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In regression problems where the number of predictors greatly exceeds the number of observations, conventional regression techniques may

produce unsatisfactory results. We describe a technique called supervised principal components that can be applied to this type of problem.

Supervised principal components is similar to conventional principal components analysis except that it uses a subset of the predictors

selected based on their association with the outcome. Supervised principal components can be applied to regression and generalized regres-

sion problems, such as survival analysis. It compares favorably to other techniques for this type of problem, and can also account for the

effects of other covariates and help identify which predictor variables are most important. We also provide asymptotic consistency results

to help support our empirical findings. These methods could become important tools for DNA microarray data, where they may be used to

more accurately diagnose and treat cancer.
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1. INTRODUCTION

In this article we study a method for predicting an outcome

variable Y from a set of predictor variables X1,X2, . . . ,Xp, mea-

sured on each of N individuals. In the typical scenario that we

have in mind, the number of measurements p is much larger

than N. In the example that motivated our work, X1,X2, . . . ,Xp

are gene expression measurements from DNA microarrays. The

outcome Y might be a quantitative variable that we might as-

sume to be normally distributed. More commonly in microarray

studies, Y is a survival time, subject to censoring.

One approach to this kind of problem would be a supervised

prediction method. For example, we could use a form of re-

gression applicable when p > N; partial least squares (Wold

1975) would be one reasonable choice, as would ridge regres-

sion (Hoerl and Kennard 1970). However, Figure 1 illustrates

why a semisupervised approach may be more effective.

We imagine that there are two cell types, and that patients

with the good cell (2) type live longer on the average. However,

there is considerable overlap in the two sets of survival times.

We might think of survival time as a “noisy surrogate” for cell

type. A fully supervised approach would give the most weight

to those genes having the strongest relationship with survival.

These genes are partially, but not perfectly, related to cell type.

If we could instead discover the underlying cell types of the

patients (often reflected by a sizeable signature of genes acting

together in pathways), then we would do a better job of predict-

ing patient survival.

Now we can extract information about important cell types

from both the relationship between Y and X1,X2, . . . ,Xp and

the correlation among the predictors themselves. Principal com-

ponents analysis (PCA) is a standard method for modeling

correlation. Regression on the first few principal components

would seem like a natural approach, but this might not always
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work well. The fictitious data given in Figure 2 illustrate the

problem (if we were to use only the largest principal compo-

nent). This is a heatmap display with each gene represented by

a row and each column containing data from one patient on

one microarray. Gene expression is coded from blue (low) to

yellow (high). In this example, the largest variation is seen in

the genes marked A, with the second set of 10 patients hav-

ing higher expression in these genes than the first 10. The set

of genes marked B show different variation, with the second

and fourth blocks of patients having higher expression in these

genes. The remainder of the genes show no systematic varia-

tion. At the bottom of the display, the red points are the first two

singular vectors u1 and u2 (principal components) of the matrix

of expression values. In microarray studies these are sometimes

called “eigengenes” (Alter, Brown, and Botstein 2000). (The

broken lines represent the “true” grouping mechanism that gen-

erated the data in the two groups.) Now if the genes in A are

strongly related to the outcome Y , then Y will be highly cor-

related with the first principal component. In this instance we

would expect a model that uses u1 to predict Y to be very effec-

tive. However, the variation in genes A might reflect some bio-

logical process that is unrelated to the outcome Y . In that case,

Y might be more highly correlated with u2 or some higher-order

principal component.

The supervised principal components technique that we

describe in this article is designed to uncover such structure

automatically. This technique was described in a biological set-

ting by Bair and Tibshirani (2004) in the context of a related

method known as “supervised clustering.” The supervised prin-

cipal component idea is simple: Rather than performing princi-

pal component analysis using all of the genes in a dataset, we

use only those genes with the strongest estimated correlation

with Y . In the scenario of Figure 2, if Y were highly corre-

lated with the second principal component u2, then the genes in

block B would have the highest correlation with Y . Hence we

would compute the first principal component using just these

genes, and this would yield u2.

As this example shows, using principal components helps un-

cover groups of genes that express together. Biologically, one or

more cellular processes, accompanied by their cadre of express-

ing genes, determine the survival outcome. This same model

underlies other approaches to supervised learning in microarray

studies, including supervised gene shaving (Hastie et al. 2000)
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Figure 1. Underlying Conceptual Model. There are two cell types;

patients with the good cell type live longer on average. However, there

is considerable overlap in the two sets of survival times. Hence it could

be advantageous to try to uncover the cell types and use these to predict

survival time, rather than to predict survival time directly.

and tree harvesting (Hastie, Tibshirani, Botstein, and Brown

2001). The supervised principal components procedure can be

viewed as a simple way to identify the clusters of relevant pre-

dictors by selection based on scores to remove the irrelevant

sources of variation and application of principal components to

identify the groups of coexpressing genes.

As far as we know, Bair and Tibshirani (2004) were the first

to discuss the idea of supervised principal components in detail.

But other authors have presented related ideas. Ghosh (2002)

prescreened genes before extracting principal components, but

seemed to do so for computational reasons. Jiang et al. (2004)

used a similar idea in the context of merging the results from

two different datasets. Nguyen and Rocke (2002) and Hi and

Gui (2004) discussed partial least squares (PLS) approaches to

survival prediction from microarray data. As we discuss in this

article, this is a related but different method, and PLS did not

perform as well as supervised principal components in our tests.

PLS does not do an initial thresholding of features, and this is

the key aspect of our procedure that underlies its good perfor-

mance.

In the next section we define the supervised principal com-

ponents procedure. Section 3 gives a brief summary of our con-

sistency results, and Section 4 discusses an importance measure

for individual features and a reduced model. Section 5 gives an

example from a lymphoma study, Section 6 discusses alterna-

tive approaches to semisupervised prediction, including “gene

shaving,” and Section 7 presents a simulation study comparing

the various methods. Section 8 summarizes the results of super-

vised principal components on some survival studies. Section 9

gives details of the theoretical results. The article concludes

with some generalizations, including covariate adjustment and

the use of unlabeled data in Section 10 and a discussion of lim-

itations and future work in Section 11. The Appendix contains

details of some proofs for Section 9.

2. SUPERVISED PRINCIPAL COMPONENTS

2.1 Description

We assume that there are p features measured on N observa-

tions (e.g., patients). Let X be an N × p matrix of feature mea-

surements (e.g., genes), and let y be the N-vector of outcome

measurements. We assume that the outcome is a quantitative

variable; we discuss other types of outcomes, such as censored

survival times. Here in a nutshell is the supervised principal

component proposal:

1. Compute (univariate) standard regression coefficients for

each feature.

2. Form a reduced data matrix consisting of only those fea-

tures whose univariate coefficient exceeds a threshold θ

in absolute value (θ is estimated by cross-validation).

3. Compute the first (or first few) principal components of

the reduced data matrix.

4. Use these principal component(s) in a regression model to

predict the outcome.

We now give details of the method. Assume that the columns

of X (variables) have been centered to have mean 0. Write the

singular value decomposition (SVD) of X as

X = UDVT , (1)

where U,D, and V are N × m, m × m, and m × p, and m =
min(N − 1,p) is the rank of X. Here D is a diagonal matrix

containing the singular values dj; and the columns of U are the

principal components u1,u2, . . . ,um; these are assumed to be

ordered, so that d1 ≥ d2 ≥ · · · ≥ dm ≥ 0.

Let s be the p-vector of standardized regression coefficients

for measuring the univariate effect of each gene separately

on y,

sj =
xT

j y

‖xj‖
, (2)

with ‖xj‖ =
√

xT
j xj. Actually, a scale estimate σ̂ is miss-

ing in each of the sj’s, but because it is common to all,

we can omit it. Let Cθ be the collection of indices such

that |sj| > θ . We denote by Xθ the matrix consisting of

the columns of X corresponding to Cθ . The SVD of Xθ

is

Xθ = UθDθ VT
θ . (3)

Letting Uθ = (uθ,1,uθ,2, . . . ,uθ,m), we call uθ,1 the first su-

pervised principal component of X, and so on. We now fit a

univariate linear regression model with response y and predic-

tor uθ,1,

ŷspc,θ = ȳ + γ̂ · uθ,1. (4)

Note that because uθ,1 is a left singular vector of Xθ , it

has mean 0 and unit norm. Hence γ̂ = uT
θ,1y, and the inter-

cept is ȳ, the mean of y (expanded here as a vector of such

means).

We use cross-validation of the log-likelihood (or log partial-

likelihood) ratio statistic to estimate the best value of θ . In most

examples in this article we consider only the first supervised

principal component; in the examples of Section 8, we allow

the possibility of using more than one component.

Note that, from (3),

Uθ = Xθ VθD−1
θ

= Xθ Wθ . (5)

So, for example, uθ,1 is a linear combination of the columns

of Xθ : uθ,1 = Xθ wθ,1. Hence our linear regression model esti-

mate can be viewed as a restricted linear model estimate using

all of the predictors in Xθ ,

ŷspc,θ = ȳ + γ̂ · Xθ wθ,1 (6)

= ȳ + Xθ β̂θ , (7)
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Figure 2. Fictitious Microarray Data for Illustration. A heatmap display with each gene represented by a row, and each column giving the data

from one patient on one microarray. Gene expression is coded from blue (low) to yellow (high). The largest variation is seen in the genes marked A,

with the second set of 10 patients having higher expression in these genes. The set of genes marked B show different variation, with the second

and fourth blocks of patients having higher expression in these genes. At the bottom of the display are shown the first two singular vectors (principal

components) of the matrix of expression values (red points), and the actual grouping generators for the data (dashed lines). If the outcome is highly

correlated with either principal component, then the supervised principal component technique will discover this.

where β̂θ = γ̂ wθ,1. In fact, by padding wθ,1 with 0’s (corre-

sponding to the genes excluded by Cθ ), our estimate is linear in

all p genes.

Given a test feature vector x∗, we can make predictions from

our regression model as follows:

1. Center each component of x∗ using the means we derived

on the training data, x∗
j ← x∗

j − x̄j.

2. ŷ∗ = ȳ + γ̂ · x∗
θ

Twθ,1 = ȳ + x∗
θ

T β̂θ ,

where x∗
θ is the appropriate subvector of x∗.

In the case of uncorrelated predictors, it is easy to verify that

the supervised principal components procedure has the desired

behavior. It yields all predictors whose standardized univariate

coefficients exceed θ in absolute value.

Our proposal is also applicable to generalized regression set-

tings, for example, survival data, classification problems, or

data typically analyzed by a generalized linear model. In these

cases we use a score statistic in place of the standardized re-

gression coefficients in (2) and use a proportional hazards or

appropriate generalized regression in (4). Let ℓj(β) be the log-
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likelihood or partial likelihood relating the data for a single pre-

dictor Xj and the outcome y, and let Uj(β0) = dℓ/dβ|β=β0
and

Ij(β0) = −d2ℓj/dβ2|β=β0
. Then the score statistic for predic-

tor j has the form

sj = Uj(0)2

Ij(0)
. (8)

Of course, for the Gaussian log-likelihood, this quantity is

equivalent to the standardized regression coefficient (2).

One could consider iterating the supervised principal com-

ponents procedure. Thus we would find features whose inner

product with the current supervised principal components was

largest, use those features to compute the new principal com-

ponents, and so on. But this procedure will tend to converge to

the usual (unsupervised) principal components, because there

is nothing to keep it close to the outcome after the first step. An

iterative procedure would make sense only if it were based on

a criterion involving both the variance of the features and the

goodness of fit to the outcome. We consider such a criterion in

the next section, although we ultimately do not pursue it (for

reasons given there).

2.2 An Underlying Model

We now consider a model to support the supervised princi-

pal components method. Suppose that we have a response vari-

able Y that is related to an underlying latent variable U by a

linear model,

Y = β0 + β1U + ε. (9)

In addition, we have expression measurements on a set of

genes Xj indexed by j ∈ P , for which

Xj = α0j + α1jU + ǫj, j ∈ P . (10)

The errors ε and ǫj are assumed to have mean 0 and are inde-

pendent of all other random variables in their respective models.

We also have many additional genes Xk, k /∈P , which are in-

dependent of U. We can think of U as a discrete or continuous

aspect of a cell type, which we do not measure directly.P repre-

sents a set of genes comprising a pathway or process associated

with this cell type, and the Xj’s are noisy measurements of their

gene expression. We would like to identify P , estimate U, and

hence fit the prediction model (9). This is a special case of a la-

tent structure model or single-component factor analysis model

(Mardia, Kent, and Bibby 1979).

The supervised principal components algorithm (SPCA) can

be seen as a method for fitting this model:

1. The screening step estimates the set P by P̂ = Cθ .

2. Given P̂ , the SVD of Xθ estimates U in (10) by the largest

principal component uθ,1.

3. Finally, the regression fit (4) estimates (9).

Step 1 is natural, because on average the regression coeffi-

cient Sj = XT
j Y/‖Xj‖ is non-0 only if α1j is non-0 (assuming

that the genes have been centered). Hence this step should se-

lect the genes j ∈ P . Step 2 is natural if we assume that the er-

rors ǫj have a Gaussian distribution, with the same variance. In

this case the SVD provides the maximum likelihood estimates

for the single-factor model (Mardia et al. 1979). The regression

in step 3 is an obvious final step.

In fact, givenP , the model defined by (9) and (10) is a special

structured case of an errors-in-variables model (Miller 1986;

Huffel and Lemmerling 2002). One could set up a joint opti-

mization criterion,

min
β0,β1,{α0,j,α1,j},u1,...,uN

∑N
i=1( yi − β0 − β1ui)

2

σ 2
Y

+
∑

j∈P

∑N
i=1(xij − α0j − α1jui)

2

σ 2
X

. (11)

Then it is easy to show that (11) can be solved by an augmented

and weighted SVD problem. In detail, we form the augmented

data matrix

Xa = (y : X), (12)

and assign weight ω1 = σ 2
X/σ 2

Y to the first column and weight

ωj = 1 to the remaining columns. Then, with

v0 =




β0

α0j1

...

α0jq




, v1 =




β1

α1j1

...

α1jq




, (13)

(with q = |P|) the rank-1 weighted SVD Xa ≈ 1vT
0 + uvT

1

solves the optimization problem in (11). Although this ap-

proach might seem more principled than our two-step proce-

dure, SPCA has a distinct advantage. Here ûθ,1 = Xθ wθ,1, and

hence it can be defined for future x∗ data and used for pre-

dictions. In the errors-in-variables approach, ûEV = XAwEV,

which involves y as well and leaves no obvious estimate for

future data. We return to this model in Section 6.

This latent-variable model can be easily extended to accom-

modate multiple components U1, . . . ,Um. One way of doing

this is to assume that

Y = β0 +
M∑

m=1

βmUm + ε (14)

and

Xj = α0j +
M∑

m=1

α1jmUm + ǫj, j ∈ P . (15)

Fitting this model proceeds as before, except now we extract M

rather than one principal component from Xθ . We study this

model more deeply in Section 9.

2.3 An Example

The SPCA model anticipates other sources of variation in

the data, unrelated to the response. In fact these sources can be

even stronger than those driving the response, to the extent that

principal components would identify them first. By guiding the

principal components, SPCA extracts the desired components.

We simulated data from a scenario like that of Figure 2. We

used 1,000 genes and 40 samples, all with base error model

being Gaussian with unit variance. We then defined the mean
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vectors µ1 and µ2 as follows. We divide the samples into con-

secutive blocks of 10, denoted by the sets (a,b, c,d). Then

µ1i =
{−2 if i ∈ a ∪ b

+2 otherwise
(16)

and

µ2i =
{−1 if i ∈ a ∪ c

+1 otherwise.
(17)

The first 200 genes have mean structure µ1,

xij = µ1i + ǫij, j = 1, . . . ,200, i = 1, . . . ,40. (18)

The next 50 genes have mean structure µ2,

xij = µ2i + ǫij, j = 201, . . . ,250, i = 1, . . . ,40. (19)

In all cases ǫij ∼ N(0,1), which is also how the remaining

750 genes are defined. Finally, the outcome is generated as

yi = α · µ1i + (1 − α) · µ2i + εi, where εi is N(0,1). The first

two principal components of X are approximately µ1 and µ2

(see Fig. 2).

We tried various values of α ∈ [0,1], as shown in Figure 3.

Plotted is the correlation of the supervised principal compo-

nents predictor with an independent (test set) realization of y

as θ in the screening process |sj| > θ is varied. The number of

genes surviving the screening is shown on the horizontal axis.

The extreme right end of each plot represents standard princi-

pal components regression. When α = 0, so that the outcome

is correlated with the second principal component, supervised

PC easily improves on principal components regression. When

α reaches .5, the advantage disappears, but supervised PC does

no worse than principal components regression.

3. CONSISTENCY OF SUPERVISED
PRINCIPAL COMPONENTS

In Section 9 we show that the standard principal components

regression is not consistent as the sample size and number of

features grow, whereas supervised principal components is con-

sistent under appropriate assumptions. Because the details are

lengthy, we give a summary first and defer the full discussion

until Section 9.

We consider a latent variable model of the form (9) and (10)

for data with N samples and p features. We denote the full N ×p

feature matrix by X, and the N × p1 block of X by X1, corre-

sponding to the features j ∈ P . We assume that as N → ∞,

p/N → γ ∈ (0,∞) and p1/N → 0 “fast.” Note that p and p1

may be fixed or may approach ∞. Given this setup, we prove

the following:

• Let Ũ be the leading principal component of X and let

β̃ be the regression coefficient of Y on Ũ. Then Ũ is not

generally consistent for U, and likewise β̃ is not generally

(a) (b)

(c) (d)

Figure 3. Correlation Between the First Supervised Principal Component uθ ,1 and a Test Outcome y , as the Weight α Given to the First Principal

Component in the Data Generation Is Varied. The number of genes used by the procedure is shown on the horizontal axis in each panel. The sharp

switch (a) and (b) corresponds to the point at which the order of the principal components is reversed.
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consistent for β . Because U is a random variable, in Sec-

tion 9 we define what we mean by consistency.

• Assume that we are given X1. Then if Û is the leading

principal component of X1 and β̂ is the regression coeffi-

cient of Y on Û, these are both consistent.

• If X1 is not given but is estimated by thresholding uni-

variate features scores (as in the supervised principal com-

ponents procedure), then the corresponding Û and β̂ are

consistent.

We have also derived analogous results for Cox’s propor-

tional hazards model. Details are given in a technical pa-

per available at http://www-stat.stanford.edu/˜tibs/spc/cox.ps

(or pdf ).

4. IMPORTANCE SCORES AND

A REDUCED PREDICTOR

Having derived the predictor uθ,1, how do we assess the con-

tributions of the p individual features? We define the impor-

tance score as the inner product between each feature and uθ,1,

impj = 〈xj,uθ,1〉. (20)

Features j with large values of | impj | contribute most to the

prediction of y. If the features are standardized, then this is just

the correlation between each gene and the supervised principal

component.

In some applications we would like to have a model that uses

only a small number of features. For example, a predictor that

requires expression measurements for a few thousand genes is

not likely to be useful in a everyday clinical settings; microar-

rays are too expensive and complex for everyday use, and sim-

pler assays like reversetranscription–polymerase chain reaction

can measure only 50 or 100 genes at a time. In addition, isola-

tion of a smaller gene set could aid biological understanding of

the disease.

There are a number of ways to obtain a series of reduced

models. One way would be to apply the lasso (Tibshirani

1996) to the data (X, ŷspc). The LAR algorithm (Efron, Hastie,

Johnstone, and Tibshirani 2004) provides a convenient method

for computing the lasso solutions. One drawback of this ap-

proach is that the series of models typically will involve dif-

ferent sets of features, which can be difficult for a scientist to

assimilate.

Here we take a simpler approach. We define

ûred =
∑

| impj |>γ

ℓj · xj, (21)

where ℓj = uT
θ,1xj/d1 is the loading for the jth feature and d1 is

the first singular value from the SVD (3). This predictor keeps

only features with importance scores γ or larger, and weights

these features by their loadings.

One could compute importance scores, and the correspond-

ing reduced predictor, for all features (not just the ones used in

computation of the supervised principal components). For ex-

ample, there could be a feature not in the first set that has a

higher inner product with the supervised principal component

than a feature that is in the first set. However, we restrict at-

tention to the features in the first set, for a couple of reasons.

With this approach, a value of γ = 0 yields the original super-

vised principal components predictor, facilitating a comparison

between the full and reduced models.

Second, allowing the reduced model to use features that are

outside the first set leads naturally to an iterated version of

the procedure in which we recompute the supervised principal

component using genes with highest importance score, compute

new scores and repeat. However, this procedure will typically

converge to a usual first principal component (i.e., it is unsu-

pervised). Hence we do not consider this iterated version, and

restrict attention to genes that pass the initial threshold.

We illustrate this idea in the next section.

5. EXAMPLE: SURVIVAL OF LYMPHOMA PATIENTS

This dataset, from Rosenwald et al. (2002), consists of 240

samples from patients with diffuse large B-cell lymphoma

(DLBCL), with gene expression measurements for 7,399

genes. The outcome was survival time, either observed or right-

censored. We randomly divided the samples into a training set

of size 160 and a test set of size 80. The results of various pro-

cedures are given in Table 1. We used the genes with top 25 Cox

scores (cutoff of 3.53) in computing the first supervised prin-

cipal component. Although PLS (described in Sec. 6) provides

a strong predictor of survival, supervised principal components

is even stronger.

Figure 4 shows the cross-validation curve for estimating

the best threshold. Each model is trained, and then the log-

likelihood ratio (LR) test statistic is computed on the left-out

data. To have sufficient data in the left-out data to compute

a meaningful LR statistic, we use two-fold cross-validation

(rather than the more typical five- or ten-fold). This process

is repeated five times and the results are averaged. In our ex-

periments, this method yields a reasonable estimate of the best

threshold but often underestimates the test set LR statistic (be-

cause the training and validation sets are half of the actual

sizes). This is the case here, where the cross-validated LR sta-

tistic is just significant but the test set LR statistic is strongly

significant.

This example also illustrates that the procedure can be sensi-

tive to the threshold value. If we instead choose a threshold of 2

(a reasonable choice according to Fig. 4), then 865 genes are

selected. The correlation of the resulting supervised principal

component with the one found with 25 genes is only about .5.

The supervised principal component predictor gives a p value

of .02 in the test set; this significant but not as strong as that

from the 25-gene predictor.

Figure 5 shows the test set log-likelihood ratio statistic ob-

tained by fitting regression models of various sizes to the out-

put of supervised principal component regression. We see that

if the top few genes are used, then there is no loss in predictive

power.

Figure 6 shows the top 25 genes and their loadings. Details

are given in the figure caption.

Table 1. Lymphoma Data: Test Set Results for the Various Methods

Method Z-score P value

First principal component −1.04 .2940
Partial least squares 2.51 .0112
First supervised principal component (25 genes) −2.93 .0045

http://www-stat.stanford.edu/~tibs/spc/cox.ps
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Figure 4. Lymphoma Data: Cross-Validation Curve for Estimating the

Best Threshold.

6. SOME ALTERNATIVE APPROACHES

In this section we discuss some alternative approaches to this

problem, some classical and some reflecting other approaches

that we have explored.

6.1 Ridge Regression

Ridge regression (Hoerl and Kennard 1970) is a classical re-

gression procedure when there are many correlated predictors,

and one that could reasonably be applied in the present setting.

Ridge regression fits the full linear regression model but man-

ages the large number of predictors in these genomic settings

by regularization (Hastie and Tibshirani 2003). Ridge regres-

sion solves

min
β

‖y − β0 − Xβ‖2 + λ‖β‖2, (22)

where the second term shrinks the coefficients toward 0. The

regularization parameter λ controls the amount of shrinkage,

and for even the smallest λ > 0, the solution is defined and is

unique. It can also be shown that this form of regularization

Figure 5. Lymphoma Data: Test Set Log-Likelihood Ratio Statistic

Obtained From the Reduced Predictor Approximation.

shrinks the coefficients of strongly correlated predictors toward

each other, an attractive property in this setting.

Using the singular value representation (1), the fitted values

from a ridge regression have the form

ŷRR = ȳ + X(XTX + λI)−1Xy

= ȳ +
m∑

j=1

uj

d2
j

d2
j + λ

uT
j y. (23)

Ridge regression is like a smooth version of principal com-

ponents regression; rather than retaining the first k principal

components and discarding the rest, it weights the successive

components by a factor that decreases with decreasing eigen-

value d2
j . Note that ridge regression is a linear method; that is,

ŷRR is a linear function of y. In contrast, SPCA is nonlinear,

because of the initial gene-selection step.

6.2 The Lasso

The lasso Tibshirani (1996) is a variation on ridge regression

that solves

min
β

‖y − β0 − Xβ‖2 + λ

p∑

j=1

|βj|, (24)

where the second term shrinks the coefficients toward 0. The

absolute value form of the penalty has the attractive property

that it can shrink some coefficients exactly to 0. The “basis pur-

suit” proposal of Chen, Donoho, and Saunders (1998) uses the

same idea in a signal processing context. Computation of the

lasso is more challenging that computation of ridge regression.

Problem (24) is a convex optimization, which can be very diffi-

cult if the number of features p is large. The least-angle regres-

sion (LARS) algorithm (Efron et al. 2004) provides an efficient

method for computation of the lasso, exploiting the fact that

as λ changes, the profiles of the estimates are piecewise lin-

ear. For other likelihood-based models, such as the Cox model,

the Euclidean distance in (22) is replaced by the (negative) log-

likelihood or log-partial-likelihood. The coefficient profiles are

not piecewise linear, so the LARS approach cannot be applied.

Some details of the lasso for nonlinear models have been given

by Tibshirani (1996, 1997).

When p is larger than the sample size N, the number of non-0

coefficients in a lasso solution is at most N (for any λ). Al-

though sparse solutions are generally attractive, these solutions

may be too sparse, because, for example, for microarray data

they would allow only N genes to appear in a given model.

We now consider several approaches to supervised principal

components that modify the optimization criterion behind prin-

cipal components analysis in a supervisory fashion.

6.3 Partial Least Squares

PLS is one such approach, with a long history (Wold 1975;

Frank and Friedman 1993; Hastie, Tibshirani, and Friedman

2001). PLS works as follows:

1. Standardize each of the variables to have mean 0 and unit

norm, and compute the univariate regression coefficients

w = XTy.

2. Define uPLS = Xw, and use it in a linear regression model

with y.
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Figure 6. Lymphoma Data: Heatmap Display of the Top 25 Genes. The top two rows of the figure show the observed survival times and first

supervised principal component (SPC) uθ ,1; for survival times T censored at time c, we show Ê(T |T ≥ c) based on the Kaplan–Meier estimator. All

columns have been sorted by increasing value of uθ ,1. On the right of the heatmap the “loadings” w θ ,1 are shown [see (6)]; the genes (rows) are

sorted by decreasing value of their loading. All genes but the last one have positive loadings.

Although PLS goes on to find subsequent orthogonal compo-

nents, one component is sufficient for our purposes here. PLS

explicitly uses y in estimating its latent variable. Interestingly,

it can be shown that the (normalized) w in PLS solves (Frank

and Friedman 1993)

max
‖w‖=1

corr2(y,Xw)var(Xw), (25)

a compromise between regression and PCA.

Frank and Friedman (1993) concluded that the variance term

dominates, and hence that PLS would in general be similar to

principal components regression. We can see this in the context

of consider model (9)–(10). The expected values of the univari-

ate regression coefficient wj is

E(wj) = β1

∑

j

αj

α2
j + σ 2

j

. (26)

Now if σ 2
j = 0, then the PLS direction

∑
j wjxij reduces

to β1

∑
j xij/αj. But in that case, the latent factor U equals∑

j Xi/αj, so the two solutions agree (in expectation).

Hence, after we isolate the block of important features, car-

rying out principal components regression or PLS is likely to

give similar results. The main advantage of supervised princi-

pal components over the standard PLS procedure is the use of

thresholding to estimate which features are important. PLS re-

tains all features and can be adversely effected by the noise in
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the unimportant features. We include PLS among the competi-

tors in our comparisons in the next sections.

6.4 Mixed Variance–Covariance Criterion

The largest principal component is that normalized linear

combination z = Xv of the genes with the largest sample vari-

ance. Another way to supervise this would be to seek a lin-

ear combination z = Xv having both large variance and a large

(squared) covariance with y, leading to the compromise crite-

rion

max
‖v‖=1

(1 − α)var(z) + α cov(z,y)2, s.t. z = Xv. (27)

This is equivalent to

max
‖v‖=1

(1 − α)vTXTXv + αvTXTyyTXv. (28)

If y is normalized to unit norm, then the second term in (28)

is a regression sum of squares (regressing z on y) and has the

interpretation “the variance of z explained by y.” The solution

v can be efficiently computed as the first right singular vector

of the augmented (N + 1) × p matrix,

Xa =
(

(1 − α)1/2X

α1/2yTX

)
. (29)

By varying the mixing parameter α, we control the amount of

supervision. Although the mixed criterion can guide the se-

quence of eigenvectors, all genes have non-0 loadings, which

adds a lot of variance to the solution.

6.5 Supervised Gene Shaving

Hastie et al. (2000) proposed “gene shaving” as a method

for clustering genes. The primary focus of their method was to

find small clusters of highly correlated genes, whose average

exhibited strong variance over the samples. They achieved this

through an iterative procedure, which repeatedly computed the

largest principal component of a subset of the genes, but af-

ter each iteration “shaved” away a fraction of the genes with

small loadings. This produces a sequence of nested subsets of

gene clusters, with successively stronger pairwise correlation

and variance of the largest principal component.

They also proposed a supervised version of gene shaving,

which uses precisely a mixed criterion of the form (28). Al-

though this method has two tuning parameters, α and the sub-

set size, here we fix α to the intermediate value of .5 and focus

attention on the subset size. As in SPCA, for each subset the

largest principal component is used to represent its genes.

This method is similar in flavor to SPCA; it produces princi-

pal components of subset of genes, where the choice of subset

is supervised. Simultaneously searching for sparse components

with high variance and correlation with y is an attempt to omit

features that might slip through the SPCA screening step. Our

experiments in the next section show that shaving can exhibit

very similar performance to SPCA, the latter with the advan-

tages of being simpler to define and having only one tuning

parameter to select.

6.6 Another Mixed Criterion

The largest normalized principal component u1 is the largest

eigenvector of XXT . This follows easily from the SVD (1) and

hence XXT = UD2UT . Intuitively, because

uT
1 XXTu1 =

p∑

j=1

〈u1,xj〉2, (30)

we are seeking the vector u1 closest on average to each of the xj.

A natural supervised modification is to perturb this criterion in a

manner that encourages the leading eigenvector to align with y,

max
u1,‖u1‖=1

(1 − α)

p∑

j=1

〈u1,xj〉2 + α〈u1,y〉2. (31)

Solving (31) amounts to finding the largest eigenvector of

C(y;α) = (1 − α)XXT + αyyT . (32)

Equivalently, one could form an augmented matrix Xa with y

in the (p + 1)st column. If we assign weights α to this row

and (1 − α) to the first p rows, then a weighted SVD of Xa

is equivalent to an eigendecomposition of (31). We note that

this is exactly the situation described in the errors-in-variables

model (11)–(13) in Section 2.2. As mentioned there, the esti-

mate u1 involves y as well as the xj, and so cannot be used

directly with test data. We did not pursus this approach further.

6.7 Discussion of Methods

Figure 7 illustrates the methods discussed earlier on a sim-

ulation example with N = 100 samples and p = 5,000 fea-

tures. The data are generated according to the latent variable

model (35), where there are four dominant principal com-

ponents, and the one associated with the response is ranked

number 3 (when estimated from the data). The methods are

identified in the figure caption. The leftmost M point corre-

sponds to principal components regression using the largest

principal component. SPCA and shaving do much better than

the other methods.

Figure 8 gives us a clue to what is going on. Shown are the

first 1,000 of 5,000 feature loadings for two of the methods

demonstrated in Figure 7 (chosen at the best solution points).

Both methods correctly identified the important component (the

one related to y involving the first 50 features). In a regular

SVD of X, this important component was dominated by two

other components. In detail, the training data from model (35)

has four built-in components, with singular values computed as

99.9,88.3,80.9, and 80.5. Empirically, we verified that com-

ponent three is identified with the response mechanism, but its

singular value is just above the noise level (the fifth singular

value was 79.2). However, the mixed criterion also brings with

it noisy coefficients, somewhat smaller, for all of the other vari-

ables, whereas SPCA sets most of the other loadings to 0. The

coefficients for shaving show a very similar pattern to SPCA,

whereas those for ridge and PLS are very similar to the mixed

criterion and are not shown here.

Our experience with many similar examples is much the

same, although the shaving method occasionally gets the wrong

component completely. SPCA tends to be more reliable and is

simpler to define, and hence is our method of choice. The sim-

ulations in the next section also support this choice.
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Figure 7. A Simulation Example Illustrating the Typical Behavior of the Different Methods. The data are generated according to the model (35)

described in the next section, with N = 100 and p = 5,000. Ridge regression, PLS, and the mixed criterion all suffer from the very high dimensions.

Although not shown, the regularization parameter λ for the ridge points increases to the right, as does the α for the mixed criterion, the leftmost

value being 0. Both shaving and SPCA are indexed by subset size. The line labeled “truth” uses the known linear combination of 50 features as the

regression predictor (◦, SPCA; , truth; , mix; , ridge; , shave; , PLS).

7. SIMULATION STUDIES

We performed three simulation studies to compare the per-

formance of the methods that we have considered. We describe

the first two studies here, and the third one later. Each simulated

dataset X consisted of 5,000 “genes” (rows) and 100 “patients”

(columns). Let xij denote the “expression level” of the ith gene

(a) (b)

Figure 8. Feature Loadings w for SPCA (a) and the Mixed Criterion (28) (b). The first 1,000 of 5,000 are shown, at the “best” solution point.

The vertical line indicates that the first 50 variables generated the response. Whereas both of these methods were able to overwhelm the first two

dominant principal components (which were unrelated to y), SPCA is able to ignore most of the variables, and the mixed criterion gives them all

weight (albeit more weight to the first 50).
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and jth patient. In the first study we generated the data as

xij =





3 + ǫij if i ≤ 50, j ≤ 50

4 + ǫij if i ≤ 50, j > 50

3.5 + ǫij if i > 51,

(33)

where the ǫij’s are independent normal random variables with

mean 0 and variance 1. We also let

yj =
∑50

i=1 xij

25
+ ǫj, (34)

where the ǫj’s are independent normal random variables with

mean 0 and standard deviation 1.5.

We designed this simulation so that there are two tumor

“subclasses.” Patients 1–50 belong to tumor class 1, and have

slightly lower average expression levels in the patients with tu-

mor class 2. Furthermore, because y is proportional to the sum

of the expression level of the first 50 genes, y is slightly lower

for patients with tumor class 1. The other 4,950 genes are unre-

lated to y.

We applied eight methods to this simulated dataset: prin-

cipal components regression, principal components regression

using only the first principal component, PLS (one direction),

ridge regression, lasso, supervised principal components, mixed

variance–covariance, and gene shaving. We trained each of

these models using a simulated dataset generated as described

earlier. We select the optimal value of the tuning parameters

for each method using 10-fold cross-validation. Then we used

the same procedure to generate an independent test dataset and

used the models that we built to predict y on the test dataset.

We repeated this procedure 10 times and averaged the results.

Table 2 gives the errors produced by each model.

We see that gene shaving and supervised principal com-

ponents generally produce smaller cross-validation and test

errors than any of the other methods, with the former hold-

ing a small edge. Principal components regression and PLS

gave comparable results (although principal components re-

gression performed slightly worse when restricted to one com-

ponent).

Table 2. Results of the Simulation Study Based on the “Easy”

Simulated Data

Method CV error Test error

PCR 293.4(17.21) 217.6(10.87)

PCR-1 316.8(20.52) 239.4(11.94)

PLS 291.6(13.11) 218.2(12.03)

Ridge regression 298.0(14.72) 224.2(12.35)

Lasso 264.0(13.06) 221.9(12.72)

Supervised principal components 233.2(11.23) 176.4(10.14)

Mixed variance–covariance 316.7(19.52) 238.7(10.24)

Gene shaving 223.0(8.48) 172.5(9.25)

NOTE: Each entry in the table represents the squared error of the test set predictions averaged

over 10 simulations. The standard error of each error estimate is in parentheses. The prediction

methods are: principal components regression (PCR), PCR restricted to using only one principal

component (PCR-1), partial least squares (PLS), ridge regression, lasso, supervised principal

components, mixed variance–covariance, and gene shaving.

Next, we generated a “harder” simulated dataset. In this sim-

ulation, we generated each xij as follows:

xij =





3 + ǫij if i ≤ 50, j ≤ 50

4 + ǫij if i ≤ 50, j > 50

3.5 + 1.5 · I(u1j < .4) + ǫij if 51 ≤ i ≤ 100

3.5 + .5 · I(u2j < .7) + ǫij if 101 ≤ i ≤ 200

3.5 − 1.5 · I(u3j < .3) + ǫij if 201 ≤ i ≤ 300

3.5 + ǫij if i > 301.

(35)

Here the uij are uniform random variables on (0,1) and

I(x) is an indicator function. For example, for each of the

genes 51–100, a single value u1j is generated for sample j; if this

value is larger than .4, then all of the genes in that block get 1.5

added. The motivation for this simulation is that there are other

clusters of genes with similar expression patterns that are unre-

lated to y. This is likely to be the case in real microarray data,

because there are pathways of genes (that probably have similar

expression patterns) that are not related to y. Figures 7 and 8

illustrate some of the methods applied to a realization from this

model.

We repeated the experiment described earlier using (35) to

generate the datasets instead of (33). The results are given in

Table 3. Most of the methods performed worse in this “harder”

experiment. Once again, gene shaving and supervised principal

components produced smaller errors than any of the compet-

ing methods; gene shaving shows much more variability than

supervised principal components in this case.

Our third simulation study was quite different than the first

two. We used the training and test expression datasets from

Rosenwald et al. (2002), so as to obtain genes with “real-life”

correlation. Fixing the expression data, we generated indepen-

dent standard Gaussian coefficients θj, and finally generated

a quantitative outcome yi =
∑p

j=1 xijθj + σZ, with Z standard

Gaussian. With σ = 3, about 30% of the variation in the out-

come was explained by the true model. Multiple datasets were

generated in this way, with expression data held fixed.

Ridge regression is the Bayes estimate in this setup, so we

would expect it to perform the best. We were interested to see

how other methods compared. Table 4 gives the results. Ridge

regression is the best, followed in cross-validation error by PLS

and in test error by the lasso. The other methods are substan-

tially worse. Table 5 gives the average number of genes used by

Table 3. Results of the Simulation Study Based on the “Hard”

Simulated Data

Method CV error Test error

PCR 302.4(17.48) 327.6(14.49)

PCR-1 325.6(20.05) 354.6(14.99)

PLS 299.6(17.10) 321.8(16.12)

Ridge regression 301.0(18.47) 328.0(16.38)

Lasso 286.9(16.92) 322.8(21.24)

Supervised principal components 242.3(15.38) 268.9(10.47)

Mixed variance–covariance 322.5(19.64) 349.8(16.02)

Gene shaving 234.0(12.46) 276.6(13.43)

NOTE: Each entry in the table represents the squared error of the test set predictions averaged

over 10 simulations. The standard error of each error estimate is in parentheses. The prediction

methods are the same as in Table 2.
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Table 4. Third Simulation Study: Gaussian Prior for True Coefficients

Method CV error/1,000 Test error/1,000

PCR 399.423(16.617) 194.489(16.298)

PCR-1 559.708(29.637) 283.356(24.320)

PLS 322.513(11.142) 203.375(16.978)

Ridge regression 304.215(9.858) 132.251(55.45)

Lasso 356.886(15.281) 169.266(10.217)

Supervised PC 417.972(16.485) 203.374(16.978)

Mixed covariance (y) 418.250(10.975) 202.293(16.805)

Mixed covariance (ŷ) 551.924(26.251) 286.255(23.149)

Gene shaving 402.876(11.897) 197.000(17.040)

supervised principal components and lasso in the three simula-

tion studies. We see that lasso uses fewer genes than supervised

principal components in each case. However, in the first two

simulation studies, the number chosen by supervised principal

components is closer to the actual number (50). In addition,

if there are N samples and N is less than the total number of

features p, then the lasso can never choose more than N fea-

tures. This could be too restrictive, because there is no reason

in general that the true number of important genes should be

less than N.

8. APPLICATION TO VARIOUS SURVIVAL STUDIES

Here we compare several methods for performing survival

analysis on real DNA microarray datasets. (Some of these re-

sults were also reported by Bair and Tibshirani 2004.) We ap-

plied the methods to four different datasets. First, we examined

a microarray dataset consisting of patients with diffuse large

B-cell lymphoma (Rosenwald et al. 2002). There are 7,399

genes, 160 training patients, and 80 test patients in this dataset.

Second, we considered a breast cancer dataset (van’t Veer et al.

2002) with 4,751 genes and 97 patients. We partitioned this

dataset into a training set of 44 patients and a test set of 53 pa-

tients.

Next, we examined a lung cancer dataset (Beer et al. 2002)

with 7,129 genes and 86 patients, which we partitioned into

a training set of 43 patients and a test set of 43 patients. Fi-

nally, we considered a dataset of patients with acute myeloid

leukemia (Bullinger et al. 2004), consisting of 6,283 genes and

116 patients. This dataset was partitioned into a training set of

59 patients and a test set of 53 patients.

In addition to supervised principal components, we examined

the following methods: principal components regression, partial

least squares, lasso, and two other methods that we call “median

cut” and “clustering Cox,” described by Bair and Tibshirani

(2004). Both of these latter methods turn the problem into

a two-class classification problem and then apply the nearest

shrunken centroid classifier of Tibshirani, Hastie, Narasimhan,

and Chu (2001). The median cut method stratifies the patients

into highrisk or low risk, depending on whether they survived

past the median survival time. The “clustering Cox” method is

Table 5. Average Number of Genes (and standard deviation) for

Supervised Principal Components and Lasso in Each of

Three Simulation Studies

Method Simulation 1 Simulation 2 Simulation 3

Supervised PC 44.5(9.4) 54.4(10.9) 95.7(16.4)

Lasso 32.8(8.7) 23.1(6.2) 42.9(5.5)

like supervised principal components, using two-means cluster-

ing applied to the genes with the highest Cox scores.

For PLS, ridge regression, and the lasso, we allowed the

possibility of using more than one component, and chose this

number by cross-validation. The results are given in Table 6.

Overall, supervised principal components performs better than

the competing methods. However, in the DLBCL example, the

lasso does best. This is not surprising, because our use of the

lasso as a post-processor for supervised principal components

showed that only a few genes are needed for good prediction in

this example.

9. THEORETICAL RESULTS

In this section we give details of our for supervised princi-

pal components in the Gaussian regression setting. Consistency

results for survival data are discussed in the Appendix.

9.1 Setup

Suppose that the rows of X are iid. Then we can formulate

a population model as follows. Denoting the rows by XT
i (i =

1, . . . ,N), we have the model

Xi
iid∼ Np(µ,�),

where � (p × p) is the covariance matrix. Without loss of gen-

erality, we assume that µ = 0, because it can be quite accurately

estimated from the data.

Suppose that X is partitioned as X = (X1,X2), where X1 is

N × p1 and X2 is N × p2 with p1 + p2 = p. Assume that the

corresponding partition of � is given by

� =
[

�1 0

0 �2

]
. (36)

Suppose further that we can represent �1 ( p1 × p1) as

�1 =
M∑

k=1

λkθkθ
T
k + σ 2I, (37)

where θk (k = 1, . . . ,M) are mutually orthonormal eigenvec-

tors and the eigenvalues λ1 ≥ · · · ≥ λM > 0. Here σ 2 > 0 rep-

resents the contribution of (isotropic) “background noise” that

is unrelated to the interactions among genes. This model can be

described as a covariance model for gene expressions that is an

M-rank perturbation of identity. Here 1 ≤ M ≤ p1 − 1.

We can equivalently express the predictors through the fol-

lowing factor analysis model. Let P be the set of genes forming

the columns of matrix X1. Then |P| = p1 and

Xij =
M∑

k=1

√
λkθjkηik + σwij, j ∈P, (38)

represent the expression measurements for the genes in the

set P of ith array (replicate), i = 1, . . . ,N [cf. (10) in Sec. 2.2].

Here ηik
iid∼ N(0,1) and are independent of wij

iid∼ N(0,1).

Our main assumption is that X1 is the matrix containing all

of the columns whose variations are related to the variations

in y. First, assume that the selection procedure is such that it

selects X1 with probability tending toward 1 as N → ∞. In

Section 10.4 we consider the more realistic scenario in which
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Table 6. Comparison of the Different Methods on Four Different Datasets From Cancer Studies

(a) DLBCL (b) Breast cancer (c) Lung cancer (d) AML

Method R2 p value NC R2 p value NC R2 p value NC R2 p value NC

(1) Median cut .05 .047 .13 .0042 .15 .0016 .07 .0487
(2) Clustering-Cox .08 .006 .21 .0001 .07 .0499 .08 .0309

(3) SPCA .11 .003 2 .27 2.1 × 10−5 1 .36 1.5 × 10−7 3 .16 .0013 3
(4) PC regression .01 .024 2 .22 .0003 3 .11 .0156 1 .08 .0376 1
(5) PLS .10 .004 3 .18 .0003 1 .18 .0044 1 .07 .0489 1
(6) Lasso .16 .0002 NA .14 .001 NA .26 .0001 NA .05 .0899 NA

NOTE: The methods are (1) assigning samples to a “low-risk” or a “high-risk” group based on their median survival time, (2) using two-means clustering based on the genes with the largest Cox

scores, (3) supervised principal components method, (4) principal components regression, (5) partial least squares regression, and (6) lasso. The table lists the R2 (proportion of log-likelihood

explained) and p values for the test set predictions, as well as the number of components used.

we estimate this subspace from data. Our key assumptions re-

garding the matrix �1 are given by conditions A1–A2 or, more

generally, by conditions A1′ and A2′. We show in Section 10.2

that these conditions are sufficient for the consistency of the or-

dinary PCA-based estimators of θk and λk, k = 1, . . . ,M, when

we perform such a PCA on the sample covariance matrix of X1.

It follows from this that we can consistently estimate the para-

meters in the PC regression model for the response y described

through (40); see Section 10.2 for details.

A1. The “signal” eigenvalues of �1 satisfy (identifiability

condition for eigenvectors)

λ1 > · · · > λM > 0,

and M is a fixed positive integer.

A2. p1 → ∞ as N increases to infinity in such a way that

p1/N → 0.

It may be possible that the noise variance σ 2 and the “signal”

eigenvalues λk also vary with N. Under this setting, to guarantee

consistency, we need to replace conditions A1 and A2 by the

following:

A1′. The eigenvalues are such that λk/λ1 → ρk for k =
1, . . . ,M with 1 = ρ1 > ρ2 > · · · > ρM > 0 and λ1 →
c > 0 as N → ∞. Moreover, σ 2 → σ 2

0 ∈ [0,∞) as

N → ∞.

A2′. p1 varies with N in such a way that σ 2p1/(Nλ1) → 0

as N → ∞.

Notice that condition A1′ is an asymptotic identifiability con-

dition for the eigenvectors θ1, . . . , θM . This is because if ρk =
ρk+1 for some 1 ≤ k ≤ M−1, then for large N, and for any 2×2

orthogonal matrix C, the columns of the matrix C[θk : θk+1] are

approximately the eigenvectors of �1 corresponding to eigen-

values λk and λk+1. This would imply a very special kind of

inconsistency in the estimates of θk and θk+1, even though we

still may be able to estimate the corresponding eigenspace con-

sistently. To avoid the technicalities associated to this situation,

we restrict ourselves to condition A1′. Note that the condition

λ1 → c > 0, taken together with the first part of condition A1′,
implies that all of the M eigenvalues λk converge to positive

limits.

Remark 1. Conditions A1′ and A2′ allow for the possibility

that λ1/σ
2 → ∞ and p1/N converges to a positive limit. This

particular facet becomes relevant when we try to connect to the

scenario that we describe here. Consider the model (38) and

suppose that M = 1. In this case, if
√

λ1θj1 is roughly of the

same order of magnitude for all j ∈ P , then λ1 ∼ p1 for p1 large.

Even if otherwise, it is reasonable to believe that the “signal-

to-noise ratio” λ1/σ
2 is going to ∞ as p1 → ∞, because the

presence of larger number of genes associated with a common

latent factor yields a greater amount of information.

Suppose that the SVD of X1 is given by

X1 = UDVT , where

U is N × m,D is m × m, and V is p1 × m, (39)

with m = min(N,p1).

Here N is the number of observations (patients) and p1 is the di-

mension (number of genes). Let u1, . . . ,um denote the columns

of U and let v1, . . . ,vm denote the columns of V. For obvious

reasons, we set θ̂k = vk, k = 1, . . . ,M. Also, we denote the di-

agonal elements of D by d1 > · · · > dm.

The model for the response is

y = β0
1√
N

1 +
K∑

k=1

βk

1√
N

ηk + Z, (40)

where K ≤ M, 1 is the vector with 1 in each coordinate, and

Z ∼ NN(0, τ2
N

I) independent of X for some τ ∈ [0,∞).

It may seem from (40) that the parameters associated with

the distribution of the sample size depend on the sample size N.

But in reality the model (40) is an exact analog of the model

for response given by (9) and (10). This is seen by dividing

through (9) by
√

N and taking α1jm = θjm in (10) and setting

Um = ηm for m = 1, . . . ,M.

Remark 2. Note that we also could have described the model

in terms of similar quantities for the full dataset, that is, X (cor-

respondingly �). There are two difficulties associated with this

formulation. First, it is not at all likely that all the systematic

variation in the gene expressions is associated with the varia-

tion in the response. So even if model (36)–(37) is true, there is

no guarantee that the largest K eigenvalues of � are the largest

K eigenvalues of �1. This will result in the addition of spurious

(i.e., unrelated to the response y) components to the model.

The second difficulty relates to the accuracy of estimation.

Because typically p is very large (in fact much larger than, or at

least comparable to, the sample size N), it is almost never going

to be the case that assumption A2′ is satisfied (with p1 replaced

by p). But the assumption for p1 is reasonable, because only a

few genes are expected to be associated with a certain type of

disease. Violation of this condition results in an inconsistency
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in the estimates of θk (see the next section for details). So the

procedure of selecting the genes before performing the PCA

regression is not only sensible, but also in effect necessary.

9.2 Results on Estimation of θk and λk

To discuss consistency of the eigenvectors θk, we consider

the quantity dist(̂θ k, θk), where dist is a distance measure

between two vectors on the p1-dimensional unit sphere. We

can choose either dist(a,b) = ∠(a,b) (i.e., the angle between

a and b) or dist(a,b) = ‖a − sign(aTb) · b‖2 for a,b ∈ S
p1 .

First suppose we perform PCA on the full dataset X and es-

timate θk by θ̃k, the restriction of the kth right singular vector

of X to the coordinates corresponding to the set X1. Then the

following result asserts that if p is very large, then we may not

have consistency.

Theorem 1 (Lu 2002; Johnstone and Lu 2006). Suppose that

(38) and condition A1 hold (and assume that σ 2 and λk are

fixed) and that p/N → γ ∈ (0,∞) as N → ∞. Then

dist(̃θ k, θk) �→ 0 in probability as N → ∞;
that is, the usual PCA-based estimate of θk is inconsistent.

Under the same conditions as in Theorem 1, the sample

eigenvalues are also inconsistent estimates for the populations

eigenvalues. Baik and Silverstein (2004) derived almost-sure

limits of the sample eigenvalues in a similar setup under mini-

mal distributional assumptions.

From now onward we treat exclusively the singular value

decomposition of X1. We denote the PCA-based estimate of

the kth largest eigenvalue of �1 by ℓ̂k, k = 1,2, . . . ,m. Ob-

serve that ℓ̂k = 1
N

dk2. The corresponding population quantity is

ℓk := λk + σ 2.

A natural estimator of λk is λ̂k = max{ℓ̂k − σ 2,0} if σ 2 is

known. But, if σ 2 is unknown, then we can estimate this by

various strategies. One approach is to use the median of the di-

agonal elements of 1
N

XT
1 X1 as a (usually biased) estimate of σ 2

and then define λ̂k = max{ℓ̂k − σ̂ 2,0}.
Now we establish the consistency for PCA restricted to the

matrix X1. We do not give a complete proof of this result, be-

cause it is rather long and somewhat technical in nature. But

in the Appendix we give an outline of the proof for the case

p1/N → 0 and {λk}M
k=1 and σ 2 fixed. The details have been

given by Paul (2005).

Theorem 2. Let dist(a,b) = ‖a−sign(aT b)·b‖2. Let h(x) :=
x2

1+x
and g(x, y) := (x−y)2

xy
. Assume that (38) holds and that the

set P is selected with probability tending toward 1 as N → ∞.

• Suppose that conditions A1′ and A2′ hold. Then, for 1 ≤
k ≤ M,

E dist2(̂θk, θk)

≤
[

p1

Nh(λk/σ 2)
+ 1

N

∑

k �=k′

1

g(λk + σ 2, λk′ + σ 2)

]

× (1 + o(1)). (41)

If, moreover, λ1/σ
2 → ∞, then ℓ̂k = λk(1 + oP(1)).

• If σ 2 and the λk’s are fixed and conditions A1 and A2 hold,

then (41) holds and ℓ̂k
P→ ℓk = λk + σ 2 as N → ∞.

9.3 Estimation of βk

In this section we discuss estimation of the parameters βk,

k = 1. . . . ,K. To simplify the exposition, we treat σ 2 and λk’s

as fixed and assume that conditions A1 and A2 hold. Recall that

our model for the response variable is y = β̂0 +
∑K

k=1 β̂kµ̂k.

Suppose that either σ 2 is known or a consistent estimate σ̂ 2

is available. Then define λ̂k = max{ℓ̂k − σ̂ 2,0}. Let uk be as be-

fore and define ũk as 1√
λ̂k

1√
N

X1vk if λ̂k > 0, and as any fixed

unit vector [say (1,0, . . . ,0)T ] otherwise. Define an estimate

of βk (for 1 ≤ k ≤ K) as β̃k = ũT
k y. We can compare its perfor-

mance with another estimate β̂k = uT
k y with uk as before. Also,

define β̂0 = β̃0 = 1√
N

∑N
j=1 yj.

Observe that

uk = 1

dk

X1vk

= (ℓ̂k)
−1/2 1√

N
X1θ̂k

= (ℓ̂k)
−1/2

[
M∑

l=1

√
λl(θ

T
l θ̂k)

1√
N

ηl +
σ√
N

Wθ̂k

]
,

where W is the N × p1 matrix whose rows are wT
i (i =

1, . . . ,N). Then, because θ̂k = θk + εk (as a convention assum-

ing θ̂ T
k θk > 0), where ‖εk‖2 = OP(

√
p1/N ),

uk =
√

λk√
λk + σ 2

1√
N

ηk(1 + oP(1))

+ σ√
λk + σ 2

1√
N

Wθk(1 + oP(1)) + δk, (42)

where ‖δk‖2 = OP(
√

p1/N ). To prove this last statement,

we need only use Theorem 2 together with the fact that

‖ 1
N

WTW‖2 = 1 + oP(1), because

2

∥∥∥∥
1√
N

Wεk

∥∥∥∥
2

≤ 2

∥∥∥∥
1

N
WTW

∥∥∥∥
2

‖εk‖2 = OP

(
p1

N

)

and

|εT
k θ l| ≤ ‖εk‖2‖θ l‖2 = OP

(√
p1

N

)
for 1 ≤ l �= k ≤ M,

and, finally, ‖ηl‖2 =
√

N(1 + oP(1)) for all l = 1, . . . ,M.

From, this it follows that

ũk = 1√
N

ηk(1 + oP(1)) + σ√
λk

1√
N

Wθk(1 + oP(1)) + δ̃k,

(43)

where ‖̃δk‖2 = OP(
√

p1/N ). Note that the vectors {Wθk : k =
1, . . . ,M} are independent NN(0, I) and independent of {ηk :

k = 1, . . . ,M}, because the θk’s are mutually orthonormal.

To establish consistency of β̃k, 1 ≤ k ≤ K, note that [by (43)]

β̃k = β0
1√
N

ũT
k 1

+
K∑

l=1

βl

1

N

[(
ηk + σ√

λk

Wθ k

)
(1 + oP(1)) +

√
N δ̃k

]T

ηl

+ ũT
k Z
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= β0

(
OP

(
1√
N

)
+ oP(1)

)
+ βk(1 + oP(1) + δ̃

T

k

1√
N

ηk

)

+
∑

l �=k

βl

(
OP

(
1√
N

)
+ δ̃

T

k

1√
N

ηl

)
+ OP

(
1√
N

)

= βk(1 + oP(1)),

because 1
N

ηT
k ηl = OP(1/

√
N ) if k �= l and 1

N
ηT

l Wθ k =
OP(1/

√
N ) for all k, l (by independence), ‖̃δk‖2 = oP(1), and

ũT
k Z = ‖̃uk‖2〈 ũk

‖̃uk‖2
,Z〉. Note that the second term in the last

product is a N(0, τ2
N

) random variable, and the first term is√
(λk + σ 2)/λk(1 + oP(1)) by (43).

It is easy to verify that β̂0 = β0(1 + oP(1)). But, from the

foregoing analysis, it is clear that the estimator β̂k = uT
k y,

for 1 ≤ k ≤ K, is not consistent in general. In fact, β̂k =√
λk

λk+σ 2 βk(1 + oP(1)) when the λk’s and σ 2 are fixed. How-

ever, as we indicated in Remark 1, it is reasonable to assume

that λ1/σ
2 → ∞ as p1,N → ∞. This will ensure (via the first

part of Thm. 2) that the factor
√

λk/ℓ̂k → 1 in probability as

N → ∞ when conditions A1′ and A2′ hold. Therefore, we have

β̂k = βk(1 + oP(1)) for 1 ≤ k ≤ K. This in a way validates the

claim that having more genes (i.e., larger p1) associated with

the response gives better predictability.

9.4 Consistency of the Coordinate Selection Scheme:
Regression Model

In this section we describe some situations under which

SPCA will consistently select the set P of coordinates (genes)

whose variability is associated with that of the response through

the model given by (36), (38), and (40). Here we work un-

der the assumption that p1 = O(Nα) for some α ∈ (0,1) and

log p ≍ log N. The second assumption covers a wide range of

possible situations. The key point that we emphasize is that to

be able to recover the set P of predictors associated with the

response, we may need some identifiability conditions on this

set. Our method may work under more general circumstances,

but here we restrict our attention to cases that are analytically

tractable and relatively simple to interpret.

First, observe that we can write the vector of univariate scores

as s = H−1
X XTy, where HX = diag(‖x1‖, . . . ,‖xp‖). Because

the rows of X2 are independent Np2
(0,�2) r.v. independent

of X1, invoking (38), we can express the nonnormalized score

vector s̃ := XTy in the form

s̃ =
[

(
∑M

k=1

√
λkθkη

T
k + σWT)y

�
1/2
2 Cy

]
, (44)

where C is a p2 × N matrix whose entries are iid N(0,1) inde-

pendent of X1 and Z (and hence y). Observe that WT is inde-

pendent of y. For expositional purposes, we work with s̃ rather

than with s.

This shows that if we consider the jth element of s̃ for j ∈ P ,

then

1√
N

s̃j = 1

N

(
M∑

k=1

√
λkθ jkη

T
k

)

×
(

β01 +
K∑

k′=1

βk′ηk′ +
√

NZ

)
+ σ√

N
(WT y)j

= β0

M∑

k=1

√
λkθjkOP

(
1√
N

)

+
K∑

k=1

βk

√
λkθjk

(
1 + OP

(
1√
N

))

+
M∑

k=1

√
λkθjk

K∑

k′ �=k

βk′OP

(
1√
N

)

+ σ

(
K∑

k=0

βk

)
OP

(
1√
N

)

=
K∑

k=1

βk

√
λkθjk + OP

(
1√
N

)
.

But on the other hand, if j /∈ P , then, assuming that ‖�2‖2 is

bounded above,

1√
N

s̃j = 1√
N

(
�

1/2
2 Cy

)
j
=

(
�

1/2
2

)T

j

1√
N

Cy = OP

(
1√
N

)
.

Thus, for that the “signal” ζK
j :=

∑K
k=1 βk

√
λkθjk to be de-

tectable, it must be ≫ 1/
√

N. Large deviation bounds suggest

that we can recover with sufficient accuracy only those coordi-

nates j for which |ζK
j | ≥ c0

√
log N/N for some constant c0 > 0

(which depends on σ , the λk’s and βk’s and ‖�2‖2).

Potentially, many ζK
j ’s could be smaller than that, and hence

those coordinates will not be selected with a high probability.

If we make the threshold too small, then we will include many

“spurious” coordinates (i.e., those with j /∈ P), which can cause

problems in estimation in various ways that we discussed al-

ready.

If K = 1, then the jth component of the signal vector ζK is

proportional to
√

λ1θj1. So the scheme will select only those co-

ordinates j for which
√

λ1|θj1| is big. This may not exhaust the

set {1, . . . ,p1}, but as far as consistent estimation of θ1 and λ1

is concerned, it is adequate. Thus, when K = 1, the coordinate

selection scheme is consistent.

In the case where K > 1, we may encounter a problem. This

is because the method that we described relies on a fixed linear

functional of the vector tj = (
√

λ1θj1, . . . ,
√

λKθjK), viz., ζK
j .

Thus even if at least one entry of tj is quite big, we may miss

that coordinate j. In other words, when K > 1, in general there is

no guarantee that the coordinate selection scheme is consistent.

A closer look suggests that in general we do not have sufficient

identifiability constraints on the set of predictors P . One way

to impose this constraint is to say that |ζK
j | is above a threshold

of the form c0

√
log N/N whenever ‖tj‖ is above a threshold

c1

√
log N/N for some constants c0, c1 > 0. Even though this

condition may not be satisfied exactly, it turns out that we only

need the following, somewhat weaker constraint:

A3. The set of variables P determining X1 is such that if

PN,β denotes the set of all j ∈P with

∣∣∣∣
〈
tj,

β

‖β‖

〉∣∣∣∣ ≥ c0

√
log N

N
(45)
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for some constant c0 > 0 independent of β , then

∑

j∈P\PN,β

1

λ1
‖tj‖2 → 0 as N → ∞.

Observe that A3 is a constraint on the entire model, not just

on the distribution of the predictors X. The physical meaning

of this constraint is as follows: The predictors in the class P

that have significant variance because the first K components

of variation in the model (38) are highly correlated with the

response. This is because σ 2 + ‖tj‖2 +
∑M

k=K+1 λkθ
2
jk is the

variance of the jth predictor, and 1√
N

ζK
j is the covariance of

Xj and y. It also means that the coordinates that we may fail to

pick have negligible contribution to the overall variability asso-

ciated with the first K components of variation. Note that this

condition is automatically satisfied when K = 1.

A different way to impose identifiability on the set of pre-

dictors P is to impose a constraint on the parameter β =
(β1, . . . , βK). In this way we require that a specific K × K ma-

trix H(β), whose entries are polynomials in βk’s, has small

condition number. We define H as follows. The first column

of H(β) is β itself. We can use this constraint to ensure that we

select all of the big coordinates even when K ≫ 1. We could

generalize the selection scheme as follows.

For integers r = 1,2, . . . ,K, define the set Jr to be the set of

coordinates j such that |s(r)
j | > α

(r)
j where α

(r)
j is a threshold of

the order
√

log N and s
(r)
j is the jth coordinate of 1√

N
(XTy(r))

where the lth coordinate of y(r) is (
√

Nyl)
2r−1. In particular

y(1) =
√

Ny, so that s(1) = s, as defined earlier. Finally, take

the union J :=
⋃K

r=1 Jr and take J to be the final selection.

An analysis of this scheme shows that for j ∈ P , 1√
N

s
(r)
j =

tT
j Hr(β) + OP(1/

√
N ), where Hr(β) is the rth column of H.

Then, by the constraint on the matrix H(β), for any j ∈ P , we

have j /∈ J if and only if ‖tj‖ is “small” (meaning smaller than

a certain threshold of the form c2

√
log N/N for some constant

c2 > 0).

Remark 3. Of the two methods of imposing identifiability

constraints, the second one is admittedly rather ad hoc and does

not have a meaningful generalization beyond the regression set-

ting. However, the first constraint may often be satisfied in prac-

tice, because some part of the variability in the predictors may

be directly linked to the variability in the response. This is likely

to be true if, for example, there is a causal relationship.

10. SOME PRACTICAL ISSUES AND

GENERALIZATIONS

Here we mention some ways in which the supervised princi-

pal components can be applied in practice.

Joint Fitting With Other Covariates. Typically, there may

be covariates measured on each of the cases, and it might be

of interest to adjust for these. For example, in gene expression

survival studies, in addition to the predictors X1,X2, . . . ,Xp,

we might have available covariates z = (z1, z2, . . . , zk), such as

tumor stage and tumor type. There might be interest in find-

ing gene expression predictors that work independently of stage

and tumor; that is, having adjusted for these factors, the gene

expression predictor is still strongly related to survival.

To compare the supervised principal component predictor to

competing predictors, one can simply fit them together in a pre-

dictive model for the test set. In the lymphoma example, the

International Prognostic Index (IPI) (low, medium or high) is a

widely used clinical predictor of survival. We fit both the super-

vised principal component predictor and IPI to the test set, then

determined the p values when each from removed separately

from the joint model. These were .001 for the supervised princi-

pal component and .05 for IPI. Thus the effect of the supervised

principal components predictor is strongly independent of IPI,

whereas IPI is only moderately independent of the supervised

principal components predictor.

We can also explicitly encourage the supervised principal

components PC predictor to look for variation that is indepen-

dent of competing predictors. To do this, we do a linear regres-

sion of each gene on the competing predictors, replacing each

gene’s measurements by the residuals from this process. We

then apply the supervised principal components procedure to

the residual matrix. This process decorrelates the gene expres-

sion and competing predictors and forces the principal compo-

nents to be orthogonal to the competing predictors. This same

approach can be used with other methods, such as PLS.

Use of Unlabelled Samples. In some settings, we have

available both “labeled” data (e.g., gene expression profiles

with a measured survival times) and unlabeled data ( just gene

expression profiles). In fact, one might have many unlabeled

samples and only a few labeled ones, because obtaining out-

come information can be more difficult. In this setting it might

be helpful to use the unlabeled data in some way, because they

contain information about the correlation between the features.

Because of the simple form of the supervised principal compo-

nents predictor, there is an easy way to do this. Suppose that

the feature matrices for the labeled and unlabeled data are XL

and XU . In the first step, we use just XL (and the outcome)

to choose the features. Then we use the full set of features

(XL,XU) to compute principal components. The added infor-

mation provided by the unlabeled samples can potentially im-

prove the accuracy of the supervised principal components.

Application to Other Data Types. The supervised principal

components idea can be applied to other types of outcome mea-

sures, such as classification outcomes. In that case, we could

choose features having the largest between-class to within-class

variation, then compute the principal components of the se-

lected data. Then the principal component would be fit in a mul-

tiple logistic regression to predict the class label. Although this

procedure seems promising, we have not yet found examples

where it improves on methods such as the nearest shrunken cen-

troid approach (Tibshirani et al. 2001). The explanation may lie

in the soft-thresholding inherent in nearest shrunken centroids;

it may have the same beneficial effect as the thresholding in

supervised principal components.

11. DISCUSSION AND LIMITATIONS

Supervised principal components represents a promising tool

for prediction in regression and generalized regression prob-

lems. It is a simple idea that has probably been tried many times

in practice. Here we have explored its application to gene ex-

pression studies.
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Regression is an important and difficult problem in statis-

tics; it is especially difficult when the number of features p

greatly exceeds the number or observations N. Overfitting can

occur with even moderately complex models, and identifying

the important features is fraught with danger because of the

large number of features, many of which are often highly cor-

related. Despite the difficulty in identifying important features,

however, this is a high priority for biologists in gene expression

studies.

Supervised principal components approaches this difficult

problem through a semisupervised strategy, looking for gross

structure in the data that aligns itself with the outcome. Only

later in the process does it try to pare down the set of features

to a much smaller list (through its importance scores). A cru-

cial practical aspect of this importance score is the fact that is

provides a fixed ordering of features. Thus we start with a list

of 200 features and ask for a submodel containing just 20 fea-

tures; the constructed model consists of the 20 features among

the 200 with the largest importance scores. In contrast, using a

method like the lasso, the following could happen: We deliver

a model having 200 features to our collaborator, who then asks

for smaller model, containing just 20 features. So we change

the lasso bound to achieve this and obtain a new model con-

taining 20 features, some or none of which were in the original

list of 200! This seems like an unsatisfactory approach to model

selection in this setting.

Despite the encouraging performance of supervised princi-

pal components, the high-dimensional regression problem is

very difficult and should be approached with caution. There are

many issues that need further development and careful study.

Many of these were pointed out by the editors and referees. We

list some here:

• The ability of cross-validation to select the “correct” set of

genes has not been established theoretically. In practice,

it seems to perform reasonably well but can sometimes

exhibit large variability, especially when the sample sizes

are small. When the number of principal components K

is >1, the condition needed to ensure election of the cor-

rect variables is very difficult to verify in practice. It would

be useful to explore other approaches for multiple compo-

nents. With large numbers of highly correlated features, it

is important to learn when we can and cannot isolate the

important underlying features.

• The latent variable model used in this article is a reason-

able starting point, but may not be realistic in practice. One

might have a situation in which the response is marginally

independent of the active predictors, and yet jointly depen-

dent on them. Another situation would have all predictors

marginally dependent on the response, whereas one set is

independent of the response given the rest of the predic-

tors. In these cases, the supervised principal component

procedure would fail.

• The response model considered in this article is a sim-

ple linear or (generalized linear) model. It would be use-

ful to examine whether supervised principal components

can perform well when the response is a more complex

function of the latent factors. One could use linear correla-

tion thresholding (as described in the article) but then use

a spline basis (instead of a linear basis) in the response

model. In practice, we have found that a natural cubic

spline basis with two or three knots can capture simple

nonlinearities in the response function. We have not yet

implemented this in our software, but plan to explore it

further.

• A key aspect of the method is the preselection of features

according to their correlation with the outcome. This al-

leviates the effect of a larger number of noisy features on

the prediction model. It is likely that this preselection can

be used effectively with other regression methods, such as

partial least squares and ridge regression. We have focused

on supervised principal components because of its striking

simplicity.

• Further work is needed in the Cox model setting, because

our results there are not yet rigorous.

• Supervised principal components is attractive because of

its simplicity. However, as mentioned earlier, other meth-

ods, such as partial least squares and the lasso, could be

applied after thresholding of the genes. These might also

perform well and are worth investigating. In addition, there

are other closely related methods that should be consid-

ered and compared with supervised principal components.

These include the sliced inversed regression approach

of Duan and Li (1991) and Li (1992) and the sufficient

dimension reduction approaches used by Chiaromonte,

Cook, and Li (2002) and Cook (2004). The first of the

latter two articles relates to covariate adjustment, whereas

the second treats predictor selection. Related applica-

tions to microarray data include those of Chiaromonte

and Martinelli (2002), Antoniadis, Lambert-Lacroix, and

Leblanc (2003), and Bura and Pfeiffer (2003).

An application of supervised principal components in a med-

ical setting is discussed in Zhao et al. (2006). We have written

Excel (PAM) and R language packages (superpc) implement-

ing supervised principal components for survival and regression

data. These are freely available on Tibshirani’s website (http://

www-stat.stanford.edu/˜tibs/superpc).

APPENDIX: OUTLINE OF PROOF OF THEOREM 2

As already stated, we prove the result under assumptions A1 and A2.

To prove Theorem 2, we need the following lemma about the pertur-

bation of eigenvectors of a symmetric matrix under symmetric pertur-

bation.

Lemma A.1. For some m ∈ N, let A and B be two symmetric m × m

matrices. Let the eigenvalues of matrix A be denoted by λ1(A) ≥ · · · ≥
λm(A). Set λ0(A) = ∞ and λm+1(A) = −∞. For any r ∈ {1, . . . ,m},
if λr(A) is an eigenvalue of multiplicity 1, that is, λr−1(A) > λr(A) >

λr+1(A), then denoting by pr the eigenvector associated with the rth

largest eigenvalue,

pr(A + B) − sign
(
pr(A + B)T pr(A)

)
pr(A)

= −Hr(A)Bpr(A) + Rr, (A.1)

where Hr(A) :=
∑

s �=r(λs(A)−λr(A))−1PEs
(A) and PEs

(A) denotes

the projection matrix onto the eigenspace Es corresponding to the

eigenvalue λs(A), (possibly multidimensional). Further, the residual

http://www-stat.stanford.edu/~tibs/superpc
http://www-stat.stanford.edu/~tibs/superpc
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term Rr can be bounded by

‖Rr‖ ≤





‖Hr(A)Bpr(A)‖
[

2�r(1+�r)
1−2�r(1+�r)

+ ‖Hr(A)Bpr(A)‖
(1−2�r(1+�r))2

]

if �r <

√
5−1
2

10�2
r always,

(A.2)

where

�r = ‖B‖2

min1≤s �=r≤m |λs(A) − λr(A)| . (A.3)

Proof. This follows from a refinement of the argument given in the

proof of lemma A.1 of Kneip and Utikal (2001).

Lemma A.1 gives a first-order expansion of the eigenvector of a

perturbed matrix. Now we can take as matrix A the matrix �1, the

covariance matrix of {Xj : j ∈ P}, and then we can take B to be the

difference S1 − �1, where S1 = 1
N XT

1
X1. Notice that

Hr(�1) =
∑

1≤s �=r≤M

1

λs − λr
θ sθ

T
s − 1

λr

(
I −

M∑

s=1

θ sθ
T
s

)
,

and

pr(�1) = θ r.

By Lemma A.1, we only need probabilistic bounds for the quantities

‖Hr(A)Bpr(A)‖ and ‖S1 − �1‖. The first involves some lengthy but

straightforward calculation, and for the second we need a bound for

the term ‖ 1
N WT W − I‖. For this, we use the following lemma, the

proof of which uses large deviation inequalities for quadratic forms of

Gaussian random variables.

Lemma A.2. Suppose that n,L → ∞ s.t. L/n → 0. Let Z be denote

an L×n matrix with iid N(0,1) entries. Denote by l1 and lL the largest

and the smallest eigenvalues of 1
n ZZT . We have

P

(
l1 − 1 > 2

(√
log(n/L) + π

)
√

L

n

)

≤ �−1
nL (L/n)(L/2)(1+o(1))(1 + o(1))

and

P

(
lL − 1 < −2

(√
log(n/L) + π

)
√

L

n

)

≤ (1 + �−1
nL )(L/n)(L/2)(1+o(1))(1 + o(1)),

where �nL =
√

2L
√

log(n/L).

Proof. For a ∈ S
L (L-dimensional unit sphere), define g(a,Z) =

1
n aT ZZT a. As a function of a, g(a,Z) is Lipschitz-1 with Lipschitz

constant 2‖ 1
n ZZT‖ = 2l1. This is because g(a,Z) − g(b,Z) = (a −

b)T 1
n ZZT (a + b). Let Fδ be a minimal covering of the sphere S

L by

balls of radius δ < 1. Then a simple argument shows that

(
1

δ

)L−1

≤ |Fδ | ≤ 2

(
π

δ

)L−1

. (A.4)

For a proof of this result, refer to proposition 2 of von Luxburg,

Bousquet, and Schölkopf (2002). Now, by definition,

l1 = max
a∈SL

g(a,Z) and lL = min
a∈SL

g(a,Z).

Hence by the covering of S
L by spheres of radius δ centered at points

in Fδ and the Lipschitz bound on g, it follows that

max
a∈Fδ

g(a,Z) ≤ l1 ≤ max
a∈Fδ

g(a,Z) + 2δl1 and

min
a∈Fδ

g(a,Z) − 2δl1 ≤ lL ≤ min
a∈Fδ

g(a,Z).
(A.5)

Now we use the fact that if a ∈ S
L and entries of the L×n matrix Z are

iid N(0,1), then ZT a has iid N(0,1) entries and so g(a,Z) ∼ χ2
(n)

/n.

Finally, we recall some large-deviation inequalities for χ2 random

variables. Johnstone (2001) showed that

P
(
χ2

(n) > n(1 + ǫ)
)

≤ e−3nǫ2/16, 0 < ǫ <
1

2
, (A.6)

P
(
χ2

(n) < n(1 − ǫ)
)

≤ e−nǫ2/4, 0 < ǫ < 1, (A.7)

and

P
(
χ2

(n) > n(1 + ǫ)
)
≤

√
2

ǫ
√

n
e−nǫ2/4 0 < ǫ < n1/16,n ≥ 16.

(A.8)

Let 0 < t < 1 and 0 < δ < t
2(1+t)

; then, by the first inequality in (A.5),

for n ≥ 16,

P(l1 − 1 > t) ≤ P

(
max
a∈Fδ

g(a,Z) · (1 − 2δ)−1 − 1 > t
)

= P

(
max
a∈Fδ

[g(a,Z) − 1] > t(1 − 2δ) − 2δ

)

≤ |Fδ |P
(

χ2
(n)

n
− 1 > t(1 − 2δ) − 2δ

)

≤ 2

(
π

δ

)N−1
√

2√
n(t(1 − 2δ) − 2δ)

× exp

[
−n

4
(t(1 − 2δ) − 2δ)2

]
,

by (A.4) and (A.8). Now choose δ := δn = π
√

L/n and t := tn =
(2

√
log(n/L)+2π)

√
L
n , which satisfy the restrictions for n sufficiently

large. Then

t(1 − 2δ) − 2δ = 2

√
log

(
n

L

)√
L

n

(
1 − 2π

√
L

n

)
− 4π2 L

n

= 2

√
log

(
n

L

)√
L

n
(1 − εn),

where εn = 2π
√

L/n(1 + π(log( n
L ))−1/2). Because εn = o(1) as

n → ∞,

P

(
l1 − 1 >

(
2

√
log

(
n

L

)
+ 2π

)√
N

n

)

≤
√

2

2
√

L
√

log(n/L)(1 − εn)

(
n

L

)(L−1)/2

× exp

[
−L log

(
n

L

)
(1 − εn)2

]

= 1√
2L

√
log(n/L)(1 + o(1))

(
L

n

)(L/2)(1+o(1))

as n → ∞.

(A.9)

Next, using the second inequality in (A.5), for t = tn and δ = δn as

chosen earlier,

P(lL − 1 < −t)

≤ P

(
min

a∈Fδ

g(a,Z) − 1 < −t + 2δl1

)

≤ P

(
min

a∈Fδ

[g(a,Z) − 1] < −t + 2δ(1 + t)
)

+ P(l1 − 1 > t)

≤ |Fδ |P
(

χ2
(n)

n
− 1 < −(t(1 − 2δ) − 2δ)

)
+ P(l1 − 1 > t).
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Then, using (A.4) and (A.7) exactly as before to bound the first term

on the right side and then using (A.9), we get, as n → ∞,

P

(
lL − 1 < −

(
2

√
log

(
n

L

)
+ 2π

)√
L

n

)

≤
(

1 + 1√
2L

√
log(n/L)(1 + o(1))

)(
L

n

)(L/2)(1+o(1))

. (A.10)

[Received November 2004. Revised May 2005.]
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