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O-GalNAc-glycosylation is one of the main types of glycosy-
lation in mammalian cells. No consensus recognition sequence
for the O-glycosyltransferases is known, making prediction
methods necessary to bridge the gap between the large num-
ber of known protein sequences and the small number of
proteins experimentally investigated with regard to glycosy-
lation status. From O-GLYCBASE a total of 86 mammalian
proteins experimentally investigated for in vivo O-GalNAc
sites were extracted. Mammalian protein homolog compar-
isons showed that a glycosylated serine or threonine is less
likely to be precisely conserved than a nonglycosylated one.
The Protein Data Bank was analyzed for structural informa-
tion, and 12 glycosylated structures were obtained. All posi-
tive sites were found in coil or turn regions. A method for
predicting the location for mucin-type glycosylation sites was
trained using a neural network approach. The best overall
network used as input amino acid composition, averaged
surface accessibility predictions together with substitution
matrix profile encoding of the sequence. To improve predic-
tion on isolated (single) sites, networks were trained on iso-
lated sites only. The final method combines predictions from
the best overall network and the best isolated site network;
this prediction method correctly predicted 76% of the glyco-
sylated residues and 93% of the nonglycosylated residues.
NetOGlyc 3.1 can predict sites for completely new proteins
without losing its performance. The fact that the sites could be
predicted from averaged properties together with the fact that
glycosylation sites are not precisely conserved indicates that
mucin-type glycosylation in most cases is a bulk property and
not a very site-specific one. NetOGlyc 3.1 is made available at
www.cbs.dtu.dk/services/netoglyc.

Key words: machine learning/mucin-type/neural networks/
O-glycosylation/prediction

Introduction

Protein glycosylation is more abundant and structu-
rally diverse than all other types of posttranslational

modifications combined (Hart, 1992; Seitz, 2000). More
than half of all proteins are glycosylated according to esti-
mates based on the SWISS-PROT database (Apweiler et al.,
1999). There are two principally different roles for extracel-
lular protein-bound glycans: specific carbohydrate epitopes
can serve as ligands for receptors that mediate recognition
events or glycan structures can be employed to change the
biophysical properties of a protein, such as charge, solubi-
lity, folding, or sensitivity toward proteases (Varki, 1993).
At the present stage of knowledge, an impressive variety
of carbohydrate–peptide linkages have been described that
are distributed among glycoproteins found in essentially
all living organisms, ranging from eubacteria to eukaryotes.
Thirteen different monosaccharides and 8 amino acid types
participate in these bonds so that at least 31 sugar–amino
acid combinations exist (Spiro, 2002).

One of the most abundant types of mammalian glycosyla-
tion is when an N-acetylgalactosamine (GalNAc) is a-1
linked to the hydroxyl group of a serine or threonine resi-
due. This type of glycosylateion is also called mucin-type.
Mucin-type glycans are found on many secreted and
membrane-bound mucins, but also on other glycoproteins.
Mucins typically have very high carbohydrate content
(450% of the dry weight) and are the principal component
of mucus, the gel that protects epithelial surfaces from
dehydration, mechanical injury, proteases, and pathogens
(Carraway and Hull, 1991; Strous and Dekker, 1992). The
protein backbone of a mucin contains a number of repeti-
tive sequences, including virtually all the O-linked oligo-
saccharide attachment sites. Although these differ in terms
of length and sequence from mucin to mucin, they all have a
high serine, threonine, and proline content and are some-
times referred to as Ser/Thr/Pro-rich domains. Due to
the steric hindrance introduced by the glycans, these
domains adopt a stiff extended conformation, with an
average length of 2.5 Å per amino acid residue (Coltart
et al., 2002; Jentoft, 1990).

The biosynthesis of mucin-type glycosylation takes place
in the rough endoplasmatic reticulum and the Golgi com-
plex after N-glycosylation, folding, and oligomerization
(Asker et al., 1995; Peters et al., 1989). As opposed to the
en bloc transfer of the high-mannose oligosaccharide
involved in N-glycosylation, O-glycosylation is a stepwise
process including one monosaccharide at a time. The addi-
tion of GalNAc to serine and threonine residues is what
governs the site specificity, and this process is mediated by
at least 14 different UDP-GalNAc:polypeptide N-acetyl-
galactosaminyltransferases (Wang et al., 2003). From
sequence similarity, it is estimated that there are up to
24 unique GalNAc-transferases genes; see Ten Hagen et al.
(2003) for a recent review. The different transferases have
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overlapping, but different specificities and are differentially
expressed (Sørensen et al., 1995; Ten Hagen et al., 2003;
Van den Steen et al., 1998). Although no consensus
sequence has been formulated, many studies have noted
the skew in amino acid composition around mucin-type
O-glycosylationsites(ChristletandVeluraja,2001;Elhammer
et al., 1993; Hansen et al., 1998; Wilson et al., 1991, for
example) with a higher frequency of prolines, serines, threo-
nines, and alanines than expected. A number of studies have
investigated the effect of flanking residues in in vitro experi-
ments on synthetic peptides (Nishimori et al., 1994;
O’Connell et al., 1992; Yoshida et al., 1997; Young et al.,
1979) and especially the importance of prolines at certain
positions has been confirmed. There is now strong support
for the theory that mucin-type glycosylation of multisite
substrates proceed in a hierarchical manner, because some
of the characterized UDP-GalNAc:polypeptide N-acetylga-
lactosaminyltransferases seem to only glycosylate peptides,
which are already partly glycosylated (Bennett et al., 1999;
Ten Hagen et al., 1999, 2001). This could partly be
explained by a recent nuclear magnetic resonance (NMR)
study that showed that the preferred substrates of different
transferases had different secondary structure in terms
of slightly different dihedral angles and that previous glyco-
sylation of a nearby residue affected these structural
propensities (Kinarsky et al., 2003).

Prediction of glycosylation sites is a valuable tool when
trying to characterize a new protein, for example, to help
interpret mass spectrometry results. Predicted mucin-type
O-glycosylation is one of the important features when pre-
dicting orphan protein function (Jensen et al., 2002, 2003),
and because O-glycosylation affects the structure of the
protein and occurs primarily in surface-exposed regions,
predicted glycosylation sites may be used to improve pro-
tein structure prediction as well. Prediction can also be
useful in protein engineering to engineer or abolish O-
glycosylation sites and to design competetive inhibitors
of glycosyltransferases (Hansen et al., 1998).

The most well-known and tested prediction methods for
mucin-type O-glycosylation sites are a matrix statistics
method (Elhammer et al., 1993), a vector projection method
(Chou et al., 1995; Chou, 1995), and a neural network
method (Hansen et al., 1995, 1998). All these methods
have been based on quite limited data, and when compared
in independent experimental studies, none have shown
convincing predictive performance (Gerken et al., 1997;
Neumann et al., 1998). Gerken et al. (1997) failed to find
any correlation between the outputs of the predictor meth-
ods and the experimentally determined degree of glycosyla-
tion for individual serines and threonines in a highly
glycosylated mucin peptide, something neither of the meth-
ods were intended for. There exists also three other predic-
tors developed using different neural network methods (Cai
and Chou, 1996; Cai et al., 1997, 2002). The main problem
with these predictors is that although modern machine
learning approaches have been used, the data sets have not
been updated. The training set consists of 195 positive
and 110 negative sites and the test set only of 26 positive
and 4 negative sites. In two of the articles (Cai and Chou,
1996; Cai et al., 2002) the only performance reported is the
number of correct predictions: 26 and 23 out of 30,

respectively. Note that a prediction method that predicts
all sites to be positive will be correct for 26 out of 30 sites,
but not very useful.

The neural network method developed by Hansen et al.
(1998) is available online (www.cbs.dtu.dk/services/
netoglyc-2.0) and had ~5000 queries/month during 2003. It
was trained on data available at that time, in total 299 O-
GalNAc sites from mammalian proteins. Through contin-
uous updates of our glycosylation database OGlycBase
(www.cbs.dtu.dk/databases/oglycbase), we now have access
to 421 experimentally verified sites, an increase of more
than 40%. When working with small data sets like this, the
increase in available data motivates an update, and we also
wanted to try predicting not only from sequence but from
sequence derived features such as predicted structure.
Elhammer et al. (1993) and Hansen et al. (1998) showed
that glycosylation correlates with predicted secondary
structure and a number of experimental studies show that
UDP-GalNAc:polypeptide N-acetylgalactosaminyltrans-
ferase substrates adopt an extended b-like or turn-like
conformation (Coltart et al., 2002; Kinarsky et al., 2003;
Kirnarsky et al., 1998; O’Connell et al., 1991; Schuman
et al., 2003) and that mucin-type glycosylation induces a
more rigid extended structure (Schuman et al., 2000, 2003;
Tagashira et al., 2002).

We have searched the Protein Data Bank (Westbrook
et al., 2003) for structural information on 86 mammalian
proteins containing a total number of 421 experimentally
verified mucin-type glycosylation sites. Twelve structures
were obtained. We found that all sites were found in coil
or turn regions either located near the N- or C-termini of
the proteins, in linker regions between domains, or in coil
regions connecting secondary structure elements. We found
that a glycosylated serine and threonine are less likely to be
precisely conserved between mammalian protein homologs
and more likely to be surface exposed than a nonglycosy-
lated serine or threonine. We have trained a new predictor
method, NetOGlyc 3.1, which correctly predicts 76% of the
positive sites and 93% of the negative sites. We show that
NetOGlyc 3.1 can predict sites for completely new proteins
with no loss in performance.

Results

Structural context of O-glycosylation sites

The Protein Data Bank (Westbrook et al., 2003) was
scanned for structural information about the protein
sequences in our data set. Of the 86 sequences in the data
set, 14 were represented by structures in the PDB. Of these
14 structures, 2 were represented twice—in all 12 nonredun-
dant structures. Sequence identities between query protein
and corresponding protein structure were above 94% in all
cases. Two of the structures contained more than one
mucin-type O-glycosylation site (2GMF: three Ser and
one Thr site and 1AUQ: one Ser and one Thr site). Of the
12 structures, 8 were of recombinant proteins expressed in
Escherichia coli, and they can therefore not carry any
mucin-type glycans (Spiro, 2002). Because of this they
may represent the native protein structure involved in the
recognition event between the glycosyltransferase and its
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protein substrate. Only 1 of the 12 structures is annotated in
the PDB as being glycosylated, namely, the crystal structure
of human lithostathine, 1QDD (Gerbaud et al., 2000),
where Thr5 is annotated as being O-glycosylated (see
Table I). In two structures (1KI0 and 2FBJ), it has not
been possible to detect any O-glycosylation in the electron
density maps, but this does not necessarily mean that it is
not there. It may be so flexible that it becomes invisible. It is
unclear whether the O-glycosylation site in 1E9 J is glyco-
sylated or not.

A summary of where in the structures the mucin-type
glycosylation sites are located can be found in Table I. All
sites, both the glycosylated and the unglycosylated, were
found in coil or turn regions. Seven were found near the N-
or the C-termini of the polypeptide chains, four of these in
the same structure (2GMF). Four sites were located in
linker regions between two domains. There were four intra-
domain sites, all located in coil regions connecting two
a-helices. These coil regions were loosely associated with
the globular domains. All sites were localized in or
close to mainlya-helical domains, except one found in thea-
subunit of human chorionic gonadotropin. This preference
for coil regions could potentially be used in a mucin-type

O-glycosylation site predictor by providing it with predicted
structural information.

Sequence conservation and surface accessibility

We investigated whether glycosylated serine and threonine
residues are more likely to be conserved between close
protein homologs than nonglycosylated serine and threo-
nine residues. Because there are not enough examples of
proteins where more than one homolog have been investi-
gated for glycosylation sites, we aligned each proteins in our
data set against all its mammalian homologs. A conserva-
tion of a threonine or serine residue does not guarantee that
the glycosylation site is in fact conserved, but a mutation to
anything other than serine or threonine proves that it is not.
We were interested to see if there is any additional selective
pressure on the glycosylated residues, presumably from the
need to conserve the glycan itself, so we investigated both
conservation, allowing for no mutations, and what we call
semi-conservation, allowing for mutation between serine
and threonine only. The results can be seen in Table II
and indicate that there is no extra selective pressure on the
glycosylated residues in terms of precise site conservation.

Table I. Structural context of mucin-type glycosylation sites

Protein Source Resol. Site presenta Siteb S.S.c

C terminal site

EOTA_HUMAN 2EOT._ E. coli NMR no 94(Thr)71 C

N terminal site

LITA_HUMAN 1QDD.A Humand 1.30 Å yes 27(Thr)5 C

IL2_HUMAN 1IRL._ E. coli NMR no 23(Thr)3 C

CSF2_HUMAN 2GMF.A E. coli 2.40 Å no 22(Ser)5 C

no 24(Ser)7 C

no 26(Ser)9 T

no 27(Thr)10 T

Interdomain linker region site

PLMN_HUMAN 1KI0.A P. pastoris 1.75 Å no 268(Ser)249 C

VWF_HUMAN 1AUQ._ E. coli 2.30 Å no 1263(Ser)500 C

no 1468(Thr)705 C

ALC_MOUSE 2FBJ.H Moused 1.95 Å no 101(Ser)219 C

Intradomain connecting two a-helices

INA2_HUMAN 1ITF._ E. coli NMR no 129(Thr)106 C

IL6_HUMAN 1ALU._ E. coli 1.90 Å no 166(Thr)138 C

CSF3_HUMAN 1CD9.A E. coli 2.80 Å no 166(Thr)134 C

EPO_HUMAN 1EER.A E. coli 1.90 Å no 153(Ser)126 C

Intradomain, in (very) disordered coil region

GLHA_HUMAN 1E9J.A Humand NMR possibly 63(Thr)39 C

a
O-glycosylation site detectable in electron density map or not.

b
The location of the O-glycosylation site. The number before the parentheses refers to the numbering in the query sequence and the number after the
parentheses refers to the number of the residue in the PDB entry.
c
DSSP secondary structure. ‘‘T’’ is hydrogen bonded turn and ‘‘C’’ is random coil.

d
Not recombinant.
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On the contrary, glycosylation makes serine and threonine
less likely to be conserved. Although the difference in
sequence conservation is opposite to what we expected,
the fact that there is a difference at all could potentially be
used for improving a glycosylation site predictor.

To rule out the possibility that the glycosylation sites are
selectively conserved compared to other residues in the
disordered and surface-exposed regions of the proteins
where glycosylation sites are typically found, we specifically
investigated sequence conservation for residues in close
proximity (distance55 amino acids) to glycosylation
sites. The sequence conservation varies widely depending
on the type of amino acid residue investigated (from 25.9%
for methionine to 100% for cysteine), so we choose to
restrict our comparisons to serines and threonines
(Table II). The sequence conservation for residues in close

proximity of glycosylation sites is lower than for other
nonglycosylated residues, but not as low as for the glyco-
sylated residues.

Surface accessibility prediction was performed on the 86
proteins in our data set and the result can be seen in
Table III. Glycosylated serine and threonines are more
surface exposed, and this information is hidden in the
sequence and detected by the surface accessibility predictor.
Although in principle a neural network trained on mucin-
type O-glycosylation sites should be able to pick up this on
its own if enough training examples are supplied, providing
the network with this information could help when the data
are limited, as in our case. The surface accessibility predic-
tions were used already in NetOGlyc 2.0 (Hansen et al.,
1998) by letting it control the threshold for positive assign-
ment at the output. This time we want to incorporate the
surface accessibility prediction data in the input informa-
tion to the network instead.

Predictive performance

The concept of using sequence derived features for mucin-
type glycosylation prediction is illustrated in Figure 1. The
sequence itself need to be translated from letters to numbers
before it is presented to the network, and this can be done in
various ways: as sparse encoding (the standard way), BLO-
SUM62 profile encoding (the corresponding row in the

Table II. Conservation of glycosylated serines and threonines

Residue Type of site
%
Conserved

%
Semi-conserveda

Number
of aligned
residuesb

T Glycosylated 57.5 61.6 1415

Prox. nonglyc.c 65.3 69.5 475

All nonglyc. 69.8 75.4 4753

S Glycosylated 39.3 43.2 506

Prox. nonglyc.c 54.7 61.5 605

All nonglyc. 68.5 72.9 5740

a
T or S in the aligned sequence so that there is a possibility for conservation
of the glycosylation site even though the residue itself is not.
b
The number of aligned positions investigated. For each glycosylated
protein this equals the number of serines/threonines in each category times
the number of aligned homologuous sequences. The product is summed
over all the proteins in our data set.
c
Nonglycosylated residues within close proximity of a glycosylation site
(55 aa distance).

Table III. Surface accessibility of Ser and Thr residues

Residue Type of site
% Surface
exposed

Number
of sites

T Glycosylated 69.8 258

Nonglycosylated 32.4 1202

S Glycosylated 70.9 148

Nonglycosylated 37.1 1486

ISVAGSSGAPAVSSGASQAAGTSGAGPGTTASSVGVT

surface
accessibility
prediction

secondary
structure

prediction

distance
constraints
prediction

Neural network

yes/
no?

Sequence

Feature prediction

O-glycosylation

Feature integration

Fig. 1. The concept of using a combination of sequence and sequence derived features to predict glycosylation sites.
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BLOSUM62 matrix), PSI-BLAST profile encoding (the
corresponding row in the profile computed from PSI-
BLAST), reduced alphabet (sparse encoding with fewer
letters), or as amino acid composition. Cross-validation
was used, so that the 421 positive and 2063 negative sites
were divided into three groups of 828 sites each with a
minimum of sequence similarity between the three groups.
These were used so that every network was trained three
times, using two sets as training set and one set as test set.
As performance measure we used the joint Matthews corre-
lation coefficient (Matthews, 1975) of the three resulting
networks on their respective test sets and this is what we
aimed to maximize.

Predictors were trained using window sizes between 1 and
35 amino acids and different in-data information (one
feature at the time): sparse encoding, BLOSUM62 profile
encoding, PSI-BLAST profile encoding, 5-letter reduced
alphabet, 8-letter reduced alphabet, amino acid composi-
tion, secondary structure, average secondary structure, pro-
tein distance constraints, surface accessibility, and average
surface accessibility. The performance of these predictors
can be seen in Figure 2 and show that each of these features
clearly have predictive potential because all correlation
coefficients are greater than zero. This means that there is
in fact a preference of mucin-type O-glycosylation for a
certain secondary structure, certain protein distance con-
straints, a certain value of surface accessibility, and so on
(otherwise the correlation coefficients would be close to
zero). The comparably low predictive performance of the
networks trained only on secondary structure information
show that it is not likely to be the most discriminating
condition that needs to be fulfilled for a serine/threonine
to be glycosylated, and this is probably the reason for the

bad performance (a network trained only on secondary
structure would predict all sites with the correct secondary
structure to be positive and this would lead to a large
number of false positives). Averaged information was as
powerful as position specific information. This can be seen
from comparing the curve for surface accessibility with the
one for average surface accessibility, from comparing sec-
ondary structure with average secondary structure, and
from comparing amino acid composition with the different
sequence encoding methods. The only exception from this
rule is that the networks trained on PSI-BLAST encoded
sequence information perform better than amino acid com-
position for window sizes up to 15 amino acid residues. A
PSI-BLAST encoded sequence contains information about
sequence conservation between related proteins, and this
additional information gives even a network trained only
on a three-residue window surprisingly high performance.
But because the number of input neurons increases linearily
with increasing window size for sequence information, the
high network complexity causes problems with overtraining
for large windows, and this is probably the reason why
BLAST encoding does not outperform amino acid compo-
sition for larger windows.

Overall, a network trained on amino acid composition
in a 31-residue window (with only 21 input neurons) out-
performs all other single-feature networks. We analyzed
a linear network (no hidden neurons) trained on amino
acid composition in a 31-residue window to see directly
the effect of the different amino acids on the prediction
(correlation coefficient¼ 0.54). The residues that makes
a glycosylation more likely are (in decreasing order of
their tendency to promote glycosylation): Pro, Thr, Ser,
end of sequence, and Ala. One residue is essentially
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Fig. 2. Glycosylation predictor performance of networks trained on different in-data information using seven hidden neurons. Window size is the
number of amino acids for which the information is provided, with the potentially glycosylated Ser/Thr residue in the middle. The Matthews
correlation coefficient is a measure of the prediction performance. A perfect predictor would have a correlation coefficient of 1 and a predictor
making random guesses would have a correlation coefficient of 0.
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glycosylation neutral, Glu, and the rest makes glycosylation
less likely (in decreasing order of their tendency to promote
glycosylation): Val, Gly, Met, Ile, His, Gln, Trp, Asp, Arg,
Phe, Tyr, Lys, Cys, Asn, and Leu. Note that these rankings
are based on single amino acids and not correlated pairs or
other combinations.

To find the best possible combination of features, we used
a greedy strategy, trying to combine what appeared to be
good input information from the results of the single-feature
networks. For feature combinations that seemed promising,
networks with varying number of hidden neurons (different
network complexity) were trained. We also tried linear com-
binations of different networks and trained networks
where the input was the output from a number of single-
feature networks. The very best combination was profile
encoding in a 1-residue window, plus amino acid composition

in a 31-residue window, plus average surface accessibility
in a 25-residue window using seven hidden neurons. The
performance of this network can be seen in Figure 3a and in
Table IV. The figure shows the trade-off between making
many positive predictions, of which some are false, and
making few predictions and thereby missing some. A curve
reaching far up into the upper left corner is to be preferred,
and completely random designation would perform along
the diagonal. ROC curves are widely used in describing the
quality of a classification method such as a predictor or a
medical diagnostic tool. When you want to make a classifi-
cation like sick/healthy or glycosylated/nonglycosylated you
typically have to set a threshold. If you set a high threshold
you will get few positives, but a higher percentage of the
predictions you make will in fact be true (in our example,
40% of the positives can be found with only about 3% of the
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Fig. 3. ROC curves showing predictor performances. The sensitivity is the fraction of positive sites correctly predicted. The false positive rate is the
fraction of negative sites wrongly predicted to be positive. A predictor making random guesses would perform along the diagonal and a perfect
predictor along the y-axis. (a) Performance of NetOGlyc 3.0 (best overall network) on all sites. (b) Performance of best isolated site network on
isolated sites only. (c) Performance of NetOGlyc 3.1 (combination of the best general network and the best single site network) on all sites.
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negatives being wrongly predicted to be positive). If a low
threshold is used, you will find more of the true positives, but
you will also get more false positives (80% of the positives
found will give about 15% wrong predictions of the negative
sites). Because nonglycosylated serines and threonines typi-
cally are much more common than glycosylated ones, it is
normally preferred to keep the false positive rate as low as
possible, because otherwise the specificity (the fraction of
predicted sites that are in fact glycosylated) becomes very
low. The maximum Matthews correlation coefficient is
obtained when a threshold of 0.5 is used and the resulting
detailed performance can be seen in Table IV. This is also the
default threshold of the Web server of NetOGlyc 3.0, but
ultimately the choice is up to the user.

In Table IV the performances of NetOGlyc 3.0 and NetO-
Glyc 2.0 are compared. Looking only at the reported cross-
validation performance, the differences are not that
dramatic. NetOGlyc 3.0 has a higher correlation coefficient
and a considerably higher specificity, but also a lower sen-
sitivity for the positive sites. (If desired, the balance between
sensitivity and specificity can be changed by changing the
prediction threshold, so this is not a problem.) It appears
that the reported performance of NetOGlyc 2.0 has been
somewhat overestimated when tested on completely new
proteins (Gerken et al., 1997; Neumann et al., 1998). To
compare the two networks on equal terms and to ensure
that we do not make the same mistake of overestimating the
performance on unknown proteins, we therefore trained a
version of NetOGlyc 3.0 on an old set, corresponding to the
only site information available when NetOGlyc 2.0 was

developed. The performances of this version of NetOGlyc
3.0 (NetOGlyc 3.0-old) and NetOGlyc 2.0 on the proteins in
the new set were then compared. Although the performance
of NetOGlyc 3.0-old on the new set is comparable to the
cross-validation performance, the correlation coefficient of
NetOGlyc 2.0 plunges from 0.58 to 0.28. This is largely due
to a specificity of 21%, meaning that almost four out of five
positive predictions are false.

Mucin-type O-glycosylation sites seem to fall within two
different categories. The majorities of the sites occur in
highly glycosylated regions where the distance to the closest
neighboring glycosylation site is short. NetOGlyc 3.0 per-
forms well on these sites. There are, however, a smaller
group of isolated (single) sites in our data set. A previous
database study suggests that single and multiple sites may
be slightly different from each other (Christlet and Veluraja,
2001). When we examine the performance on isolated sites
only, it is much lower than for multiple sites. To improve
the prediction on isolated sites, we trained networks only on
these (distance to closest neighboring mucin-type glycosyla-
tion site410 amino acids), in total 65 threonine sites and 21
serine sites. The best network uses substitution matrix pro-
file encoding (BLOSUM62) in a 9-residue window and
averaged surface accessibility in a 17-residue window. The
Matthew correlation coefficient is 0.46, which is to be com-
pared to 0.24 for NetOGlyc 3.0 on these sites. The ROC
curve in Figure 3b show that the perfomance on threonine
sites is much better than for serine sites. This is due to the
small number of isolated serine sites compared to isolated
threonine sites. We have tried to improve the performance

Table IV. Comparison between the predictive performance of NetOGlyc 2.0, NetOGlyc 3.0, and NetOGlyc 3.1

Residue Method Ca Sn,pos (%)b Sp (%)c Sn,neg (%)d Test sete

T NetOGlyc 2.0 0.60 87.6 51.1 86.2 cross

NetOGlyc 2.0 0.36 63.6 30.8 85.5 new

NetOGlyc 3.0 0.63 72.5 70.1 90.9 cross

NetOGlyc 3.0-oldf 0.56 68.0 63.0 89.4 new

NetOGlyc 3.1g 0.67 81.5 69.5 89.5 cross

S NetOGlyc 2.0 0.54 75.2 41.5 92.6 cross

NetOGlyc 2.0 0.20 50.0 13.2 86.1 new

NetOGlyc 3.0 0.62 66.7 65.8 95.3 cross

NetOGlyc 3.0-oldf 0.77 70.0 90.3 99.0 new

NetOGlyc 3.1g 0.62 66.7 65.8 95.3 cross

SþT NetOGlyc 2.0 0.58 82.9 48.9 89.7 cross

NetOGlyc 2.0 0.28 58.3 21.3 85.8 new

NetOGlyc 3.0 0.63 70.3 68.5 93.4 cross

NetOGlyc 3.0-oldf 0.66 68.9 72.9 95.3 new

NetOGlyc 3.1g 0.66 76.0 68.2 92.8 cross

a
Matthews correlation coefficient.

b
Positive site sensitivity (the fraction of positive sites correctly predicted).

c
Specificity (the fraction of all positive predictions that are correct).

d
Negative site sensitivity (the fraction of negative sites correctly predicted).

e
Indicates whether the performance is the cross-validation performance or the performance on the independent new set.

f
A version of NetOGlyc 3.0 trained on the same data as NetOGlyc 2.0 for the purpose of fair comparison.

g
The combined performance of NetOGlyc 3.0 (the best general network) with the best network trained only on isolated glycosylation sites.
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on serine sites by various means but believe that nothing
short of more known sites can solve this problem.

To provide an easy-to-use all-around predictor, we
devised an algorithm for combining NetOGlyc 3.0 and the
single-site predictor:

1. The sequence is run through both predictors.
2. All NetOGlyc 3.0 predictions above a certain threshold

are accepted.
3. For serines/threonines where there are no predicted sites

within 10 aa on either side, accept single-site predictions
above a certain threshold.

The thresholds where optimized independently and found
to be 0.5 in both cases for threonine sites, which makes sense
because that is the threshold that gives the best performance
in each individual case. For serine sites, adding sites pre-
dicted by the single-site predictor adds too many false posi-
tive sites, and the optimum is actually to stick with the
NetOGlyc 3.0 prediction only. The new, combined predictor
is called NetOGlyc 3.1, and its performance can be seen in
Figure 3c and Table IV. As you can see, the performance on
serine sites is identical between NetOGlyc 3.0 and NetOGlyc
3.1, but for threonine sites NetOGlyc 3.1 is outstanding.

Discussion

The fact that there is no extra evolutionary pressure to
conserve site-specific mucin-type glycosylated serines and
threonines compared to nonglycosylated serines and threo-
nines was a surprise. To understand why, several points
have to be made. One is that nonglycosylated serine and
threonine residues often occur in the well-conserved core of

a protein, whereas glycosylated serines and threonines
occur in disordered and surface-exposed regions with little
overall sequence conservation. Our predictions show that
only about 35% of nonglycosylated serines and threonines
are surface exposed, whereas 70% of glycosylated are. A
priori, the buried core residues are more likely to be sub-
jected to a high evolutionary pressure, leading to sequence
conservation. This does not seem to be the whole explana-
tion, though. Taking only serines and threonines found
close to glycosylation sites into account, nonglycosylated
residues are still more likely to be conserved than glycosy-
lated residues. The same is true when comparing only ser-
ines and threonines predicted to be surface exposed (data
not shown). The second point is that the loops where gly-
cosylation occur often vary in length and the problem of
aligning two loops of different length and weaker sequence
similarity (than for the protein core) is not trivial. Although
a low linear conservation of the glycosylated residues can be
detected, there is a quite high structural one, as described in
the previous section.

Another point is that the function of mucin-type glycosy-
lation in the highly glycosylated mucin proteins, which are
responsible for a large number of glycosylation sites in our
data set, is believed mainly to be to change the biophysical
properties of the protein: to protect it from cleavage, change
the size and charge distribution of the protein, make the
protein bind more water, and change the structure to be
stiffer and more extended. In neither of these functions the
exact number or positions of glycosylated residues would be
important. Rather, the glycosylation would be conserved
more as a bulk property. In fact, this can be observed
for highly glycosylated homologs within our data set, see
Figure 4. The mucin-type glycosylation is clearly conserved,
but only on an overall, bulk level. This does not exclude the

GLPA_HUMAN      SSTTGVAMHT STSSSVTKSY ISSQTNDTHK RDTYAATPRA HEVS.EISVR
GLP_MACFU       SSTTVPATHT SSSSLGPEQY VSSQSNDKHT SDSHPTPTSA HEVTTEFSGR
GLP_HORSE       .......... ..QTIATGSP PIAGTSDLST ITSAATPTFT TEQD......
GLP_PIG         .......... .TETPVTGEQ GSATPGNVSN ATVTAGKPSA TSPGVMTIKN
 
 
GLPA_HUMAN      TVYPPEEETG ERVQLAHHFS EPEITLIIFG VMAGVIGTIL LISYGIRRLI
GLP_MACFU       THYPPEED.. DRVQLVHEFS ELVIALIIFG VMAGVIGTIL FISYGSRRLI
GLP_HORSE       .....GREQG DGLQLAHDFS QPVITVIILG VMAGIIGIIL LLAYVSRRLR
GLP_PIG         TTAVVQKETG VPESYHQDFS HAEITGIIFA VMAGLLLIIF LIAYLIRRMI
 
 
GLPA_HUMAN      KKSPSDVKPL PS.....PDT DVPLSSVEIE NPETSDQ... ..........
GLP_MACFU       KKSESDVQPL PP.....PDA EVPLSSVEIE DPEETDELNS FTKPNQERNE
GLP_HORSE       KRPPADVPPP AST...VPSA DAPPPVSEDD ETSLTSVETD YPGDSQ....
GLP_PIG         KKPLPVPKPQ DSPDIGTENT ADPSELQDTE DPPLTSVEIE TPAS......
 
 
GLPA_HUMAN      .  
GLP_MACFU       S  
GLP_HORSE       .  
GLP_PIG         .  

Fig. 4. Multiple alignment of glycophorin A from four different organisms performed with CLUSTAL W. Experimentally verified mucin-type
glycosylation sites are colored red and N-glycosylation sites are colored blue. (The experimentally investigated parts of the proteins are residues 1 to
61 for GLPA_HUMAN and the entire sequence for the other three proteins.) Glycophorin A is a membrane protein, where the N-terminal part is
extracellular and the C-terminal part is cytosolic (mucin-type glycosylation is only possible in the extracellular domain). The location of the transmembrane
helix is shown in gray. Underscored residues are predicted to be glycosylated by NetOGlyc 3.1 (predictions in the cytosolic domain are ignored).
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possibility that individual mucin-type glycosylation sites
may be highly specific and therefore highly conserved
between species; one example may be human and bovine
corticotropin, COLI_HUMAN and COLI_BOVIN, which
have identical sequences from position �10 to þ20 relative
to their only mucin-type glycosylation site, respectively.

The third point is that a large part of the endothelial
glycocalyx consists of mucin-type glycosylated proteins
(Jentoft, 1990). One of the functions of the glycocalyx is to
protect the cell surface from bacteria and viruses. Therefore
we speculate that a higher mutation rate in the mucin-type
glycosylated protein regions might be an evolutionary
advantage, because this could render an infectious agent
harmless to other organisms than the one it coevolved
with. This is essentially the same strategy used by viruses
themselves for their surface proteins, like HIV1 gp120
(Hansen et al., 1998). The fact that PSI-BLAST encoding
works so much better than the other types of sequence
encoding for a small sequence window shows that this
difference in sequence conservation between glycosylated
and nonglycosylated residues has prediction potential.
With a data set large enough so that overtraining could be
avoided, it should have been possible to incorporate this
into the final method as well. The fact that averaged infor-
mation like amino acid composition was as powerful as
position specific information like sequence for prediction
purposes also support the theory that mucin-type glycosy-
lation is a bulk property.

The action of the different UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferases on a Ser/Thr/Pro-rich
domain is highly complex. In a hierarchical manner a num-
ber of enzymes glycosylate the serine and threonine residues
in the surface accessible loops that have the right amino acid
composition and adopts the right extended conformation.
The glycosylation of the different sites takes place in a
specific order, depending on the transferases present in the
tissue, and due to steric hindrance from the flanking glyco-
sylation sites, some sites may be only partially glycosylated
or not at all (Gerken, 2004; Hanisch et al., 2001; Kato et al.,
2001; Takeuchi et al., 2002). Unfortunately, NetOGlyc 3.1
does not hold the key to understanding all of this complex-
ity. It is based on in vivo data, which is neither tissue- nor
transferase-specific. In a highly glycosylated Ser/Thr/Pro-
rich domain, it is likely to predict all the threonines and
serines as glycosylation sites, even the ones that are not
glycosylated or only to a lesser extent. Nevertheless, it is a
powerful tool when it comes to identifying the glycosylated
regions in a protein and for finding isolated threonine sites.

NetOGlyc 3.1 is only intended for extracellular protein
sequences. Intracellular proteins or the cytosolic domains
of membrane proteins will never encounter the UDP-
GalNAc:polypeptide N-acetylgalactosaminyltransferases
performing the mucin-type O-glycosylation, because these
are located in the Golgi complex. Therefore, all sequences
submitted to NetOGlyc 3.0 are routinely checked for signal
peptide using the SignalP prediction server (Bendtsen et al.,
forthcoming; Nielsen et al., 1997). For membrane proteins,
the responsibility to only consider predictions in the poten-
tially extracellular domains is left up to the user.

In several studies, threonine has been proven to be a
better substrate for mucin-type glycosylation than serine

(for example, Kinarsky et al., 2003; O’Connell et al., 1992;
Yoshida et al., 1997). At the same time, serine is a more
common amino acid residue overall. The fact that we would
normally expect a smaller percentage of serines to be glyco-
sylated as compared to threonines makes the correct pre-
diction of serine sites harder. In Table IV we can see that we
will normally find fewer of the positive sites (the positive site
sensitivity) and a fewer percentage of the predicted sites will
be correct (the specificity) for serines than for threonines.
The fact that we were able to specifically improve the per-
formance on isolated sites for threonines and not for serines
when developing NetOGlyc 3.1 indicates that the recogni-
tion sequence are sligthly different between isolated serine
and threonine sites. With only 21 isolated serine sites, we
have every reason to believe that a sufficient increase in the
number of known isolated serine sites would make it possi-
ble to make a similar improvement in the prediction of
serine sites using the method described here for threonine.

Materials and methods

Data set

Eighty-six mammalian protein sequences with one or more
experimentally verified mucin-type glycosylation site were
extracted from O-GlycBase v6.00 (www.cbs.dtu.dk/data
bases/oglycbase) (Gupta et al., 1999). One protein, mouse
interleukin-3, was added for negative site information
because it has been shown to have no O-glycosylation
(Knepper et al., 1992). All original articles on the site
assignments of the glycosylated proteins were investigated.
Signal peptides and parts of the protein not investigated for
glycosylation were masked out along with everything but
the positive sites of nonexhaustive studies. All serine and
threonine residues in nonmasked regions having neither
experimental nor predicted glycosylation were used as
negative sites. Serine and threonine residues reported to
be partially glycosylated were used as positive sites.

Structural context

The program GetStruct (www.cbs.dtu.dk/services/
getstruct) was used with default parameters to extract struc-
tural information about the glycosylation sites in our data
set from the PDB database (Westbrook et al., 2003). Get-
Struct performed BLAST (Altschul et al., 1997) alignments
of the sequences in our data set versus the sequences in the
PDB with the aim of obtaining one hit structure for each
query (input) sequence. Only structures with at least 90%
sequence identity to the query (input) sequences were con-
sidered. With a few notable exceptions (Dalal et al., 1997;
Gerstein and Levitt, 1998; Riesner, 2003), a clear amino
acid sequence relationship between two proteins implies
that they have similar structure (Chothia and Lesk, 1986).
Therefore, at the required levels of sequence similarity (90%
or more), the found structures can be expected to be good
representatives of the structures of the glycoproteins.

The reported localization of the O-glycosylation sites are
indicated relative to their position in the query sequence.
Thus, a site that is close to the N-terminal in a structure but
in the middle of the query sequence, is classified as being in
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an interdomain region (the assumption being that the struc-
turally determined unit is a full domain).

Sequence conservation and surface accessibility

For each of the 86 proteins in our data set, close protein
homologs were identified by searching SWISS-PROT
(Boeckmann et al., 2003) for mammalian proteins with entry
names with identical prefix. Example: As homologs to bovine
fibronectin (SWISS-PROT entry name FINC_BOVIN),
FINC_HUMAN, FINC_MOUSE, and FINC_RAT were
identified. To avoid fragment proteins in the study, proteins
with less than half the length of the query protein were dis-
carded. Multiple alignment of the sequences was performed
using CLUSTAL W (Thompson et al., 1994). The sequence
conservation was estimated on a residue for residue basis.

Surface accessibility was predicted using a neural network
method called surfg (Hansen et al., 1998). Surfg gives both a
direct output score and a smoothed score. Both are between
0 and 1, with a score above 0.5 if the amino acid residue is
predicted to be buried and a score below 0.5 if it is predicted
to be surface exposed. The serine and threonine residues for
which the smoothed score is below 0.5 were considered to be
predicted surface exposed.

Neural network training

For readability, this section was shortened to suit the aver-
age readers of Glycobiology. For details on sequence
encoding, feature encoding, and neural networks, see the
supplementary material online.

A neural network does not understand letters, so the
amino acid sequence and different features must be trans-
lated into numbers. This is called encoding and can be done
in a number of ways. Each number that is presented to
the neural network make up what is called an input neuron.
The goal is to provide the network with as much informa-
tion as possible while still keeping the number of input
neurons as low as possible.

� Sparse encoding (Hertz et al., 1991; Qian and Sejnowski,
1988) is the conventional way to convert the amino acid
sequence into numerical form.

� With profile encoding, the input for each amino acid
consisted of the corresponding row in the BLOSUM62
matrix (Henikoff and Henikoff, 1992).

� With PSI-BLAST encoding, the input for each amino
acid consisted of the corresponding row in the position-
specific scoring matrix computed from three cycles of
PSI-BLAST (Altschul et al., 1997).

� The 5-letter alphabet encoding was conventional sparse
encoding, but with a reduced alphabet (Soumpasis,
personal communications).

� The 8-letter alphabet is another reduced alphabet.
� Amino acid composition was calculated for a sequence

window around each particular site.
� Surface accessibility was predicted using a neural net-

work method called surfg (Hansen et al., 1998).
� Secondary structurewas predicted using PSIPRED (Jones,

1999; McGuffin et al., 2000) using position-specific
scoring matrices computed from three cycles of PSI-
BLAST (Altschul et al., 1997).

� Protein distance constraints were predicted using Dis-
tanceP (Gorodkin et al., 1999).

The neural networks were of the two-layer feed-forward
type, trained by standard back-propagation. Network com-
plexity was varied by changing the number of neurons in the
input layer as well as in the hidden layer to find the optimal
complexity for this particular prediction problem. This is
important, because a network with too little complexity (too
few neurons) will lack the ability to learn the training exam-
ples, and a network with too much complexity (too many
neurons) will learn the examples too well and lose the ability
to make predictions for examples that were not in the train-
ing set (the ability to generalize). This second problem is
sometimes called overtraining and is one of the reasons why
it is so important to make sure that the examples in the test
set are different and unrelated to the examples in the training
set. If the sets are unrelated to each other, the performance
on the test set will decrease when overtraining occurs, and if
the problem can be detected, it can also be avoided. The risk
of overtraining is greater the smaller the data set is.

The predictive performance was monitored using the
Matthews correlation coefficient (Matthews, 1975) during
training and test of the networks:

C ¼ tptn � fpfnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtn þ fnÞðtn þ fpÞðtp þ fnÞðtp þ fpÞ

p ð1Þ

where tp is the number of correctly predicted positive sites
(true postitives), tn the number of correctly predicted nega-
tive sites (true negatives), fn the number of sites falsely
predicted to be negative (false negatives), and fp the number
of sites falsely predicted to be positive (false positives). The
Matthews correlation coefficient will always be a value
between �1 and 1 where a predictor that always is wrong
will have a correlation coefficient of �1, one that is always
right will have a correlation coefficient of 1, and one that
makes random guesses will have a correlation coefficient
of 0. It takes into account the performance on both the
positive and the negative sites and is widely used for classi-
fication problems such as this one.

The fraction of positive sites correctly predicted, the posi-
tive site sensitivity, Sn,pos, was computed as

Sn;pos ¼
tp

tp þ fn
ð2Þ

The fraction of all positive classifications that are correct, the
specificity Sp, was computed as

Sp ¼
tp

tp þ fp
ð3Þ

The fraction of negative sites correctly predicted, the negative
site sensitivity, Sn,neg, was computed as

Sn;neg ¼
tn

tn þ fp
ð4Þ

In the data set, proteins were identified as closely related if
at least two of the following criteria were fulfilled: (1) similar
protein names, (2) SWISS-PROT entry name with identical
prefix, and (3) high sequence identity. Examples: Human
lithostathine 1a, LITA_HUMAN, and human lithostathine
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1b, LITB_HUMAN (86% sequence identity); human and
bovine corticotropin, COLI_HUMAN, and COLI_BOVIN
(80% sequence identity). Of these groups of related proteins,
only the most well-studied in each group was used for nega-
tive site information. The positive sites were scanned for
similarities within the group and those with identical resi-
dues from �5 to þ5 were excluded. This resulted in one
protein (COLI_BOVIN) being altogether masked out, so
our data set consisted of 85 proteins. Using only the most
well-studied protein from each group, the proteins were
divided into three sets of equal size with minimal sequence
overlap between the sets using a heuristic described in Jensen
et al. (2003). After this division was performed, the closely
related proteins were manually placed in the same partition
as their representative. For computational reasons, we
needed to have the same number of sites in each partition.
To achieve this, some negative sites were randomly omitted.
The result was a total of 421 positive (265 Thr and 156 Ser)
and 2063 negative sites (903 Thr and 1160 Ser) divided into
three sets of 828 sites each. These were used so that every
network was trained three times, using two sets as training
set and one set as test set. The reported cross-validation
performance is the joint performance of the three resulting
networks on their respective test sets.

To be able to truly compare our performance to the
performance of NetOGlyc 2.0 (Hansen et al., 1998), we
also trained on a reduced set, consisting only of proteins
entered into O-GLYCBASE (Gupta et al., 1999) before 20
January 1997. These were the 65 proteins available for
training of NetOGlyc 2.0 and is referred to as the old set.
The same division of sets were used, and the result was 331
positive and 1190 negative divided into three sets of 507
sites each. The best window and feature combination as for
the whole set was used, but the number of hidden neurons
was varied (0–15), and the best number was chosen based
on the cross-validation performance. The 20 proteins
entered into the database after NetOGlyc 2.0 was trained
could then be used to compare the performance of NetO-
Glyc 2.0 and NetOGlyc 3.0 directly. This is referred to as
the new set and consists of 90 positive sites (50 Thr and 40
Ser) and 489 negative sites (188 Thr and 301 Ser). The
reported performance of NetOGlyc 3.0-old on this set
is the performance of the average output from the three
cross-validation networks trained on the old set.
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