dues,35 which are most relevant for the novel fingerprints
of protein interaction sites considered here. Moreover, this
choice appears to be qualitatively consistent in terms of
the resulting interaction interfaces with the work by
Jones and Thornton7 and the resulting Protein–Protein
Interaction Server for the analysis of protein complexes
(http://www.biochem.ucl.ac.uk/bsm/PP/server/), as well as
a more recent work by Offman and colleagues.52

Proteins may be involved in multiple interactions with
distinct interaction interfaces. These non (or partially)-
overlapping interfaces are oftentimes resolved structur-
ally in a number of different complexes with distinct inter-
acting partners. Such multiple complexes may involve dif-
ferent variants of the same protein, for example, because
of processing of the original chain to remove flexible frag-

ments for X-ray crystallography, or orthologous proteins
from model organisms that are typically used to study pro-
tein interactions. On the other hand, prediction methods
considered here start with an unbound protein structure
as input and assign all surface residues to one of two
classes, that is, potentially predicting multiple interaction
patches. Nevertheless, many studies in this field16,26 con-
sider unique interaction interfaces, as defined by non-
redundant pairs of interacting protein chains, independ-
ently.

To illustrate the difficulties that can be introduced by
this approach, let us consider specific examples of com-
plexes and derived from them interaction interfaces, as
included in the training set of Bordner and Abagyan.26 In
particular, it appears that using Bordner and Abagyan
approach, some complexes (e.g., 1a2z or 1f51) give rise to
several nonredundant pairs (and the corresponding inter-
action interfaces) involving the same chain, for example,
(A,B) and (A,C). As a result, two alternative subsets of res-
idues in chain A may be defined as interfacial, with the
remaining residues defined as noninterfacial. In other
words, because each interface is considered independ-
ently, some residues may be first defined as interacting
and then as noninteracting, introducing mutually exclu-
sive class assignments in the training and likely limiting
the accuracy of the resulting predictor.

In light of the above, instead of considering each inter-
action interface separately, we map all known interaction
sites to representative chains derived from the initial set
of complexes, as illustrated in Figure 1. For the sake of
identifying alternative interaction sites we consider all
complexes involving close sequence homologs (sequence
identity of more than 90% and alignment covering at least
90% of the sequence) of representative chains. These close
homologs of representative chains are identified using

Fig. 1. Schematic representation of the procedure to map known
interaction sites (interfaces) from multiple complexes involving represen-
tative chains or their close homologs. As an example, three different com-
plexes involving homologous monomeric structures (represented by rec-
tangular shapes) are shown to the left. Shaded areas in the rectangular
shape correspond to binding sites identified using the respective com-
plexes (step I), which are then mapped into a structure of a representative
chain (step II of the procedure).
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sequence alignment to all sequences in PDB (as of Sep-
tember 2005) entries with at least two interacting protein
chains. Interaction sites found in any of these complexes
are mapped to representative protein chains using the
corresponding alignments.
Consequently, the training and control sets are reduced

to representative chains with multiple interaction interfa-
ces mapped to them. Specifically, while initially 18,964
and 6,066 residues were identified as interacting sites in
S435 and S149 sets, respectively, the exhaustive mapping
using alternative complexes allowed to reassign as bind-
ing sites additional residues, resulting in a total of 22,338
and 6,968 interacting residues in these two sets, respec-
tively. Another advantage of this approach is that it allows
one to partially account for the induced fit. Namely, even
though the coordinates of a single (representative) chain
used for training and validation are obtained from the cor-
responding original complex, sites mapped as interacting
from alternative complexes involve residues that are not
at the interface in the original complex. Therefore, these
residues are more likely to adopt conformations (and spe-
cifically the level of surface exposure) consistent with
those observed in unbound structures.

Feature Selection and Extraction

In conjunction with machine and statistical learning
approaches, we performed an extensive search to derive,
optimize, and evaluate features (fingerprints) that can best
discriminate between interacting and noninteracting sites.
These features can be roughly divided into four groups: (i)
single sequence-based attributes; (ii) features derived from
evolutionary profiles of protein families; (iii) features based
on protein tertiary structure; (iv) novel RSA prediction-
based features, including the difference between the pre-
dicted and observed in an unbound structure surface expo-
sure of an amino acid residue (denoted dSA throughout the
paper). To assess the discriminatory power of individual
features we used the F-score, defined as follows:

F ¼ ðxni � xiÞ
rni þ ri

where �xni and �xi are the averages (means) over the nonin-
terfacial and interfacial class, respectively; whereas rni, ri

are the corresponding standard deviations. In other words,
the F-score measures the separation of means for two popu-
lations in terms of their variances, and is very closely
related to the F-statistics, which is commonly used to evalu-
ate the separation of means for two random variables.53

The physicochemical properties of amino acids are
taken from the AAIndex database.54 In particular, hydro-
phobicity (AAIndex ID ¼ ARGP820101) and the expected
number of contacts within 14 Å sphere (AAIndex ID ¼
NISK860101) were found to be most informative. Fea-
tures derived from multiple sequence alignment (MSA),
including position specific scoring matrices, amino acid
frequencies, and entropies, were obtained using Psi-
BLAST43 with default parameters, three iterations and
the nr sequence database as of January 2005.55 We also

consider the MSA-based conservation of charge, small size
of the side chain, and hydrophobicity. In that regard, all
amino acids were split into two corresponding classes (i.e.,
charged vs. noncharged, small vs. large side chain, hydro-
phobic vs. other) according to the classification proposed
by Zvelebil et al.56 Structure-based features, including the
level of surface exposure in unbound structures, the num-
ber and distances between surface exposed spatial neigh-
bors, were calculated using DSSP48 and LOOPP.57

We also derived new aggregate features using weighted
neighbor averages (WNA) over spatial nearest neighbors.
Such averages were found to significantly improve the dis-
criminatory power of most of the features considered here.
In particular, we define two types of weighted averages of
some property P defined for individual residues:

Psurf
WNA ¼

XN

i¼0

Pi RSAi and Pdist
WNA ¼ P0 þ

XN

i¼1

Pi

di

with weights defined by the corresponding surface exposure
RSA, as observed in unbound structures, or normalized by
the corresponding distance d to the i-th residue (measured
between a-carbons), respectively. N is the total number of
3D neighbors located at the molecular surface and within
15 Å sphere centered at the residue of interest (i¼ 0).

Training and Validation Protocols

We used LDA, SVM, and NN methods, as implemented
in Tooldiag,58 LibSVM59 and SNNS60 packages, respec-
tively, to learn classifiers from known examples and to
combine individual features into final predictors. In par-
ticular, linear LDA-based classifiers are compared with
that of nonlinear NN and Gaussian kernel SVMs. For the
latter ones we estimated, using 10-fold cross-validation on
the training set (S435) that the misclassification versus
generalization trade off constant, c ¼ 1, and the default
width of the Gaussian basis function, g, were optimal in
terms of classification accuracy. In the case of NNs, the
optimal architecture was found to consist of one hidden
layer with 5 to 10 nodes, depending on the size (represen-
tation) of the problem. The standard backpropagation
algorithm with default parameters was used, as imple-
mented in SNNS, and the training was stopped when no
significant improvement was observed on a validation set.
In 10-fold cross-validation, 10% of vectors were initially
put aside as a control set and then the corresponding sub-
set with 90% of vectors were additionally split into an
actual training and a validation set (containing 10% of
vectors chosen initially as a training subset) for metapara-
meters optimization. We would like to stress, however,
that our sampling of metaparameters was not exhaustive.

To assess the accuracy of the classification methods devel-
oped here we used a number of standard performance
measures, including the two-class classification accuracy,
Q2, which is defined as the percentage of correct predictions
for two-class problem. We would like to comment here that
Q2 measure may not be very informative, especially when
classes are not balanced, that is, when one of the classes
(here noninterfacial residues) is significantly overrepre-
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sented. Therefore, contrasting the classification accuracy
with the so-called baseline classifier, which assigns all the
points to the larger class is helpful in assessing the quality
of a classifier. Another global accuracy measure that is com-
monly used in this field is the Matthews correlation coeffi-
cient (MCC),61 which is defined as

MCC ¼ TP TN� FP FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FN
p Þ

where TP and TN are the numbers of vectors correctly classi-
fied as positive (interfacial) and as negative (noninterfacial),
respectively, whereas FP and FN denote the number of data
points incorrectly assigned to positive and negative classes,
respectively. Furthermore, we use the recall (sensitivity), R,
and the precision (specificity), P, defined as follows:

R ¼ TP

TPþ FN
100% and P ¼ TP

TPþ FP
100%

Another widely used in the machine learning field way of
assessing and comparing the performance of classification
methods is based on ROC (Receiver Operator Characteris-
tics) curves. The ROC curve represents the correlation
between the false-positive rate, defined as FPR ¼ FP/(FP
þ TN), and the true positive rate (recall), normalized to 1.
A large surface area under the ROC curve indicates an
overall high accuracy of a classifier.

RESULTS ANDDISCUSSION

Assessment of RSA Prediction Methods

We start the discussion of the results from the assessment
of biases in RSA prediction methods that are hypothesized
here to yield enhanced fingerprints of protein–protein inter-
action sites. In Table I and Figure 2, we summarize the
assessment of four real valued RSA prediction methods in
terms of their overall accuracy and biases at interaction
sites. We used the S262 set of representative and nonredun-
dant protein chains from heterocomplexes (a subset of the
S435 set) and evaluated the overall accuracy of RSA predic-
tions in terms of the MAE. In the first comparison, we use as
the true reference the RSA values computed (using the
DSSP program and normalized by the maximum accessible
areas used by a particular method) from unbound structures
of representative chains. For an alternative evaluation, we
used the coordinates of an entire complex that contains a
representative chain to obtain the ‘‘true’’ RSA values. We
observe that (with the exception of the RVPNet method,
which is much less accurate compared with other methods)
the accuracy of RSA prediction improves significantly if we
use as the true reference the RSA values derived from com-
plexes, rather than from individual chains.
In particular, the original SABLE method (denoted here

by Un) that was trained using data derived from single chain
(unbound) structures achieves MAE of 17.1% when using
RSAvalues observed in unbound structures as the true refer-
ence. On the other hand, if the true RSA values are defined

as those taken from complexes, SABLE accuracy improves
significantly with the estimated MAE of 15.6%. This differ-
ence reflects the presence of a significant subset of residues
in interaction sites in the S262 set, for which SABLE pre-
dicts RSA consistent, in general, with the complexed (rather
than unbound) state. These differences, although less in-
formative for discrimination of interaction sites (see next sec-
tion), are also observed for other RSA prediction methods
considered here. In Figure 2, we specifically compare these
biases in terms of differences between predicted and actual
RSAs for interacting and noninteracting sites.

We used again the S262 set to derive two populations of
(interacting vs. noninteracting) residues. The distribu-
tions of averaged (per protein) differences between pre-
dicted and observed (in a single chain structure) RSA val-
ues are shown for each method. As can be seen from Fig-
ure 2, all methods exhibit systematic ‘‘errors,’’ with
interaction sites being predicted as more buried (shifted
toward negative dSA differences) than noninteracting res-
idues. At the same time, however, some interesting overall
biases are revealed, with the RVPNet method overpredict-
ing the level of exposure in general, and other methods
overpredicting the level of burial to a different degree.
The SABLE method is found to have the most desirable
properties in that regard, providing the best discrimina-
tion between interacting and noninteracting sites. As a
result, the discriminatory power of the difference between
predicted and observed in an unbound structure RSA, as
measured by F-scores, is significantly higher for SABLE-
based predictions (see also next section).

These biases may be further enhanced by retraining
RSA prediction methods on augmented training sets that
include data derived from complexes, rather than individ-
ual protein chains. Using the original training set of 860
chains used to develop the SABLE method35 we identified
about 5% of residues as interaction sites (most of the origi-
nal structures were monomeric and no mapping of other
binding sites was used here). Following the protocol used
by Adamczak et al.,35 we retrained a NN-based regression
method using RSA values derived from complexes for
these residues. We would like to stress again that the

TABLE I. Biases in RSA Predictions in Terms of Mean
Absolute Errors (MAE) for the S262 Set Using Two

Alternative Definitions of the Actual RSA

Method MAE (Un), % MAE (C), %

RVPNet 28.3 30.7
PHDacc 20.1 17.4
PROF 18.0 16.7
SABLE (Un) 17.1 15.6
SABLE (C) 17.7 15.3

First, the ‘‘true’’ RSA is derived from single chains, that is, unbound
structures extracted from the corresponding complexes are used
(results are given the second column, denoted as Un). Next, reference
RSAs are obtained from bound structures, that is, using entire com-
plexes that contain representative chains (results given in the last
column denoted as C). Two variants of SABLE are assessed, one
trained on data from unbound structures (Un) and another using an
augmented training set with data derived from complexes (C).
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SABLE training set is nonredundant to the S435 set used
here for the assessment of RSA predictions. The retrained
SABLE method indeed exhibits an increased bias toward
interaction sites, with MAE of 17.7% observed when using
RSA values from unbound structures as the definition of
truth, compared with MAE of 15.3% when RSA values
from the corresponding complexes are used as the true
reference. We also see a slight increase in the discrimina-
tory power (as measured by F-statistics) when we use the
retrained method, which is incorporated in the final proto-
col for the recognition of protein–protein interaction sites.

Fingerprints of Protein–Protein Interactions

In this section, we discuss the results of the evaluation
of individual features in terms of their discriminatory
power, as measured primarily using the F-score, defined
in Feature Selection and Extraction. Table II summarizes
the results for the most informative features (in descend-

ing order). Other features, including a variety of amino
acid and geometric properties that we tested, proved to be
less informative and are not discussed here. The S262 set
was used to derive sets of interacting and noninteracting
sites and to compute F-scores. As can be seen from the ta-
ble, the most important features are those that are based
on predicted RSA and dSA differences, as well as those
that effectively represent the geometry of a putative inter-
action patch in terms of weighted averages over spatial
neighbors (referred to as WNA in Table II and defined in
Feature Selection and Extraction; specifically, Psurf

WNA is
used for the contact number and hydrophobicity, whereas
Pdist
WNA for the remaining aggregate features).
In particular (and in support of our hypothesis), we find

that the most informative feature is the neighborhood av-
erage for the difference between the experimentally
observed (in an unbound structure) RSA and its counter-
part predicted by SABLE (i.e., dSA(SABLE-DSSP)), with
the F-score of 0.4. Moreover, even without averaging over

Fig. 2. Distribution of averaged (per protein) differences between predicted and observed RSA values (dSA) for residues within interaction sites
(dashed curve) and all other solvent exposed residues (solid curve), in the units of % RSA (hence, dSA of �20 corresponds to residues predicted 20%
RSA less exposed than observed, for instance). Four RSA prediction methods are compared, with the results for RVPNet, PHDacc, PROF, and SABLE
servers included in panels A, B, C, and D, respectively.
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3D neighbors, the SABLE derived dSA difference offers
significantly higher discriminatory power (F-score of 0.29)
compared with the best features that do not involve RSA
predictions, that is, conservation of amino acid type and
hydrophobicity that result in F-scores of about 0.15. The
evolutionary conservation of amino acid properties is
measured here by the corresponding entropies at that
position, as derived from the underlying MSA. Note that
averaging over 3D neighbors improves discriminatory
power for these properties, increasing F-scores to 0.27 and
0.26 for WNA entropy of charge and hydrophobicity,
respectively. Note also that dSA obtained using SABLE
(F-score of 0.29 without WNA averaging) is more informa-
tive that those obtained by using other RSA prediction
methods (F-score of 0.24 for the second best in that regard
PHDacc method). At the same time, dSA using the origi-
nal SABLE predictor trained on the nonaugmented train-
ing set, with data pertaining to unbound structures only,
results in somewhat lower discriminatory power (F-score
of 0.28).
It is also interesting to note that the actual RSA (not

included in Table II), which was used before to enhance
interaction site prediction,26 appears to be less significant
(F-score of 0.18 for a weighted average over 3D neigh-
bors). On the other hand, the predicted RSA appears to be
quite informative, especially if the neighborhood average
is used (WNA RSA(SABLE), F-score of 0.33), potentially
boding well for methods that rely on RSA prediction only.
However, this is somewhat misleading, since 3D structure
is in fact used here to define surface exposed residues
(which is laden with additional uncertainty when using
RSA prediction), and because the averaging over spatial
neighbors (which are not defined unless the structure is
known) turns out to be important. In fact, accuracy of pre-
dictors that do not utilize structure-derived information is
very limited, as discussed in the next section.

Finally, we would also like to comment that the overall
discrimination power of individual features is rather lim-
ited (note that two distributions with means separated by
their average standard deviation result in an F-score of
0.5), especially if no averaging over structure-derived
neighborhood is used. This is particularly true about com-
monly used features derived from patterns of conservation
observed in MA, which may explain the rather limited ac-
curacy of methods that simply map evolutionary profiles
into the surface of a protein, as indicated in the litera-
ture32,33 and illustrated in Figure 3.

Machine Learning-Based Classifiers

The above findings and novel prediction-based finger-
prints of protein interaction sites were incorporated into a
new method for enhanced prediction of protein interaction
sites, which is referred to as SPPIDER (Solvent accessibil-
ity-based Protein–Protein Interaction sites IDEntification
and Recognition). After extensive feature selection and
extraction, summarized in the previous section and fur-
ther discussed in the following sections, 19 features were
included in the final predictor. Namely, eight features
indicated in Table II by the WNA prefix (seven of them
also included in Table III below) plus 11 dSA differences
for the residues included in the sequence sliding window
of length 11 (centered at the residue of interest) were
used. To combine these individual features into a classifier
we used several machine learning techniques, including
LDA, SVMs, and NNs. For training and cross-validation
study we used the S435 set and the results are briefly
summarized below.

To further support our choice for the final model, we
performed leave-one-out feature selection as well as
assessment of selected feature subspaces using LDA
approach, which enables direct interpretation of the rela-
tive importance of individual features. The results for four

Fig. 3. ROC curves for SPPIDER and other representative methods
on the S149 control set. The y axis corresponds to the true-positive rate
(sensitivity) and the x axis to the false-positive rate (see text for details).
Note that the surface area under the ROC curve for SPPIDER is signifi-
cantly larger than for literature-based methods shown for comparison.

TABLE II. Fingerprints of Protein–Protein
Interaction Sites and Their Discriminatory Power,

as Measured by F-Scores

Feature F-score

WNA dSA(SABLE – DSSP) 0.40
WNA RSA(SABLE) 0.33
WNA contact number (CN) 0.33
dSA(SABLE – DSSP) 0.29
WNA hydrophobicity (H) 0.27
WNA conservation of charge (CCh) 0.27
WNA conservation of hydrophobicity (CH) 0.26
dSA(PHDacc – DSSP) 0.24
WNA conservation of size (CS) 0.23
WNA conservation of amino acid type (CAA) 0.21
dSA(PROF – DSSP) 0.21
dSA(RVPNet – DSSP) 0.16
Conservation of amino acid type 0.15
Conservation of hydrophobicity 0.14

Note that the difference between the SABLE-predicted and observed
(in an unbound structure of an individual chain) RSA is the most in-
formative feature. In addition, structure-based weighted neighbor
averaging (indicated by WNA) significantly improves the predictive
power of individual features.
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alternative models are shown in Table III: one with all 19
features (first column), one with the neighborhood aver-
aged conservation of amino acid type (WNA CAA)
excluded (second column), one with the neighborhood
averaged hydrophobicity (WNA H) excluded (third col-
umn), and finally a model without features using pre-
dicted RSA, that is, consisting of only six features that are
explicitly included in Table III. While the first three mod-
els achieve similar accuracy (MCC of about 0.4), the latter
model performs significantly worse (MCC of about 0.3) on
the independent S149 control set. Moreover, WNA dSA is
clearly the most important feature in all models that uti-
lize predicted RSA, in consistency with the analysis of dis-
criminatory power of individual fingerprints included in
the previous section. It is also interesting to note that
when dSA is not used, the conservation of charge (WNA
CCh), which otherwise contributes much less to predic-
tions, becomes the most important feature, followed by
the conservation of amino acid type (WNA CAA) and the
neighborhood averaged contact number (WNA CN). The
latter feature captures some geometric characteristics of
surface patches and is also important in conjunction with
dSA (see Table III).
As discussed in Training and Control Sets, for the S435

set of representative chains we used coordinates of indi-
vidual chains derived from the corresponding complexes.
In other words, the effects of induced fit are initially
ignored (see also Comparison With Other Methods). On
the other hand, however, we assess the effects of mapping
interaction sites from other complexes involving close
homologs of representative chains, as described before. An
SVM-based classifier is estimated using 10-fold cross-vali-
dation to achieve classification accuracy of about 79% and
MCC of 0.4, with error bars (standard deviations) of 0.4
and 0.01, respectively. Mapping alternative interaction
sites increases the size of the positive class and changes
the baseline (the fraction of residues in the larger, i.e. neg-
ative or noninteracting class) from about 73% to 68%. At
the same time, the estimated classification accuracy for
an SVM-based classifier drops to about 75%, thus increas-
ing the differences between the actual classification accu-

racy and the baseline (this illustrates again the limita-
tions of using the classification accuracy as a global mea-
sure of the performance, see Training and Validation
Protocols). Performance of NN-based predictors is on par
with SVMs, while simple LDA-based classifiers perform
slightly worse than more involved nonlinear classifiers.

We further use the S149 set for independent rigorous
validation of alternative training protocols and resulting
classifiers. All known interaction sites from alternative
complexes are mapped to representative chains in the
S149 set. Another difficulty that we address here using an
independent control set is the uncertainty of the negative
class assignment. Predicting whether or not a given
amino acid is likely to participate in protein–protein inter-
actions is clouded because experimentally validated data
is more abundant for positive cases than negative. In
other words, much work exists that positively confirms
that a given amino acid is an interaction site; however,
data that proves the opposite (that a given residue is not
an interaction site) is much rarer and more laden with
uncertainty. Therefore, special strategies may need to be
applied to learn a classifier from data in cases where only
‘‘positive’’ examples (i.e., examples from one class) can be
supplied with high confidence and negative examples are
unknown or uncertain. One approach to achieving higher
accuracy in case of problems with uncertain labels (which
we apply here) is based on selection of training examples.

We specifically tested two different strategies of aug-
menting the training set by removing negative examples
that are difficult to classify (and thus not necessarily truly
negative). Similar strategies have been proposed in the lit-
erature for the prediction of phosphorylation sites, for
instance.62 The first strategy consists of removing data
points that are misclassified by some number of individual
attributes (such as dSA or entropies) and the second strat-
egy relies on filtering out points that are misclassified by
a k-NN classifier in the whole feature space. We explicitly
present the results of the second approach. We found that
the best results are obtained when 10 nearest neighbors
are considered and residues labeled initially as ‘‘noninter-
acting’’ are excluded from training if at least five of its

TABLE III. Feature Weights in Four Alternative LDAModels Trained Using S435
Set (Contributions to the Norm of the Unit Vector Orthogonal to the
Separating Hyperplane) for Several Top Features (Contributions

of Remaining Features Are Small and Are Not Shown Here)

Feature

Feature weights in LDA models

All
features

Without
WNA CAA

Without
WNA H

No features
based on RSA
prediction

WNA CN 0.29 0.35 0.30 0.22
WNA CCh 0.04 0.02 0.02 0.34
WNA CH 0.01 0.01 0.02 0.04
WNA CS 0.03 0.00 0.03 0.01
WNA CAA 0.11 X 0.11 0.30
WNA H 0.02 0.02 X 0.10
WNA dSA 0.47 0.56 0.48 X

For the definition of features used, see Table II and the text.
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nearest neighbors belong to the positive class. Using such
augmented S435 training set, we were able to achieve a
better generalization on the S149 set, as shown in Table IV,
even though no filtering is applied to the control set and
the initial class assignment based on known interactions is
preserved. In particular, significant gains in sensitivity are
achieved with somewhat lower specificity (likely to be
underestimated though, as many of the false positives cor-
respond to unfiltered, difficult to classify residues that may
turn out to be interaction sites).
For the final SPPIDER predictor we chose a consensus-

based classifier that combines 10 different NNs obtained
in cross-validated training on the augmented S435 set,
with k-NN selection procedure used to filter out likely
mislabeled points. In fact, the results for NN-based classi-
fiers included in Table IV refer to a consensus of 10 net-
works from 10-fold cross-validation, with the simple ma-
jority voting used to combine individual predictors. As can
be seen from the table, NN-based consensus predictor
yields overall competitive accuracy (as measured by MCC)
and higher than other methods recall, which proved to be
advantageous in specific applications. The sensitivity of
the final predictor on the S149 set is further assessed in
Table V. The fraction of chains (and identified in them
interaction interfaces) for which predicted interaction
sites overlap with known interacting sites to a different
level is given. Note that for about half of 149 representa-
tive chains more than 70% of known interacting residues
were identified correctly and for about third (29%) more
than 90% of known interaction sites were predicted.

Assessment of the Effects of Induced Fit

As mentioned before, most published estimates of the
accuracy are based on ‘‘unbound’’ structures conveniently
derived from the corresponding complexes by simply dis-
regarding all chains but the chain of interest. Since this
approach relies on 3D coordinates derived from the actual

complex, the effects of induced fit are ignored. In many
cases, however, conformational changes upon complex for-
mation may result in overall structural rearrangement or
affect surface patches involved in protein–protein interac-
tion. Therefore, truly unbound coordinates derived from
monomeric, independently solved structures should be
used for more realistic assessment of the accuracy.

In this section, we present such an assessment for
SPPIDER using the S21 subset of S149 control set. For the
representative chains included in this set, we were able to
identify close homologs for which monomeric structures
are known. These truly unbound counterparts of chains in
S21 were used to create an alternative S21a set and to
assess the decrease in accuracy due to induced fit effects.
The average RMSD between structures (measured for
alpha carbons) originally included in S21 and their coun-
terparts in S21a is 1.0 (with a standard deviation of 0.5).
None of the structures undergoes major conformational
change upon complex formation. Thus, our test is limited
to relatively small changes induced by binding to another
protein. All the interactions were mapped from representa-
tive chains from S21 to their counterparts in S21a. Because
of slightly different length of some of the chains (between
complexes and monomeric structures), the baseline
changes from 73% for S21% to 78% for S21a. Here, we used
SVM-based classifiers because SVMs are easier to train,
enabling comparison of alternative representations with
and without B-factors (see below). Moreover, as demon-
strated in the previous section, the differences between
SVMs and other classifiers are not significant.

As can be seen from Table VI, the overall accuracy using
the standard representation consisting of 19 features used
to develop SPPIDER (denoted as 19f in Table VI) is signifi-
cantly lower for the S21 set, compared with the whole
S149 (MCC of 0.32 as opposed to 0.42 for the whole set,
see Table IV). It is in fact closer to the accuracy observed
for transient complexes (see next section), which is con-
sistent with the overall lower averaged surface area bur-
ied upon complex formation in chains from S21, compared
with the whole S149 set. When truly unbound structures
from the S21a set are used instead, the accuracy drops by
0.02 in terms of MCC (to 0.30). Thus, while interaction
sites in proteins included in S21 appear to be more diffi-
cult to predict, the relative drop in accuracy is small and
supports our conclusion that the new fingerprints and
prediction methods can be used to improve the recognition

TABLE IV. Comparison of Predictors Trained on the
Full Training Set (Referred to as ‘‘No Filter’’) of 69,509
Residues Derived From the S435 Set, and on a Subset
Obtained by Filtering out About Seven Thousand
Residues Initially Classified as Noninteracting

and Subsequently Identified as Likely Mislabeled
by Using k-NN Approach (Denoted as ‘‘k-NN filter’’)

Method

Accuracy

MCC Q2, % R, % P, %

LDA (no filter) 0.39 73.8 43.0 70.4
SVM (no filter) 0.40 74.4 43.6 72.2
NN (no filter) 0.41 74.5 52.7 67.0
LDA (k-NN filter) 0.41 73.3 59.8 62.3
SVM (k-NN filter) 0.42 74.4 57.4 65.1
NN (k-NN filter) 0.42 74.2 60.3 63.7

Results are given for the whole validation set (S149), without relabel-
ing (or removing) difficult to classify residues. Matthews correlation
coefficients (MCC), the two-state classification accuracy (Q2), recall
(sensitivity, R), and precision (specificity, P) are reported for each
method.

TABLE V. Sensitivity of SPPIDER Predictions on the
Independent Validation Set (S149)

Overlap
with known
interaction sites

10% 30% 50% 70% 90%

Fraction of
predicted
interfaces

0.94 0.83 0.73 0.50 0.29

The number of chains and predicted in them interaction interfaces
with an overlap of at least 10, 30, 50, 70, and 90% residues in known
interaction sites, respectively, is shown in the bottom row (as a frac-
tion of the total of 149 chains).
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of interaction sites in unbound structures of individual
protein chains.
It was suggested that temperature factors may be used

to improve the prediction of protein–protein interaction
sites. For example, Chung and Bourne proposed to use B-
factors to weight contributions from individual structures
in their multiple structure-based prediction method that
utilizes structurally conserved residues.27 We evaluated
the effects of including B-factors in our own predictors in
the context of induced fit. As can be seen from Table VI,
while temperature factors improve the accuracy signifi-
cantly when using unbound structures extracted from com-
plexes (and thus using B-factors that reflect in general
lower flexibility of interfacial residues in complexes), the
improvements are much smaller when using independ-
ently resolved unbound structures. At the same time, the
drop in accuracy from MCC of 0.36 to 0.32 due to the
induced fit effect is twice as large as the drop from MCC of
0.32 to 0.30 in case of the predictor without B-factors.
When setting B-factors to zero to model a situation in
which the input structure does not include temperature
factors, the accuracy of the results is only slightly better
compared with a predictor that does not utilize B-factors at
all (MCC of 0.31 vs. 0.30, with somewhat lower sensitivity
and slightly improved specificity). Therefore, we decided
not to use temperature factors for the final predictor.
We would like to comment, however, that by including

these and other features without assessment of induced
fit effects, one may easily overestimate the accuracy of
predictions. In our case, including B-factors and disre-
garding the mapping of alternative binding sites in both
training (S435) and control (S149) sets, results in a predic-
tor estimated to yield MCC of about 0.5 on the S149 set.
We believe that our conservative estimate of 0.42 is more
realistic, though.

Comparison With Other Methods

In this section, we further evaluate the effects of differ-
ent representations and compare SPPIDER with other
methods from the literature. We used our own S149 con-

trol set as well as several published datasets for this eval-
uation. Direct comparison with previous methods and
published estimates of accuracy is often difficult or impos-
sible, for example, because of differences in the definition
of an interaction site, composition of training and control
sets as well as validation procedures. Moreover, it appears
that none of these methods fully integrates information
from multiple complexes to map them into reference
chains, elevating the problems of class assignment and
largely ignoring the effects of induced fit.

Therefore, we reimplemented several representative
methods from the literature. In particular, we assessed the
method by Fariselli and colleagues,17 which represents the
residue of interest by identifying 10 surface exposed near-
est neighbors in 3D and encoding all 11 residues by the cor-
responding position specific scoring matrices columns. Our
own implementation of this method is referred to as ‘‘MA-
struct-11nn.’’ As a reference, we also implemented a
sequence-based method that does not utilize structural in-
formation at all, using an MSA-based representation for a
sliding window of 11 sequential neighbors instead (referred
to as ‘‘MA-seq-w11’’). Furthermore, we implemented a
method motivated by Bordner and Abagyan approach,26

with 14 carefully selected structure-based descriptors:
weighted average over 11 nearest spatial neighbors for con-
tact number, hydrophobicity and the actual RSA for the
central residue, as well as the actual RSA for residues close
in sequence (using sliding window of size 11 for comparison
with SPPIDER). This approach will be referred to as
‘‘Struct-11nn.’’ We also evaluated directly the recently
developed PPI-Pred server46 that utilizes both sequence
and structure-based information. The results are summar-
ized in Figure 3 and Table VII.

In accord with some other recent studies,32 using direct
mapping of evolutionary information on the structure of
an individual protein chain (represented here by the MA-
struct-11nn method) results in a rather limited prediction
accuracy. For example, on the S149 set, the classification
accuracy of up to 66% (with about 55% recall and 55%
precision, respectively) and MCC of up to 0.27 is achieved.
On the other hand, when using a carefully designed set
of structure-based and evolutionary conservation, as

TABLE VI. Analysis of the Effects of Induced Fit and
Inclusion of Temperature Factors on a Set of 21 Chains

Derived From The S149 set (Denoted as S21) and
a Set of Homologs of These Representative Chains,

Crystallized Independently as Monomeric
Structures (Denoted as S21a)

Control set
(representation)

Accuracy

MCC Q2, % R, % P, %

S21 (19f) 0.32 76.5 31.9 63.3
S21a (19f) 0.30 79.1 29.8 56.8
S21 (19f þ BF) 0.36 77.4 37.5 64.5
S21a (19f þ BF) 0.32 79.7 31.4 59.2

An extended representation consisting of original 19 features plus B-
factors is denoted as 19f þ BF. Matthews correlation coefficients
(MCC), the two-state classification accuracy (Q2), recall (sensitivity,
R), and precision (specificity, P) are reported.

TABLE VII. Performance of SPPIDER in Comparison
with Representative Methods From the Literature,
Assessed Using a Control Set of 149 Representative

Chains (for Details See Text)

Method

Accuracy

MCC Q2, % R, % P, %

SPPIDER 0.42 74.2 60.3 63.7
Struct-11nn 0.29 70.5 33.4 64.9
MA-struct-11nn (16% RSA) 0.27 65.5 55.3 55.0
MA-struct-11nn (5% RSA) 0.17 64.7 35.9 49.1
PPI-Pred 0.16 65.3 27.2 50.4

The overall classification accuracy (Q2), recall or sensitivity (R), preci-
sion or specificity (P), and Matthews correlation coefficients (MCC)
are given.
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opposed to straightforward application of MA-based pro-
files (in general consistency with the approach by26), the
classification accuracy of about 70.5% (with about 33%
recall and 65% precision, respectively) and MCC of up to
0.29 is achieved. In our evaluation, PPI-Pred achieves a
classification accuracy of about 65% (with a recall of about
27% and precision of about 50%, respectively) and MCC of
0.16. It should be noted, however, that we use our own def-
inition of an interaction site to define the ‘‘true’’ classifica-
tion, which may affect the estimated accuracy in the latter
case. Also, only the top prediction is taken into account
here, as opposed to choosing the most consistent predic-
tion among top three patches predicted by PPI-Pred, as
used for the original assessment.46

As can be further seen from the ROC curves included in
Figure 3, simple mapping of evolutionary information
results in a much worse performance (surface area under
the ROC curve of 0.63) compared with more refined struc-
ture-based approaches (surface area of 0.71 to 0.76). Our
estimates of the accuracies are also consistent with
recently published results for similar prediction meth-
ods.32,33 We observe that the training set used originally
by Fariselli et al. was highly redundant which led to over-
optimistic claims. A NN-based predictor trained on the
original F226 set, following the protocol by Fariselli and
colleagues, yielded a 10-fold cross-validation classification
accuracy of 79.3% (with baseline of 72%) and of 0.43,
whereas alternative predictor trained on a nonredundant
subset F59 was estimated to yield MCC of 0.28 and Q2 of
75.5% (with baseline of 73%) in 10-fold cross-validation.
We would also like to point out that while the accuracy
can be numerically somewhat improved when using a dif-
ferent RSA threshold to define surface exposed residues
(here we consider 5 and 16% RSA thresholds), predictions
with higher thresholds often result in noncontiguous
interfaces.
At the same time, SPPIDER, which incorporates RSA

prediction-based novel fingerprints, improves signifi-
cantly on other literature-based methods considered here.
For fair comparison of alternative representations and to
reduce the effects of training for more involved nonlinear
classifiers, all but one ROC curves in Figure 3 were com-
puted for LDA-based predictors. The LDA-based version
of SPPIDER with 19 features defined before yields a sur-
face area under the ROC curve of 0.76. Note that
SPPIDER-NN, which is used by the SPPIDER server
(with the dot indicating the default trade off between sen-
sitivity and specificity), improves only slightly upon its
linear counterpart.
We further compared alternative methods considered

here on the S21a set of truly unbound structures that was
used before to assess the effects of induced fit. As dis-
cussed in Assessment of the Effects of Induced Fit, the
S21 subset of the S149 set appears to be more difficult to
predict for most of the methods considered here. In addi-
tion, a further drop in accuracy (of about 0.02 MCC) is
observed for SPPIDER when replacing the original
(bound) structures by their unbound counterparts. It is
therefore of interest to see if the relative advantages of

the new method hold on the S21a set. Indeed, as can be
seen from Table VIII, the new method significantly out-
performs other approaches in terms of all accuracy meas-
ures used here. Note that SPPIDER results, which are
based on a NN classifier are somewhat different (espe-
cially in terms of the trade off between specificity and sen-
sitivity) than the results of an SVM-based predictor
included in Table VI. Note also that sequence based meth-
ods (represented here by MA-seq-w11) are consistently
performing quite poorly, although the advantage of such
methods is that they are not dependent on structural
details. We would also like to comment that while the ac-
curacy of PPI-Pred is significantly lower than that of
SPPIDER, it is in fact somewhat improved compared with
the full S149 set as well as the original S21 set (thus, in
this test we do not observe a decrease in accuracy due to
induced fit for PPI-Pred).

For further assessment of the performance of the new
method we used the NT86 set of transient complexes
developed by Nooren and Thornton.45 On this difficult set,
SPPIDER achieved an overall classification accuracy of
about 74%, with recall of 43% and precision of 47%, and
MCC of 0.28. Thus, while the overall accuracy is lower in
this case, compared with S149 set, we conclude that
SPPIDER can be used to provide useful predictions even
for transient complexes. Results on the NT86 set can also
be used for further (indirect) comparison with the method
by Bordner and Abagyan,26 who used the same set to test
their structure-based method and reported somewhat
higher sensitivities and significantly lower specificities
compared with our results. As discussed in the Methods,
though, the definition of an interaction site in this work
appears to be inconsistent, which may lead to unreliable
assessment of errors (see discussion in Definition of an
Interaction Site).

Finally, we would like to comment that as an alternative
strategy to improve upon sequence-based methods, it has
been suggested that the predicted RSA can be used to ena-
ble a more reliable prediction of interaction sites even
when the structural information is not available.19,31

However, because of the lack of accurate characterization

TABLE VIII. Performance of SPPIDER in Comparison
With Representative Methods From the Literature,

Assessed Using a Subset of Control Set of
Representative Chains That Have Crystal Structures

in Unbound State (S21a, for Details See Text)

Method

Accuracy

MCC Q2, % R, % P, %

SPPIDER 0.32 77.1 43.8 49.0
PPI-Pred 0.19 73.6 31.2 39.2
Struct-11nn 0.18 76.5 20.4 45.2
MA-struct-11nn

(5% RSA)
0.10 70.3 25.7 30.9

MA-seq-w11 0.07 77.0 4.6 39.1

The overall classification accuracy (Q2), recall (R), and specificity (P)
and Matthews correlation coefficients (MCC) are given.
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of the surface geometry and the additional uncertainty
introduced by RSA predictions,35,50 it remains to be seen
if significant progress can be made without incorporating
experimentally derived (or obtained using reliable model-
ing techniques) high resolution structural information.

Examples of Results for Specific Proteins

Specific examples of current SPPIDER predictions for
three different proteins without homology to any of the
protein chains used either for the training of SABLE or
SPPIDER methods are included in Figure 4. The observed
accuracy for these three proteins is close to the overall
performance in our tests on large independent control sets
(see the previous sections). We only briefly comment here
that some of the predicted interaction sites in the VHL tu-
mor suppressor, for which there is no support from struc-
turally resolved protein complexes, that is, technically
false positives, are actually indicated as possible interac-
tion sites, based on other experimental data.64 On the
other hand, at least one interaction site in VHL appears to
be unknown, and since it is predicted with high confi-
dence, it may be targeted for experimental validation as
an example of a false negative in terms of current efforts
to map protein interactions. On the other hand, catalase
is predicted to have only interaction sites that coincide

with known interfaces from existing complexes. Thus,
potentially novel interactions for this protein are likely to
be either false positives or they may represent a competi-
tion for known sites.

In addition, in Table IX we present SPPIDER results on
a set of targets from the first four editions of the CAPRI.65

As before, only predictions for protein chains without
sequence homology to any of the proteins used either for
the training of SABLE or SPPIDER are included. Un-
bound structures or structures derived from complexes
with other interaction partners, as included in CAPRI tar-
get entries are used as input. Interacting residues are
identified using our definition of an interacting site and
complexes provided for the evaluation of CAPRI predic-
tions. Hence, if multiple interacting chains and the result-
ing interfaces are included in a given complex they would
all contribute to the positive class. This is different than
an assessment included in Bradford and Westhead46 that
considers each interface independently, leading to prob-
lems with inconsistent definitions of positive versus nega-
tive class that were also discussed in Definition of an
Interaction Site.

In addition to the overall accuracy (note that precision
is likely underestimated in this case since we did not per-
form a further mapping of alternative binding sites from
other complexes involving homologs of chains included in

Fig. 4. Examples of SPPIDER predictions of protein interaction sites for: erythrocyte catalase (PDB entry 1f4j, chain A, left panels), cyclin dependent
kinase CDK6 (PDB entry 1g3n, chain A, middle panels), and von Hippel-Lindau tumor suppressor protein (1lqb:C, right panels). The following color
scheme is used: true positive (known interfacial residues predicted correctly) in red; false negatives (known interfacial residues not predicted by
SPPIDER) in blue; false positives (residues predicted as interfacial without support from structural data at present) in yellow. Information about protein
binding sites was derived from all complexes containing structural homologs of chains considered here and mapped to representative structures speci-
fied above. Panels show front and back views for each protein (animated 3D pictures are available from the POLYVIEW server63).
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Table VIII), we also present the overlap between predicted
interacting sites and specific interfaces being evaluated in
CAPRI. Note that for two targets (alpha amylase interface
with the camelaid antibody VH, target T04, and major
surface antigen interface with SAG1, target T13),
SPPIDER fails to predict any interaction sites within the
interfaces of interest. The average overlap for the remain-
ing targets is about 40%, which is similar to the sensitivity
reported by Bradford and Westhead for the best out of
their three top predictions.

CONCLUSIONS

The importance of protein–protein interactions contin-
ues to stimulate the development of both experimental
and computational protocols that aim at elucidating pro-
tein networks and the underlying physical interactions.
The focus of this work is the problem of the recognition of
putative protein–protein interaction sites, which is one of
the important intermediate steps toward these bigger
goals. We have recently developed accurate methods for
predicting the extent of solvent exposure of amino acid
residues in proteins.35,36,66 In this work, we demonstrate
how these real valued RSA predictions can be used to
improve the recognition of protein interaction sites in the
case when a structure of an individual protein chain is
known (without knowing interacting partners).
In particular, we show that RSA predictions tend to be

consistent with the level of exposure observed in protein
complexes, rather than unbound structures. We assessed
prediction biases for several real valued RSA prediction
methods, including PHDacc,37 RVPNet,38 PROF,39 and
SABLE.35 We observe that SABLE predictions are most
consistent with RSAs observed in protein complexes, pro-

viding the best discrimination of interaction sites. More-
over, we illustrate how these systematic biases in RSA
prediction may be enhanced by augmenting training sets
for RSA prediction methods with data derived from pro-
tein complexes. The proposed RSA prediction-based fin-
gerprints of protein interactions are also shown to yield
significantly improved discrimination of interaction sites
compared with entropies (conservation of amino acid type
and other properties), hydrophobicity, and various struc-
ture-based characteristics used before. Using machine
learning approaches, these novel fingerprints of protein
interactions are combined with sequence-based and other
structural features into a new method for an enhanced
recognition of protein–protein interaction sites, which is
referred to as SPPIDER.

LDA, SVM, and NN-based classifiers are compared,
yielding similar results for a given representation. On the
other hand, the performance is greatly affected by the
choice of the representation. In particular, we demonstrate
(in accord with some recent studies32,33) that a direct map-
ping of evolutionary information onto the structure of an
individual protein chain results in a rather limited predic-
tion accuracy. On the other hand, geometric features of
potential interaction patches and dSA differences are both
shown to contribute significantly to the overall accuracy of
results; combining these signals improves the results fur-
ther. Furthermore, the effects of induced fit, that is, confor-
mational changes associated with complex formation and
protein–protein interactions,67 are evaluated using an al-
ternative control set, consisting of proteins for which both
monomeric structures and complexes are known. In addi-
tion, several alternative strategies are applied to identify
and filter out residues that are likely to be involved in pro-
tein interactions, even though there is no experimental

TABLE IX. SPPIDER Prediction for CAPRI Targets That
Are Nonredundant to Our Training Set

Target (Chain
Label in
Target/Result) MCC Q2, % R, % P, %

Overlap
With

CAPRI, %

T01 (A/H) 0.48 77.3 43.5 83.3 37.0
T01 (C/A) 0.44 68.2 91.4 59.6 51.6
T02 (A/A) 0.12 59.2 42.5 44.6 42.9
T02 (H/E) 0.41 67.8 85.1 45.5 68.8
T02 (L/D) 0.27 72.4 41.3 48.7 54.5
T03 (A/A) 0.30 65.4 57.8 62.4 17.4
T04 (A/A) �0.05 83.7 0.0 0.0 0.0
T07 (A/A) 0.09 90.6 8.3 20.0 5.9
T08 (A/B) 0.13 77.1 27.3 26.1 23.1
T09 (A/A) 0.22 69.3 50.0 36.7 45.8
T10 (A/A) 0.25 71.2 33.7 53.5 26.1
T12 (A/A) 0.31 80.2 20.8 71.4 17.1
T12 (B/B) 0.14 41.7 100.0 33.3 94.7
T13 (A/F) 0.02 86.2 0.0 0.0 0.0

The overall classification accuracy (Q2), recall or sensitivity (R), precision or specificity (P), and Mat-
thews correlation coefficients (MCC) computed using our own definition of the interface, as well as the
overlap with interfaces defined in CAPRI for specific pairs of chains are given. The structure of a chain
labeled as target in CAPRI (typically unbound structure or bound to other interaction partners) is used
as input.
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data supporting that classification at present, contributing
to improved accuracies.
The new method is shown to significantly outperform

existing literature-based approaches that we reimple-
mented for direct comparison. On an independent control
set of 149 nonredundant protein chains derived from
recently submitted PDB structures, without sequence
homology to chains used in the training and with known
interactions sites mapped from (in general) multiple com-
plexes, SPPIDER achieves the classification accuracy of
about 74% and a MCC of about 0.42. Moreover, for about
half of these representative chains more than 70% of
known interacting residues were identified correctly, with
the overall precision (specificity) of about 64% and recall
(sensitivity) of 60%. Therefore, we conclude that novel
prediction-based fingerprints of protein interactions are
likely to subsequently contribute to improved identifica-
tion of functionally important residues, facilitating both
biochemical and crystallographic studies of protein com-
plexes and protein interactions.
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