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Abstract

The sound of a busy environment, such as a city street, gives rise to a
perception of numerous distinct events in a human listener – the ‘auditory
scene analysis’ of the acoustic information.  Recent advances in the
understanding of this process from experimental psychoacoustics have led to
several efforts to build a computer model capable of the same function.  This
work is known as ‘computational auditory scene analysis’.

The dominant approach to this problem has been as a sequence of modules,
the output of one forming the input to the next.  Sound is converted to its
spectrum,  cues are picked out, and representations of the cues are grouped
into an abstract description of the initial input.  This ‘data-driven’ approach
has some specific weaknesses in comparison to the auditory system:  it will
interpret a given sound in the same way regardless of its context, and it
cannot ‘infer’ the presence of a sound for which direct evidence is hidden by
other components.

The ‘prediction-driven’ approach is presented as an alternative, in which
analysis is a process of reconciliation between the observed acoustic features
and the predictions of an internal model of the sound-producing entities in
the environment.  In this way, predicted sound events will form part of the
scene interpretation as long as they are consistent with the input sound,
regardless of whether direct evidence is found.  A blackboard-based
implementation of this approach is described which analyzes dense, ambient
sound examples into a vocabulary of noise clouds, transient clicks, and a
correlogram-based representation of wide-band periodic energy called the
weft.

The system is assessed through experiments that firstly investigate subjects’
perception of distinct events in ambient sound examples, and secondly collect
quality judgments for sound events resynthesized by the system.  Although
rated as far from perfect, there was good agreement between the events
detected by the model and by the listeners.  In addition, the experimental
procedure does not depend on special aspects of the algorithm (other than the
generation of resyntheses), and is applicable to the assessment and
comparison of other models of human auditory organization.
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Chapter 1 Introduction

1.1 Auditory Scene Analysis for real scenes

I have in front of me a ten-second fragment of sound.  It is from a sound-
effects collection, and is described as “city street ambience”.  When played, I
hear a general background noise over which there are a couple of car horns, a
loud crash of a metal door being slammed, some squealing brakes, and the
rumble of an engine accelerating away.  This description may be considered
an analysis of the acoustic scene embodied in the sound;  the goal of my
research is to build a computer system that can make this kind of analysis of
these kinds of sounds – not so much in terms of the causal accounts (car horn,
door slam) but in terms of the number and general properties of the distinct
events.

This ability in humans has been considered in psychoacoustics under the
titles of auditory perceptual organization or auditory scene analysis [Breg90].
These studies construct experimental stimuli consisting of a few simple
sounds such as sine tones or noise bursts, and then record subjects’
interpretation of the combination.  The work has been very revealing of the
mechanisms by which structure is derived from sound, but typically it fails to
address the question of scaling these results to more complex sounds: In a
real-world environment there may be any number of contributors to the total
sound scene; how can we even define the basic elements, the analogs of the
simple sine tones and bursts of white noise?  When elements are distinct in a
straightforward time-frequency representation, the segmentation is obvious
(or at least the obvious segmentation turns out to be perceptually acceptable).
But the spectrogram of the “city street ambience,” which is an almost
featureless mess, highlights the limitations of these results.
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Figure 1.1: Cochlea-model spectrogram of a typical psychoacoustic stimuli (left)
compared with a real environmental sound (the “city street ambience,” right).

An ability to structure a continuous sound mixture into a set of independent
sources is absolutely basic to an auditory system that can confer an
evolutionary advantage.  Without it, we would only be able to interpret
sounds when they occurred against a silent background.  The combinatoric
problem of recognizing mixtures of sounds as single, composite entities is
intractable given the range of sounds we must handle.  Rather, there must be
a process of organization or segmentation of the auditory signal that is
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applied prior to (although most likely in conjunction with) the function of
recognizing and describing the individual sound-objects.  Since the nature of
the sound world is that mixtures are the rule and isolated events the
exception (or so it seems from my noisy apartment overlooking Harvard
Square), it is to be expected that the auditory system has evolved to perform
this separation transparently and effectively, despite the fact that the cues to
separation in the “city street ambience” are basically invisible under
conventional signal analysis.  This aspect of auditory processing is quite
unconscious, reinforcing the realization that the ability to organize sound
mixtures is not unique to humans, but must be possessed by all higher
mammals, indeed by any creature that wants to adapt its behavior based on
the mishmash of available acoustic information.

1.2 Modeling auditory organization - motivation and approach

This thesis originates in the view that the human auditory system can be
regarded as a complex signal- and information-processing machine, and as
such can be understood and explained in the same way that we can explain
complex systems built by engineers, for instance the tracking systems used
by air-traffic controllers.  Like those human-engineered systems, our hearing
mechanism relies on some underlying physics to glean information-carrying
signals from the environment, which are then processed to reveal specific
details to be integrated into a simplified representation of the world.
Although this is not an entirely uncontroversial starting point (there are
researchers who object strongly to the idea of world models as the output of
perception [ChurRS94]), it is certainly conventional.  It does however, have
certain implications for the nature of the work to be presented.

The overriding goal of the work of which this thesis is a part is to approach a
functional model of this total information processing system.  The primary
motivation behind this project is a desire to understand the human auditory
system.  There are several approaches to unraveling this mystery, the more
obvious being to practice experimental psychology and physiology to probe
directly the behavior and structure of the mechanism we are trying to
understand.  The building of computational models is a rather different but
singularly valuable complement to these approaches:  Taking the
observations and theories of experimental science, the modeler attempts to
duplicate the function of the system under study.  In this way, the theories
can be tested and refined.  Ideally, we may build a model that suitably
reproduces the observed phenomena, in which case there is strong
circumstantial support to the contention that the theory upon which the
model is based is in fact the basis of the biological prototype.  More often we
find that the models fail to accommodate the full range of behaviors we had
considered, but this gives us the equally valuable information that our
theories are mistaken or at least incomplete, pointing to the need for further
research.  In the course of creating these computer systems, we may also hope
for spin-off benefits, for instance valuable sound-processing techniques for
practical applications like speech recognition or sound enhancement.

The modelers’ methodology, if that is the best term, is to take phenomena of
human audition (from both psychology and physiology) and to consider their
implications for a computational model – in the case of psychology, behaviors
that the model should mimic, and for physiology, hints about how the model
might work internally.  The difficulty in addressing this goal comes from its
breadth;  if the auditory system was founded on a single principle, or served
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one overriding function, it might be possible to make a clean and elegant
model of it, one that perhaps approached some measure of optimality in the
exactly-specified task.  In some creatures we see more specialized functions
that might perhaps be regarded this way – the fly-catching visual routines of
the frog made famous in [Lettv59], or the echo-detection systems in bats
[Suga90].  However, the entirety of the human auditory system is too
sophisticated for a clean mathematical description founded on a couple of
axioms of signal detection theory;  it has evolved as a compromise general-
purpose solution to the range of auditory tasks that people perform, from
detecting very faint but steady tones, to making precise interaural timing
judgments for localization of transients.  At the same time, it has specialized
to exploit many of the peculiar characteristics of the world of sounds in which
we exist, such as the prevalence of common-period modulation, the kinds of
reflections introduced by acoustic environments, and the basic constraints of
existential continuity in the world.

As a result, a model that comes anywhere near emulating this not-purpose-
specific but highly domain-adapted system is going to be a hodge-podge of
different techniques working in combination.  As in Minsky’s famous quote
(reproduced in [Mell91]), “the brain is a kluge,” and any computer system
capable of reproducing some of its more interesting behaviors is likely to be a
similarly unattractive and seemingly arbitrary mixture of components.
Would that it were not so; elegance is surely the ultimate aesthetic good in
science as in art, but my chosen goal dictates otherwise.

This thesis, then, presents a collection of components assembled into a partial
model that mimics some of the aspects of auditory information processing.
The particular focus is on areas that I consider important to address at this
stage in the development of such models –  namely, the  processing of sounds
of all types rather than a limited subclass, and robustness in the face of
obscured cues in different acoustic contexts.  As such it is a mix of techniques
from signal processing and artificial intelligence.  I hope, however, that the
processes presented will serve as useful solutions to the phenomena they
address;  a main goal of the thesis is to offer an example framework and a
range of specific techniques that can serve as raw material for the future
projects of the community of computational auditory modelers.

Another aspect of this thesis is the presentation a particular view of the
problem: Different researchers have very different intentions when they say
that they are building models of the auditory system; my research starts from
a certain set of beliefs about what is important, interesting, valuable and
feasible in this domain, and I want to present and justify these choices.  It is
also my hope to articulate a perspective on the history and background of
work in this area that imposes some kind of structure and relation between
the wide range of existing literature.

1.3 The prediction-driven model

This thesis describes a project to develop a computer system capable of
analyzing a complex sound mixture into a set of discrete components.  The
intention is that these components correspond to individual sound-producing
events that a listener would identify in the sound, and, moreover, that the
system should arrive at this analysis by using the same features and
information processing techniques that are at work in the human listener, at
some suitably stylized level.  Specifically, the characteristics of known
structures in the auditory physiology are not the concern of this model; the
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focus is at the higher, functional level of the psychoacoustic experience of
distinct sound events.

I will present a framework for such a model which seeks to address some of
the weaknesses of previous auditory scene analysis models (such as
[Brown92]) in dealing with sounds that are not harmonically structured, and
in dense mixtures where any given feature may have been arbitrarily
corrupted.  I will argue that all previous work in this area is based on a data-
driven architecture, that is, within each time-slice a set of operations is
applied to convert uniquely from the concrete input data to the more abstract
output data, without any significant influence of the analysis thus far.  In
contrast with the data-driven approach, the current system performs an
analysis that is strongly dependent on the predictions of an internal,
abstracted model of the current state of the external acoustic environment.
The system converts the acoustic signal of a sound mixture into a collection of
generic sound-object abstractions.  At each instant, the system has a
prediction of the sound in the future based on this internal representation;
assuming the model is correct and the external world behaves predictably,
this prediction will match the actual sound observations, and the analysis
proceeds with only minor parameter adjustment.  However, when some
unexpected sound-event occurs, it is detected as an irreconcilable deviation
between prediction and observation, which triggers a major modification to
the internal model, perhaps by the addition of a new element.

The principal advantages of this architecture over its precedents are:

(a) The internal representation can be rich and over-general, allowing
the system to analyze and represent a full range of sounds.  A data-driven
system is unable to resolve the ambiguity of converting an observed
sound into a space with many alternative representations for any given
observation;  the prediction-driven model is impervious to the fact that
there may be other possible explanations of the sound it is observing;  it
arrives at a particular internal state by analyzing a past context, and
simply confirms that the observations continue to be consistent.

(b) In situations where there is significant ambiguity concerning the
representation of a sound, alternative explanations can be
developed in parallel on the hypothesis blackboard at the core of the
system, until such time as a reasonable choice can be made between
them.

(c) By characterizing the sound objects in a probabilistic domain (i.e. in
terms of expected properties and their predicted variance), the model can
incorporate a range of sensitivities from the relative indifference to the
fine structure of signals perceived as noise to the delicate sensitivity to
isolated sinusoids.

(d) The architecture is intrinsically extensible, unlike the pre-ordained
processing sequences of previous models.  The blackboard system
progresses through a sequence of ‘problem-solving states’ (for instance,
excess energy has not been explained) then chooses from a repertoire of
actions to resolve outstanding uncertainties [CarvL92a].  New rules,
perhaps involving new cues, can simply be added to this repertoire and
will then be employed as appropriate.

(e) A second dimension of extensibility is in the explanation hierarchy.
The generic objects forming one level of this hierarchy can themselves be
explained as the support for a more abstract hypothesis of some larger
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structured event, which may itself support a still-higher hypothesis such
as “my roommate is playing her Billy Joel record again.”  While this
aspect of highly abstract analysis has not been developed in the current
work, it is an open door for future development within the same
framework.

(f) Abstract  representations are the ingredients crucial for context-
sensitive inference for noisy or corrupted sound mixtures.  When a
particular attribute, such as the energy of a component in a certain
frequency band, cannot be extracted locally owing to an obscuring sound,
the object of which it is a part will still be able to make a reasonable
guess as to its likely value, and the prediction-driven reconciliation will
confirm that the guess is consistent with the overall observations.  A
prediction may have propagated down from a high-level abstraction,
representing a more specific hypothesis about the cause of the sound, and
thus capable of a more detailed prediction.  In this way, the primary goal
of the system, to analyze sounds correctly even when they are dense and
corrupted, is intrinsically promoted by the architecture.
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Figure 1.2: Overview of the goal, a computational auditory scene analysis system
(described in detail in chapters 3 and 4).

1.4 Applications

What is the point of conducting research into this problem?  The broadest
motivation is intellectual curiosity, born of an increasing sense of awe as the
full subtlety and sophistication of the auditory system is revealed.  Although
it is possible to imagine approaches to finding structure in sound that are
obviously different from that employed in the brain, the task is hardly well
enough defined to know if a given approach is ‘auditory’ or not until we have
a much deeper understanding; my emphasis is specifically on models of the
auditory system.

Apart from the basic quest of understanding the auditory system through
functional modeling, there would be several practical applications for a
usable sound organization module:-
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• Speech recognition systems, and more generally sonic-aware robots,
need to be able to make sense of their acoustic environments to separate
the interference from the target or to recognize the arrival of new sources.
It is ironic that there has been such success in the performance of speech
recognition systems – an ability otherwise limited to humans – but that
today’s systems have great difficulty distinguishing speech from
irrelevant intrusions – something that is probably quite easy even for cats
and mice.  In my opinions, this is the most serious indictment of the
compact feature-space / hidden Markov model approach to speech
processing.

• Hearing prostheses: One cause of interest and research in the area of
auditory scene analysis is the frustrating inadequacy of conventional
hearing aids.  In spite of the restoration of lost sensitivity through
amplification and dynamic range compression, hearing-impaired subjects
still have difficulty separating mixtures of voices (e.g. [KollPH93]).  An
understanding of the basis by which this separation occurs might inform
the construction of a processing system to enhance the relevant cues;  or a
module that can successfully separate out the different voices could be
built into the hearing aid itself.

• Multimedia indexes:  Ever increasing storage, processing and
communication capacities are creating a world in which vast realms of
information are available – but can we find the one piece that we want?
Automatic indexes of the text-based portions of, for instance, the World-
Wide Web are increasingly sophisticated and useful, but other media can
only be searched through an associated manually-created textual
description.  An automatic sound-processing system capable of
segmenting and classifying the elements of a movie soundtrack is
required for useful automatic content-based indexing of these kinds of
data [Hawley93] [Keis96].

• Enhancement applications: There are many examples of existing
recordings which include unwanted interference - coughs in concerts, or
recordings that have been degraded through age or equipment
shortcomings.  Listening to these recordings, we perceive separately the
desired and unwanted components, and a sound organization system
(that included a resynthesis capability) could remove the latter.  Of
course, a computer model of the auditory system would not be expected to
reveal any new information that was previously inaudible to human
listeners (at least until we understood the separation process well enough
to improve upon it), but the cosmetic advantages of such cleaning-up
would certainly be popular.

1.5 Ideas to be investigated

In its purest form, a dissertation is supposed to present a ‘thesis’ – an
intellectual claim – and then investigate and support that claim.  What, then,
is the thesis of this work, a description of a partially-functional model of a
incompletely-understood natural system?

Beyond the general idea that this is a useful collection of techniques for
building such models, there are in fact a couple of fairly strong and perhaps
slightly unusual positions behind this work.  The first is the idea that
perception proceeds via the indirect reconciliation of the internal
representation with the perceived signal from the external world – the
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motivation behind ‘prediction-driven’ analysis.  This is in contrast to the
direct, data-driven approach more usually adopted, where the information
added to the internal model must be directly derived from the input signal,
without provision for inference or guessing in the absence of more direct cues.
Any number of illusory phenomena, as well as reasoning about the nature of
perception in messy real worlds, support indirect inference as a preferable
foundation for models of perception.

The second contention is a little more unusual: the idea that the full
spectrum of ‘real’ sounds are adequately spanned by the combinations of a
few simple parameterized sound primitives, and moreover that it is by
decomposing real sounds into these primitives that the auditory system is
able to analyze complex mixtures.  This contention is implicit in the
architecture of the system, which approaches sound analysis as a search for
an adequate representation of the observed signal in terms of some generic
primitives such as periodic tones and noise bursts.  An alternative to this
position would be to assume that there is no intermediate general-purpose
representation of sound, merely the fully-detailed sound mixture and perhaps
a collection of templates representing the exact, ideal waveform of ‘known’
sounds – a model-based analysis system where every distinct sound has a
separate model.  This detailed-model hypothesis is problematic, both because
of the amount of storage it implies, but more seriously owing to the logical
problems in determining if two sounds – perhaps different notes on the same
instrument – should be represented as one or two models.  Of course, these
issues of classification are not entirely avoided by an intermediate level of
generic representation, but such an arrangement would simplify the storage
involved in each model, and it might also be amenable to hierarchical
structure, with each model successively specialized by the addition of features
to correspond to smaller and smaller categories within a particular class of
sounds.

These are the two contentions of which I am most explicitly aware, and whose
validity will hopefully be promoted by the results of this work.  In building a
model of a complex system there are myriad assumptions and implicit
theories regarding every detail of the system to be modeled, most of which are
unconsidered or forgotten by the modeler.  One problem with pursuing the
net result of so many hypotheses is the difficulty in assigning credit and
blame among the assumptions and ideas; since my model cannot claim to be a
fully functional model of human audition, do we reject the main hypotheses?
Or do we give credit for the aspects of auditory organization that have been
successfully reproduced to the nominated hypotheses, arguing that other
simplifications in the model inevitably limited its ultimate scope?  My
inclination is to the latter, although I wish there were a more principled way
to make this allocation.

1.6 Specific goals

A project in computational auditory scene analysis can go in many different
directions.   In this work the particular goals that were pursued, and to a
greater or lesser extent achieved, are as follow:

• Computational auditory scene analysis:  The broadest goal was to
produce a computer system capable of processing real-world sound scenes
of moderate complexity into an abstract representation of the sources in
the sound as perceived by a human listener.
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• Dense ambient sound scenes:  The particular driving focus was on
dense, noisy sounds like city-street ambience, since previous sound-
analysis systems have not considered the information in such sounds, and
since the particular issue of inharmonic sounds presented important new
challenges.

• Perceptual event output:  The highest level output should be a small
number of relatively large-scale objects that correspond directly to
distinct perceptual events in the sound.  (Organization at certain highly
abstracted levels, such as the formation of successive events into streams
from a single source, was beyond the scope of this model).

• Adequate sound representation and reconstruction: To confirm the
sufficiency of the representation, a resynthesis scheme was devised to
generate perceptually acceptable reproductions of the represented
sounds.

• Assessment of scene-analysis systems:  The system is framed as a
model of real audition;  subjective listening tests were performed to test
this assertion.  The experiments were designed with a view to general
applicability, and can be used for comparisons between different scene-
analysis models.  None of the assessment metrics used in previous models
of auditory organization meet this need.

1.7 Outline of this document

The dissertation has six chapters.  After this introduction, chapter 2 presents
an overview of the field of computational auditory scene analysis and its
underpinnings, including an interpretation of several major previous systems
within a ‘data-driven’ framework.  Chapter 3 presents the alternative
approach of the current work, the prediction-driven architecture, which seeks
to permit a far more context-sensitive analysis by basing analysis on
predictions generated by an internal model.  In chapter 4, the
implementation of a system based on this approach is described in detail,
ranging from the front-end signal processing through the internal
representational elements through to the blackboard-based analysis engine.
Chapter 5 presents the results of the system, firstly by looking at the
behavior of the system in analyzing some sound examples, and secondly by
describing the structure and outcome of the subjective listening tests.
Finally, the conclusion in chapter 6 summarizes the project and considers
how well it has achieved its goal of being a model of human audition.
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Chapter 2 An overview of work
in Computational Auditory Scene Analysis

2.1 Introduction

There is an emerging body of work in which researchers attempt to build
computer models of high-level functions of the auditory system.  The past
couple of years has seen a surge of interest in this work, with workshops and
sessions on this topic at numerous meetings, including the 12th International
Pattern Recognition Conference (Jerusalem, October 1994), an Institute of
Acoustics workshop on Speech Technology and Hearing Science (Sheffield,
January 1995), the International Joint Conference on Artificial Intelligence
(Montreal, August 1995) and the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (Mohonk, New York, October 1995).
Despite all this activity, the essence of the field is sometimes hard to discern.
This chapter is an attempt to define a scope for this work, trace its origins,
and assemble within a single framework the various projects that have been
completed.  I will also discuss some major problems awaiting resolution.

2.1.1 Scope

What falls under the heading of Computational Auditory Scene Analysis?
Arguably, the answer is anything that involves computer processing of
acoustic data for a purpose similar to one performed by listeners.  This ranges
from models of the firing patterns of cochlear neurons to inference of metrical
time-signature from streams of musical events.  In the interests of brevity,
however, I will adopt a  more restricted interpretation limited to models of
the process by which mammals use the sound energy reaching their ears to
infer characteristics of external physical sources.  Thus an empirical model of
nerve firings that matches observations but does not consider why such
phenomena exist falls outside this scope, since it does not address the
functional role of the auditory system in organizing acoustic stimuli.  At the
other extreme, an abstract process such as time-signature inference relies on
the distinct musical notes produced by the sound-organization function for its
input, and can thus be seen as external to that function.  However, the scope
so defined is hardly narrow, covering everything from simple onset-detection
algorithms (undoubtedly a very important part of auditory scene analysis) to
complete sound-description systems that aim to ‘explain’ unrestricted real-
world sound ambiences into symbolic representations reflecting the perceived
source structure.

The remainder of this chapter is organized as follows:  The next section
considers the psychoacoustics of auditory scene analysis, the principal
experimental basis for these computational models.  Section 2.3 rounds out
the background to this topic by considering related work in music and speech
processing, and in models of the auditory physiology.  Then, in section 2.4, I
will present the core of the chapter, a synthesis of the work of Cooke, Brown,
Mellinger and others into a ‘standard’ model of auditory organization, whose
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qualities and limitations will be investigated in section 2.5.  Following that,
section 2.6 examines some of the more recent work and the particular
problems researchers are currently seeking to solve.  Finally, in section 2.7, I
summarize the achievements of the systems described and speculate about
the likely development of the field.

2.2 Foundation: Auditory Scene Analysis

Although people have been using computers to process sound ever since the
emergence of digital signal processing in the 1960s, it was not until the mid-
1980s that the idea of modeling some of the more abstract aspects of auditory
processing emerged.  This lag may largely be explained by our relative
ignorance of auditory processes, reflecting a common problem in perception
research:  Much of what our perceptual apparatus actually does is implicitly
invisible to us, and we have the greatest difficulty separating the concepts of
external reality and our perception of it.  Thus it was not until 1990 when
Bregman published his book “Auditory Scene Analysis” [Breg90] that we had
anything approaching a theory of the crucial step in auditory organization
where continuous distributions of acoustic energy are converted into sharply
delineated perceptions of distinct events.  As an experimental psychologist,
Bregman had been studying phenomena of perceptual organization in
hearing for several decades, having realized in the late 1960s that, despite
great successes in characterizing low-level detection and discrimination
abilities, the sound domain had no work equivalent to the ecological (in the
sense of [Gibson79], i.e. environmentally-relevant) problems that were
attracting attention in vision, such as size and color constancy.  However, it
took two decades of research for a coherent picture of the kinds of processes
and principles in operation to appear.

Bregman’s book is the explicit foundation of all the modeling work described
in this paper, as reflected in the most common title for the field, which simply
prepends “Computational” to his phrase, “Auditory Scene Analysis” (itself an
appropriation of the machine vision concept of “Scene Analysis”, or an
environmental explanation of a visual image).  The book has had such an
impact because, despite being a prudent account of empirically-observed
psychoacoustic phenomena, it carries a strong sense of being close to a formal
specification of the rules by which acoustic stimuli are converted into
separate percepts.  Bregman investigates different kinds of cues with clever
experiments to set them competing against one another, permitting accurate
modeling of such phenomena.  However, the impression that there are rules
simply waiting to be translated into computer code is mistaken; the biggest
problem seems to arise in translating simple, isolated principles inferred from
highly constrained psychoacoustic stimuli such as sine-tones and gated white
noise, to the much, much messier domain of real sounds and sound mixtures.
The human auditory system is known to be able to deal with complex real-
world ambiences, and thus it is sensible and valid to investigate human
hearing using simplified stimuli.  However, if we were to build a computer
system that did the ‘right’ thing in typical psychoacoustic tests, there is no
reason to suppose it could then handle the real world.  The terrible
complexity of sounds in our physical environment presents a whole series of
additional problems which aren’t really addressed in the book.

In order to understand the computational systems to be discussed in this
paper, let us briefly review the essence of Bregman’s theory of auditory scene
analysis.  Early experiments with tapes of edited speech sounds forced him to
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conclude that a high degree of organization is imposed on the sound we
experience;  without the ‘correct’ rate and sequence of speech cues, the same
segments of sound changed in perception from a single, continuous speech
stream into a collection of perceptually distinct pieces.  In particular, the
high-frequency noise energy of sibilants was no longer integrated with the
lower-frequency vowel energy.  This evidence implied the existence of a
process at work in the auditory responsible for collecting speech sounds from
a single speaker into the same stream, a function that could be defeated by
the editing modifications.

Bregman’s subsequent work sought further to investigate these
organizational processes.  His theory describes two broad classes of
organization:  The first is simultaneous organization, which is responsible for
the fusion of acoustic energy that occurs concurrently in different frequency
regions into a single percept.  The most important example of this kind is the
fusion of harmonically-related sinusoid (Fourier) components into a single
‘rich’ tone whose pitch and tonal color are related to the frequencies and
strengths of the various component harmonics.  This simultaneous fusion can
be investigated by detuning one of the harmonics (which eventually causes it
to be perceived as a separate sound [Hart88]) or by temporal asynchrony,
that is by starting or stopping one of the tones at a slightly different time
from the others.  Fusion is strongly promoted by simultaneous onset; an onset
asynchrony of a few tens of milliseconds can cause a tone to be perceived as
separate from a tone-complex, even if the harmonic frequency relations would
otherwise lead to fusion [DarwC92].

These fused auditory events governed by the cues of harmonicity and onset
synchrony (and also common spatial location and common modulation) are
then subject to the second class of sequential organization, where a series of
sound-events is built up into one or more streams.  Each stream is a sequence
of events treated as coming from a single external source;  events will be
segregated into separate streams according to Gestalt-like principles of
dissimilarity of pitch, loudness and timbre, implying that their chance
relations at the ear of the listener are of no significance.  Bregman suggests
that this sequential organization might be accomplished by schema
(remembered sequential patterns) which are learned through exposure to the
environment, in contrast to the primitive simultaneous organization that
might be pre-wired into the auditory apparatus.

It is intrinsically difficult to measure something as abstract and unobservable
as the internal experience of sounds ‘belonging’ together.  The success of
experimental psychoacoustics stems from careful experimental design, where
the properties of the resulting sound organization (the pitch of fused tones,
the perceived order of streamed sequences) can be measured to infer the
behavior of the organization process itself.  The skill lies in devising
experiments to distinguish between competing proposed mechanisms, such as
the question of whether modulated harmonics are grouped by their common
modulation pattern or their harmonicity [Carly91].

Bregman’s explicit enumeration of the cues (related to physical attributes of
the sound energy) and principles (rules governing the construction of
perceived sources based on the available cues) furnishes a very attractive
theoretical basis for researchers concerned with the processing and
understanding of sound by computers.  The implication is that the manner by
which human listeners assemble useful, high-level information about the real
world from the acoustic signals at their ears is more-or-less understood, and
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the way is open to make computer implementations of these processes for a
new generation of ‘smart’ sound understanding systems.

2.3 Related work

Before examining the kinds of computer models of the auditory system that
Bregman’s theory has inspired, it will help us to look at some other work in
computer processing of real-world signals that formed the context of auditory
scene analysis models.  We will focus in particular on systems that seek to
identify the more abstract information in sound signals (from both the
musical and speech domains), as well as the more physiologically-motivated
computer models of the auditory periphery.  We will also consider briefly
some of the analogous work in machine analysis of visual scenes, from which
hearing researchers have borrowed many concepts related to abstractions of
the real world.

2.3.1 Sound models

Before looking at computer systems that analyze sound mixtures, it is worth
mentioning a few of the approaches to analyzing isolated, single sounds that
have influenced this work.

Fourier analysis has long been an extremely powerful basis for dealing with
sound, starting with Helmholtz’s investigation of the harmonic structure of
pitched sounds [Helm77].  However, the advent of digital computers and the
fast Fourier transform (FFT) algorithm made possible a whole new approach
to sound processing conducted in the narrowband frequency domain.
Although applications of the phase vocoder (i.e. short-time Fourier transform
representation) were first envisaged in the 1960s [FlanG66], it was not until
the late 1970s that such algorithms became cheap enough for exotic
algorithms such as timescale modification and pitch shifting [Port81].  A
particularly flexible instance of this kind of processing is the Sinusoid
Transform Coder of [McAuQ86], where pseudoperiodic sounds such as speech
are represented as a collection of distinct sinusoid tracks following the
individual harmonics extracted by narrowband FFT analysis.  Sinusoidal
representation provided not only for unusual transformations but also
considerable coding efficiency in separating important and irrelevant
information in the original signal.

Sinusoidal analysis was very applicable to the pitched sounds used in
computer music, but it was less convenient for the non-periodic aspects of
such sounds such as noise transients at the beginnings of noise or
background ‘breathiness’.  This limitation was addressed in [Serra89] by
modeling the short-time Fourier transform of musical notes as sinusoid
tracks where such tracks were pronounced, and an autoregressive (all-pole)
noise model for the remainder of the spectrum.  This ‘deterministic-plus-
stochastic’ decomposition was successful in representing these different
classes of sound – pitch and harmonic balance for near-periodic sound, broad
spectral envelope for ‘noisy’ sound.  As will be seen in chapters 3 and 4, this
assumed perceptual distinction between noisy and pitched sounds is deeply
influential on the current work.

The concept of classifying regions of sound energy according to categories that
reflect the perceptual distinction between pitched and noisy sounds was
taken further in [Goldh92] which segmented the time-frequency plane
according to the first three cepstral coefficients in the analysis of both time
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and frequency profiles.  This research was framed in terms of designing an
aid for the deaf that would automatically classify or describe arbitrary
environmental sounds in perceptually relevant terms.  Cepstral coefficients
(Fourier decomposition of the log of the magnitude envelope) nicely separate
level, slope and finer detail (the interpretation of the three coefficients).
Looking at the cepstrum both along frequency (the usual application) and
along time defines a rich yet rather compact space for discriminating classes
of sounds such as tones, bangs, rough and smooth noises.

2.3.2 Music analysis

Given the early successes of digital signal processing in revealing the
structure of sound, and with the rise of computer musical instruments and
performance systems, it seemed natural to imagine a computer system that
could listen to a piece of music and produce from it a description of the
instruments involved and the notes they played.  But like the modeling of
other perceptual tasks (e.g. speech recognition, visual object recognition), this
goal of ‘polyphonic pitch tracking’ and automatic transcription turned out to
be far harder than had been anticipated.  An early system that refused to be
discouraged by these difficulties is described in [Moorer75];  it does a
reasonable job of deriving a score from recordings of certain kinds of musical
performance;  however, there are serious constraints on the instruments
involved, and the structure of the music they play.

The domain of automatic transcription continued fascinate researchers.  The
extreme difficulties arising from the collision between Fourier components in
common polyphonic music (an inevitable consequence of the conventions of
western harmony) led to interest in the transcription of non-harmonic music
such as drum or other percussion performances.  Early work by Schloss
[Schlo85] (who detected drum sounds via the slope of a sound’s energy
envelope) and Stautner [Staut83] (who recognized the particular value of a
variable-bandwidth filterbank in detecting the rapid transients of these
sounds) was followed by a recent project by Bilmes [Bilmes93] who built an
array of special-purpose detectors for the different instruments in an Afro-
Caribbean percussion ensemble, as a precursor to an automatic music
interpretation system.

The thornier problems of separating harmonically-structured instrument
sounds also attracted a series of projects.  The Kansei system of [KataI89]
sought to translate recordings of music all the way to textual descriptions of
their emotional impact, solving numerous difficult issues along the way.
[Maher89] addressed the problem of harmonic collision directly by analyzing
recordings in the domain of sinusoidal models (where each extractable
harmonic is a distinct entity) and devising algorithms to make a best guess of
the note or notes that would result in that pattern.  [Baum92] employed a
similar approach, using a constant-Q sinusoidal analysis (the Frequency-
Time Transform of [Hein88]) to convert musical recordings to MIDI note-
event streams.  The full auditory-scene-analysis model of [Mell91], described
in section 2.4, has this approach at its core.

However, the continued elusiveness of this problem demands a more
resourceful approach.  Starting with the piano-transcription problem
formulation of [Hawley93], [Scheir95] exploits the additional prior knowledge
of the original score to guide the extraction of the precise parameters of a
given performance.  He makes the point that this is an instance of a more
general class of systems that use musical knowledge to guide the performance
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extraction process, which is exactly the philosophy of the ‘signal and
knowledge-processing’ system of [Kash95], which is discussed in section 2.6.

Despite all the attention attracted by this problem, even the best systems
only work moderately well in limited domains.  The idea of a machine that
can convert a recording of a symphony into the printed parts for an orchestra,
or a MIDI encoding for storage and resynthesis, remains something of a
fantasy.

2.3.3 Models of the cochlea and auditory periphery

An obvious starting point for modeling the auditory system is to look closely
at the biological original to see what may be learned.  Our understanding of
the auditory periphery to the level of the hair-cell synapses and beyond has
been steadily increasing over the past four decades.  Improvements in
experimental techniques, progressing from studies on cochleae removed from
cadavers [vBek60], to auditory-nerve recordings from anaesthetized cats
[YoungS79], to direct observations of basilar membrane motion in live gerbils
[Zwis80], have yielded a wealth of information for modelers to attempt to
explain.

The cochlea is probably the single most critical component in the auditory
chain.  After coupling to the acoustic free-field via the outer and middle ears,
the one-dimensional sound pressure fluctuation is applied to the oval window,
which starts a traveling wave down the spiraled transmission line of the
cochlea.  The variation of the mechanical structure of the basilar membrane –
the central division of the cochlea – effectively forms a continuous array of
band-pass filters;  Fourier components in the pressure variation will travel
some distance down the cochlea (further for lower frequencies) before
reaching a point where the membrane is in resonance, causing a maximum in
basilar membrane motion and the dissipation of the traveling wave.  Thus,
the cochlea performs a spectral analysis, converting the incident sound-
pressure variation into motion at different places down the basilar
membrane, with the place of motion encoding spectral location and amplitude
of the motion indicating intensity.

However, the precise behavior of the cochlea is rather subtle and subject to
debate [AllenN92].  Consequently, no single mathematical model has been
adequate, but rather a number of models have been proposed, each with its
own particular strengths.  On the assumption that the most important
quality of the cochlea is its behavior as an array of band-pass filters, the
Patterson-Holdsworth model [PattH90] presents simple four-pole resonator
approximations to this filtering as a good compromise between computational
simplicity and accuracy of fit to observed tuning curves.  The Lyon model
[SlanL92] also reproduces this filtering behavior, but as a result of a more
accurate transmission-line model of the physics of the cochlea.  This is
followed by a laterally-coupled stage of automatic-gain-control, to account for
the very wide range of intensities over which our hearing can operate.  Still
more sophisticated models of the cochlea acknowledge that the resonant
tuning of the cochlea appears to become progressively more damped as the
intensity increases, something a fixed resonant structure cannot exhibit.  The
model of [GigW94] incorporates a damping-feedback component, intended to
model the function of the outer hair-cell bundles of the basilar membrane
(which are enervated by nerves carrying information out from higher neural
centers) to vary the damping of the peripheral model in response to the
signal.  These ideas have recently been incorporated into Patterson’s original
model [PattAG95].
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The motion of the basilar membrane is converted to nerve firings via
synapses at the base of the inner hair cell bundles.  This transduction forms a
crucial component of any model of the auditory periphery, since it is the firing
patterns on the approximately 30,000 fibers of the auditory nerve that
comprise the raw description of sound used by higher levels of the brain.
Ranging from simple integrated nonlinearities followed by threshold-
discharge models [Ross82] to detailed models of neurotransmitter depletion, a
detailed comparison of a range of nerve models with known firing behaviors
appears in [HewM91].  Analysis of these systems is difficult, because the
information-carrying-capacity of a single nerve is rather limited;  the brain
accommodates this by using a very large number of them and combining their
outputs.  However, running tens of thousands of nerve models in parallel is
prohibitively expensive computationally, favoring approximations to
ensemble behavior instead (such as firing probability for a certain class of
fiber, as opposed to actual firing patterns for a number of instances of that
class).  Our ignorance of how the nerve information is combined in the brain
makes this an uncertain business.

Looking further along neural pathways, there have been several studies of
cells at higher brain centers including the Cochlear Nucleus, focusing
particularly on their response to modulated tones.  An interesting behavior of
certain of these cells  is their selective transmission of certain modulation
rates (in the range 5 to 500 Hz), i.e. they can act as bandpass filters for
intensity modulation in different frequency bands [Lang92].  Models of this
behavior, based on simplifications of the biophysics of neurons, have been
produced by [HewM93] and [BerthL95].  Such behavior provides evidence for
the existence of a two-dimensional array or ‘map’ of neurons, where each
element responds most vigorously to a particular combination of peripheral
frequency channel (one dimension) and amplitude modulation rate (the
second dimension);  this is exactly the kind of map required for the pitch-
based organization scheme of [Brown92], discussed in section 2.4.

Physiological and neural models of this kind can stand purely as predictors of
experimental observations.  Our goal, however, is to understand how these
mechanisms facilitate hearing.  A few of the models have been taken further
to address functional questions of how the ear performs useful tasks, for
example, the separation of a mixture of pitched sounds, and we will return to
them in the next subsection.

2.3.4 Speech processing and pre-processing

As observed in the introduction, by far the most thoroughly-researched area
of sound processing is the recognition of speech signals.  This is because of the
enormous practical attractions of controlling machines by spoken commands.
Despite early systems based on explicit theories of human information
processing [LessE77], more recently the dominant approach has tended
towards a ‘brute-force’ statistical approach, asking only that the
representation distribute speech fragments fairly uniformly around a low
dimensional space [SchaeR75], and employing the powerful technique of
hidden-Markov-models to find the most-probable word or phrase to account
for a given speech recording [Jeli76].   Despite its success, such research does
not belong in this survey because the only aspect of human audition
reproduced is the abstract and narrow task of converting speech sounds into
words.  There is no real effort to duplicate the auditory function at a deeper
level, and, crucially, such systems tend simply to ignore nonspeech sounds,
making the working assumption that the input is clean, closed-mic’ed voice.
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Of more relevance to the development of models of auditory scene analysis is
research into the separation of target speech from unwanted interference.
This work has been motivated both by the desire to clean-up transmitted or
recorded speech prior to presentation to a listener, and as a possible pre-
processing stage for speech-recognition machines.  Indeed, this concept of an
automatic-speech-recognition aid has been the justification for much of the
work in computational auditory scene analysis [Wein85] [CookCG94], which
reflects the potential value of such a device, as well as the benefits of working
in a problem domain where achievement can be quantified (as a reduction in
word-error rate).

The problem of separating simultaneous, pitched voices has attracted
attention as a well-formed, seemingly tractable problem (similar to the
polyphonic music problem, but perhaps easier since harmonic collisions are
short-lived and less common).  Early projects by [Pars76] and [HansW84]
sought to completely identify the Fourier spectrum of the target voice, to
permit uncorrupted reconstruction, an approach which has been considerably
refined in the work of [DenbZ92].  By using an explicit sinusoidal track
model, [QuatD90] were able to reconstruct voicing through pitch-crossings
(which would otherwise play havoc with extracting the spectrum) by
identifying ill-conditioned time-frames, and interpolating the frequencies and
magnitudes of each component across the gap.

The objective of the above models was processing and reproducing a speech
signal to remove interference.  In contrast, the problem of mixed, pitched
speech, framed as ‘double-vowel perception’, has also been addressed by
researchers concerned with faithful models of the human auditory periphery.
A series of papers from the Institute for Hearing Research in Nottingham and
associated researchers [SummA91] [AssmS89] [StubS91] [CullD94] has
considered various physiologically-motivated representations and how they
might fare in identifying combinations of pitched vowels;  these models can
then be compared to the results of psychoacoustic experiments where real
listeners attempt the same tasks.  The recent models of [MeddH92] and
[AssmS94] have been particularly successful at duplicating the recognition
rate for vowel-pairs as a function of fundamental-frequency difference,
providing some validation of their particular theories of sound separation by
pitch difference;  the [MeddH92] model relies on autocorrelation peaks within
each frequency channel to gather energy related to a given vowel, and the
[AssmS94] system extends the model to consider the particular effects of
time-separation of individual pitch pulses from the two voices.  A class of
similar approaches to separation of concurrent periodic sounds based on
neurally-plausible delay-and-combine structures was thoroughly investigated
in [deChev93].

Ghitza has also examined the possible benefits of models of the auditory
periphery for speech recognition systems.  [Ghitza88] describes how an
automatic-gain-control, modeled on known physiology, can benefit the
performance of a speech recognizer when confronted with noisy speech.  In
[Ghitza93], the performance of a standard hidden-Markov-model recognizer is
assessed in a highly-constrained task which should be dominated by the
adequacy of the representation; an auditory model, based on the number of
hair-cells firing at a particular interval, performs better than the more
common cepstral front-end, but neither approaches the performance of real
listeners in the same task.

Along similar lines, Lazzaro has recently investigated the use of
physiologically-motivated front-end processing for conventional speech
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recognizers.  The use of “silicon cochleae” to calculate spectral
decompositions, autocorrelations, and onset features is motivated towards
finding small, low-power, real-time alternatives to the costly and complex
digital signal processing of typical auditory models [LazzW95].  Lazzaro
makes a clear analysis of the mismatch between unevenly-sampled, highly-
redundant auditory model features and the regular, uncorrelated coefficients
best suited to current pattern-recognition technologies [LazzW96].  He notes
that alternative recognizer structures (such as neural-net classifiers) might
ultimately realize the latent processing advantage of such plausible front-
ends, which to date have shown only modest improvements at best.

2.3.5 Machine vision scene analysis systems

As observed in the introduction, many of the basic concepts of the psychology
of auditory scene analysis were inspired by or borrowed from theories of
visual perception.  Similarly, computational models of auditory organization
cannot help but be influenced by the considerable body of work concerned
with modeling the analysis of visual scenes.  Minsky relates how it was his
casual assignment of image-object-extraction as a summer project for an
undergraduate in the early 1960s that first exposed the nascent artificial
intelligence community to the difficulty of perceptual processing problems,
and the insight that “easy things are hard” [Minsky86].

Visual scene analysis continues to be a major preoccupation of artificial
intelligence research, both because of its obvious practical benefits (e.g. for
robots useful in manufacturing) and because of the undiminished intellectual
mystery of how it may be achieved.  One highly influential contribution to
this work was Marr’s book Vision [Marr82], which presented one of the first
viable theoretical foundations for computational models of perception, seen as
the process of converting raw stimuli into ‘useful’ information about the real
world.  Marr stressed the importance of distinguishing between different
levels of analysis of perceptual systems; in particular, he identified three
distinct levels for any information-processing task:  At the lowest level is the
implementation, which is a description of the actual physical elements
employed to perform the computation;  work on the biology of vision tends to
fall in this area.  Above implementation is the algorithmic layer, an
abstraction of the calculations performed by the implementation, which could
be equivalently performed by different hardware.  Theoretical analysis of
vision, such as modeling the retina as an array of spatial filters, falls into this
level.  Marr adds a third, higher level, the computational theory, which
concerns the fundamental question of what the system is really trying to do;
in the case of vision, what interesting aspects of the external world are
available in visual information and would therefore be worth computing.
Marr argued that this level of analysis was almost completely absent from
work in vision at that time, leading to inevitable confusion;  in order correctly
to abstract the computational behavior from an implementational instance it
is necessary to have a good idea of the overall purpose or goal of the system;
else, there will be no basis upon which to distinguish between the essential
purpose of the system and irrelevant artifactual aspects of the
implementation.  Marr’s ideal form for a computational theory is some
mathematical expression of the physical facts of the situation, such as the
dependence of image intensity on reflectance, illumination, geometry and
viewpoint.  Starting from such a formulation, algorithms may be proposed to
extract the interesting information (the separation of the four contributing
factors), and then implementations can be devised for those algorithms.
Without a computational theory, the entire analysis is rootless.  Modelers of
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computational auditory scene analysis, starting with Cooke [Cooke91] have
acknowledged their considerable debt to Marr.

More than a decade after Marr’s seminal work, the vision problem remains
unsolved, and naturally his approach has been criticized.  A recent theoretical
development [ChurRS94] argues that it is a mistake to view vision as some
abstract task of creating a neat internal symbolic model of the world
independent of the immediate goals and tasks faced by the organism.
Logically, evolution would have optimized visual processing to obtain only the
information needed at any particular moment.  Thus, the correct way to
approach machine vision might be to focus on the completion of a particular
task, such as catching prey, or avoiding predators or collisions [Woodf92].
[ChurRS94] make this case very powerfully for vision, and [Slaney95] points
out the direct analogies to work in audition.  [Brooks91] argues in some detail
that the only way to solve problems of perception (as well as locomotion,
planning etc.) is to build real robots that exist in the real world, and whose
information-processing, rather than being neatly abstract and symbolic, is
largely implicit in the emergent behavior of goal-specific sensor systems.

Despite these counter-arguments, there is still currency to the idea of a ‘pure
perception’ system whose function is to produce a general-purpose symbolic
description of the external world.  There are no insurmountable problems in
formulating a research project in these terms, and it is the goal, implicit or
explicit, of a number of current efforts [Ellis95a].

2.4 The data-driven computational auditory scene analysis system

The central part of this paper is a unified description of several similar
systems, representing the most direct, complete, and ambitious projects to
implement computational models of the mechanisms presented in Bregman’s
book.  These systems are described in the theses of Cooke [Cooke91],
Mellinger [Mell91] and Brown [Brown92], and in the paper [Ellis94].  Each
one of these systems sets out to duplicate the organizational function of the
auditory system with a view to separating mixtures of sounds – speech plus
interference for Cooke and Brown, ensemble music for Mellinger.
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Figure 2.1: Block diagram of a typical data-driven sound analysis system (based
on [Brown92]).  The system consists of four stages: cue detectors, representation,
grouping algorithm and output, and information flows exclusively from left to
right i.e. from more concrete to more abstract.

It makes sense to consider these systems all at once because they share
remarkable architectural similarities.  I characterize these systems as ‘data-
driven’, since the information flow is exclusively unidirectional, from concrete
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to abstract, as schematized in figure 2.1.  According to the diagram, the
overall system structure can be broken into four main pieces:

(1) Front-end:  A model of the auditory periphery, most importantly its
effect of breaking the acoustic signal into different frequency bands.
This may also include special-purpose processing to reveal particular
acoustic features or ‘cues’.

(2) Basic representation:  The unstructured data coming from the
auditory filterbank is organized into discrete elemental units, segmented
on the basis of local coherence of low-level properties.  Taken together,
these elements account for the entire input sound; their discrete nature
permits the calculation of useful attributes, and forms the fundamental
granularity of the scene analysis.

(3) Grouping algorithm:  The core of the system is an implementation of
Bregman’s grouping principles, to collect together the appropriate
subsets of the elements that appear to come from single sources, based
on the information of their properties and the other cues extracted in
stage (1).  The output of this stage is one or more groups of the elements
generated in stage (2).

(4) Output assessment / resynthesis:  The internal representation of the
groups from stage (3) must be converted to some output representation
appropriate to the goal or assessment method of the system.  In some
cases, this involves resynthesis of an acoustic equivalent to the detected
source.

Each of these stages is considered in more detail below:

Front end:  The input signal is processed by some equivalent of the auditory
periphery up to the level of auditory nerves.  In the most stylized system, this
is simply a linear, constant-Q filterbank followed by intensity envelope
extraction [Ellis94].  In the more detailed models, it may include filtering for
the outer ear transfer function, a cochlear filterbank, and some kind of
auditory nerve simulation.  Cooke and Brown both use the gammatone
filterbank as proposed in [PattH90], whereas Mellinger uses the
transmission-line model of [SlanL92], whose output is nerve firing probability
for each frequency channel.  Brown uses the [HewM91] model of nerve-cell
neurotransmitter concentration to derive firing probabilities.

In addition to indicating the time-frequency location of acoustic energy, the
front-end may also incorporate specific feature detectors.  While Cooke and
Ellis derive their equivalents of the psychoacoustic cues of onset and
harmonicity from their intermediate discrete representations, both Mellinger
and Brown have cue detectors operating directly on the unstructured
filterbank output to generate feature ‘maps’, an array, typically in the time-
frequency plane, indicating the likelihood of a particular cue at each
coordinate.  This approach is partly motivated by the known use of
parameterized maps in neural processing systems [Suga90].  Mellinger’s
maps detect energy onset and frequency variation;  Brown has a very similar
onset detector, uses a somewhat comparable frequency-transition map, and
also includes auto- and cross-correlation to produce maps used in his
periodicity (harmonicity) representation, discussed below.

Representation:  The data coming from the front-end model is still
somewhat ‘raw’.  In particular, it does not have any structure associated with
it;  ultimately the task of these models will be to assemble regions of time-
frequency that contain energy judged as belonging to a single source, so some
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division of the sound into a collection of distinct elements is required.  These
representational elements will then be formed into groups in subsequent
processing to assemble all the energy believed to belong to a single external
source.  The desirable properties of these elements are that (a) each element
should consist as far as possible of energy from only a single source,
otherwise the grouping will be unable to allocate it unambiguously, yet (b)
that each element should be as large as possible, and the total number of
elements be as small as possible.  Having ‘large’ elements (i.e. elements
including information from relatively large portions of time-frequency)
permits the calculation of informative attributes such as frequency variation
or amplitude stability which cannot be calculated for a single sample of time
frequency;  these properties can then be used as the basis for grouping.
Having relatively few elements is the logical consequence of making each
element larger (assuming no overlap), and has the benefit of reducing the
total computation required to allocate each element into a group.

The criterion for the formation of these fundamental representational
elements is local coherence of low-level properties.  In Ellis’s system, the
elements are sinusoidal tracks, fit to the filterbank output by picking spectral
peaks, and grown or terminated based on simple smoothness conditions
[EllisVQ91] [Ellis92] (a representation borrowed from the fixed-bandwidth
speech-analysis system of [McAuQ86]).  Similarly, in Mellinger’s model, the
first level of discrete representation is the partial, intended to correspond to
sinusoidal Fourier components for the musical sounds he considers.  Partials
are formed when sufficient activity in the onset map coincides with a local
maximum in an energy spectrum, which is tracked along time until it
disappears.

Cooke’s system uses synchrony strands, which are notionally almost identical
(each being characterized by a frequency and magnitude contour defined over
the time support), but are calculated rather differently.  Ranges of cochlea-
model channels whose outputs have high correlation to their neighbors,
indicating response to a common dominant signal component, are grown into
synchrony groups, which are then tracked through time.   Brown’s ‘auditory
objects’ are intended to provide the same level of granularity (one
representational element per distinct Fourier component in the lower
spectrum, or formant track in the upper spectrum) and are derived in a
related but enhanced manner where a range of peripheral frequency channels
whose running-autocorrelations are highly correlated at a given time instant
are recruited into a single element.  The evolution of this element along time
is then guided by the frequency-transition map which indicates the direction
of broad spectral shifts in the acoustic energy.

Grouping:  Once the sound has been converted to a collection of discrete,
atomic elements, each with its own properties, which together form a
nonredundant account of the entire sound, the grouping algorithm can be
applied.  In these models, this algorithm has the goal of organizing the
elements into one or more distinct groups, where the elements in each group
correspond to all the acoustic evidence from one ‘perceived’ source.  Following
auditory scene analysis, this grouping is made on the basis of cues derived
from the elements (such as onset time), which lead to group formation
according to particular principles (such as fusion by common onset).

In keeping with the data-driven philosophy of these models, the algorithms
are devised to operate in a single pass (i.e. without revision or iteration),
employing heuristic strategies to accomplish near-optimal grouping without
backtracking according to some within-class similarity metric.  Cooke’s
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system is presented as two stages.  The first forms groups of his strands
based on the cues of harmonicity (i.e. frequency contours that are integer
multiples of a fundamental) and correlated amplitude modulation – needed
for the grouping of formant tracks, whose frequency contour follows the
formant rather than the voice pitch, but whose amplitude contours exhibit
pitch-rate modulation.  It uses a ‘greedy’ strategy of working through all the
strands in descending order of total energy, forming a group for each one by
(a) adding groups that overlap in time with the current strand if they have
sufficient similarity according to the cue in operation, (b) choosing a new
‘current strand’ from among the newly-added strands, such that its time-
support extends beyond the time range considered so far, and (c) repeating
until the time-range is not extended.  Groups are formed in this way for every
strand; inclusion in a group does not remove a strand from subsequent
processing.

His second grouping stage takes all the groups formed by the first stage, then
subsumes all the groups with high degrees of overlap into a single, large
group of which they are all subsets, drastically reducing the total number of
groups and removing redundancy among those groups.  He also applies a
stage of pitched-based grouping, where pitch contours are calculated for the
large groups, and then any groups whose pitch contours match over a
significant time interval are merged.  (Pitch contours are derived from the
fundamental frequency for the harmonic groups, and from the amplitude-
modulation period for the common-modulation groups.)  This is the only way
in which the low-frequency resolved harmonics for voiced speech (grouped by
harmonicity) become connected to the higher-frequency formant tracks
(grouped by amplitude modulation).  Any speech detected in the original
signal will have formed at least one of each of these groups, which are
eventually joined only at this late stage.

Ellis’s grouping algorithm similarly has two stages, where the first generates
a large number of possible groups of his ‘tracks’, and the second prunes and
corroborates to improve the confidence and robustness of the ultimate output
groupings.  His first stage applies four grouping principles in parallel,
generating groups based on harmonicity, common onset, continuity
(reconnecting tracks with short breaks) and proximity (intended to group
together the many short tracks arising from non-harmonic noise energy).  His
second stage combines these in specific ways, looking for sets of tracks that
were similarly grouped by both the harmonicity and onset groupers
(indicating well-articulated pitched sounds) and merging together continuity
and proximity groups that overlap with the same common-onset group.  Like
Cooke’s, this system suffers from the separate treatment of resolved and
unresolved harmonics of the same voice.

This problem is nicely addressed in Brown’s system.  He includes an
autocorrelation-based periodicity map that can reveal the common period of
both resolved and unresolved harmonics.  His grouping scheme first
calculates a pitch contour attribute for each of his elemental objects (resolved
harmonics or single formant tracks).  This is accomplished by combining the
autocorrelations for the range of frequency channels included in the object to
form a summary short-time autocorrelation as a function of time.  Typically,
this will have its most dominant peak at a period reflecting the center-
frequency of the channel from which it is derived.  However, he then weights
this per-object autocorrelation with the global summary autocorrelation for
the unsegmented sound.  Since averaging across all frequency channels will
favor the common fundamental period of pitched signals, this weighting
effectively picks out just that autocorrelation peak that matches a plausible
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fundamental period for that time frame, and thus the appropriate
subharmonic is selected as the pitch of high harmonics.  This is clever
because it successfully attaches a context-sensitive property (the underlying
pitch-period) to a locally-defined element (the harmonic or formant track)
without explicitly deciding a priori what pitches are present in the sound.

With each object labeled by its pitch, the process of grouping is as follows:
Starting with the longest as-yet unexplained object, a group is built for it
‘greedily’ by adding any objects remaining unexplained that pass a similarity
test with every object in the expanding group.  Similarity is scored by
closeness of pitch contour during time-overlap, and also includes a term to
favor the grouping of objects with common onset, as judged by the presence of
simultaneous energy in the peripheral onset-map at the start of both objects.
Since objects are removed from further consideration once they have been
added to a group, Brown’s system implicitly applies the psychoacoustic
principle of exclusive allocation (the tendency for acoustic energy to be
associated with only one perceived source), and does not require a subsequent
pruning or subsumption stage.

All these systems process an entire segment of sound in batch mode (i.e. after
it is completely known).  In contrast, Mellinger frames his algorithm as
incremental, recognizing the very real requirement of the auditory system to
provide a best-estimate of the correct organization at every instant in time.
He updates the hypothesized groupings of the current harmonic elements at
each time step based on their accumulated resemblance;  an affinity score is
maintained for every pair of harmonics which is initialized according to their
onset synchrony, then updated subsequently to reflect the coherence of their
frequency variation.  Perceived sources are then simply sets of harmonics
whose mutual affinity scores exceed some threshold.  This ‘real-time’
grouping algorithm has the interesting property of ‘changing its mind’ as
evidence accumulates:  Mellinger uses the particular example of the
Reynolds-McAdams oboe [McAd84], where progressive frequency modulation
of just the even harmonics causes the percept to bifurcate from a single oboe
note to the combination of a clarinet-like tone and a voice singing the same
note an octave higher.  This is exactly the analysis achieved by his system,
initially grouping all the harmonics into a single group, then abruptly
revising this to two groups as the frequency-variation mismatch pushes down
the affinity between the odd and even harmonics.

Output:  Once grouping has been performed, there is the question of how to
use the analysis.  All the systems under discussion are theoretical proof-of-
concept investigations rather than solutions to specific problems, so the form
of the output is not rigidly defined in advance.

Each system identified subsets of the input signal believed to originate in a
single source; an obvious representation for these would be as an acoustic
signal – a resynthesis – consisting solely of the identified energy.  However,
this is a difficult thing to produce, since the analysis is usually applied at a
simplified or under-sampled level of representation.  For instance, Mellinger’s
system operates at a basic ‘tick rate’ of 441 Hz (2.27 ms), which is generous
when one’s objective is the location of perceptually important events in onset
maps, but quite inadequate for capturing the full details of modulation
information in the kilohertz-wide upper frequency bands.  Batch-mode
computational models generally have the option of returning to the original
source data if they find that more information is needed than was gathered in
the first pass, but it is somewhat worrying if satisfactory resynthesis requires
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information that was apparently ignored in the structural analysis of the
sound.

Instead of trying to resynthesize sound, it may be preferable in many
applications to generate a more abstract description of the identified sources.
If an auditory organization system is intended to convert a musical
performance into control information for a synthesizer, it would be much
more valuable to have the abstract parameters from the grouping algorithm
concerning the fundamental period used to group each source than to be
given a carefully resynthesized acoustic signal.  In the scenario of
computational auditory scene analysis as a pre-processor for speech
recognition, the ‘confidence rating’ for different portions of the detected target
might be very useful to the speech recognition algorithm, but cannot easily be
expressed in a resynthesis (Cooke et al have indeed developed modified
speech recognition algorithms to exploit the extra information coming from
their scene analysis systems [CookCG94]).  Thus the most appropriate output
entirely depends on the application.

That said, both Ellis and Brown have addressed the resynthesis of audio
signals.  Ellis goes to some lengths to hold enough information in his ‘tracks’
representation to permit good-quality resynthesis, including a variable
sampling rate to accommodate the higher bandwidth of information in upper
frequency channels.  An output signal can be synthesized based on the
information in the final grouped elements alone.  Brown uses his grouped
objects to generate a time-frequency ‘mask’ that indicates the regions where
energy for the extracted source was detected.  By re-filtering the original
input mixture using this mask, energy that occurs in time-frequency cells not
assigned to the source is removed.  However, where energy from both target
and interference occur in the same cell, they cannot be separated.  He does
not pursue resynthesis based on the grouping system’s representation alone
(i.e. without referring back to the original input signal).

Assessment:  Each author had to face the question of assessing the
performance of their systems, yet this brings up a peculiar problem of the
auditory scene analysis domain:  The models are trying to duplicate the
operation of an internal perceptual process, but we cannot directly access that
process’ output to compare it with our systems.  Rather, we investigate
human auditory organization by psychoacoustic experiments –  asking
questions of real listeners.  One approach to assessment would be to construct
models that were effectively capable of participating in similar psychoacoustic
experiments, although that might require the modeling of many additional
aspects of the brain.  Also, our goal is not really a computer model capable of
organizing the simplified acoustic stimuli typically used in psychoacoustic
experiments;  such sounds are suitable reductionist tools for investigating a
general-purpose auditory system such as a human listener, but their
simplicity would be misrepresentative if used in the assessment of less
capable models.  Much of the difficulty of computational auditory scene
analysis would be eliminated if the sonic world could efficiently be reduced to
a few, stable sine tones;  our interest lies in a system that can deal with
noisy, complex, real-world sounds that are less amenable to neat
psychoacoustic tests.

If we were to assume that the scene analysis system does an exact job of
distinguishing sounds from independent real-world sources, we could assess
the systems by constructing an acoustic mixture from two separately-
recorded sounds (say speech and some background noise) and observing how
closely the model reconstructs the originals from the mixture.  Current
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auditory organization systems tend to fare very poorly by this criteria, partly
due to the problems with resynthesis mentioned above, but at a deeper level
reflecting the weakness of the initial assumption: The internal perception of
an individual source is not an exact representation down to the waveform
level, but rather a highly selective perceptual impression.  A fairer approach
to assessment would compare the original and reconstruction on the basis of
‘perceptual similarity’ i.e. correspondence of perceptually important features;
unfortunately, there are no reliable objective metrics to score this
resemblance.  The best available option is to conduct subjective listening
tests, but this has been avoided by previous modelers, doubtless due to the
logistical disadvantages of human subjects compared to computer-based
objective measures;  a firm psychoacoustic grounding has been sacrificed in
the interests of a consistent, objective score that can be calculated repeatedly
to compare and measure the evolution of a system.

The idea that a sound processing system might be doing a reasonable job
even if its rms error figures looked terrible arose somewhat naturally in the
speech recognition community, where the only important part of the sound
was the sequence of words being conveyed, and all other attributes of the
signal (such as whether it sounded ‘clean’ or ‘noisy’) were irrelevant so long as
they did not influence the speech recognizer.  Thus in Weintraub’s speech
separation system [Wein85], he assessed its performance by taking the
reconstructed, separated voices, feeding them into a speech recognizer, and
using the conventional metrics of recognition accuracy to rate the system.
The weakness of this approach lies in the fact that a speech recognition
system is a poor model of auditory perception, highly specialized to a
particular domain.  Thus, certain artifacts in the output of the source
separation system may disturb the speech recognizer far beyond their
perceptual significance (static spectral distortion, for instance), while at  the
same time the source separation system may introduce perceptually
appalling distortions that the speech recognizer blithely ignores.  Weintraub’s
results were inconclusive, with some mixtures having better recognition rates
before the separation step.

Several of the smaller models of specific aspects of speech separation have
devised their own reduced versions of ‘salient feature recognition’ to permit
assessment.  For example, the two-vowel separation system of [MeddH92]
deals only with static vowel signals;  they assess it via the error rate of a
static-vowel identifier constructed specifically for that situation which
classifies reconstructed sound as one of five vowels according to the first few
bins of the cepstrum (i.e. the broad spectral shape).  Thus a highly-reduced
but task-adapted assessment metric highlights the successes of their
approach, but is less useful outside their limited domain.

Cooke was interested in a system that could extract the full sound of a voice
in a mixture, i.e. more than just its linguistic content [Cooke91].  His
assessment was to compare the output of his separation scheme with the
original isolated sounds used to form his mixture examples.  However,
lacking a good resynthesis scheme, he made the comparison in the domain of
his ‘synchrony strands’, made possible by the solution of a thorny
correspondence problem : He calculated representations of both original
sounds and their mixture, then derived an ‘optimal’ correspondence between
the mixture elements and each of the input sounds by allocating every strand
from the mixture to whichever isolated source contained a strand most
similar.  His metrics then rated how well his grouping system had been able
to reproduce the optimal segregation.  This scheme gave useful results in
terms of indicating which examples were most difficult, but it is intricately
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tied up with the details of his system, precluding its use for comparison with
other sound organization systems.  It also ignores the problematic cases
where his strand-representation itself is inadequate to permit separation
(such as the common situation of spectral overlap).

Brown’s time-frequency mask did provide for high-quality resynthesis.  He
assessed his system by defining metrics at least notionally corresponding to
the target-to-interference ratio in his final output sounds.  He faced a
correspondence problem similar to Cooke’s in terms of allocating the energy
in his resynthesized signal to one of his input components, since the
resynthesis is essentially a new signal with no intrinsic marking of the origin
of each piece of energy.  However, as his resynthesis scheme amounts to a
linear (albeit time-variant) filtering of the input mixture to recover each of
the original sources, he was able to apply this filter separately to each
original signal to obtain ‘target’ and ‘interference’ components that sum
exactly to his resynthesis.  By comparing these two contributions, he could
produce target-to-interference ratios both for the output as a whole and for
each individual time-frequency cell.  This clever scheme has certain
weaknesses:  The metric favors conservatism, since if a certain area of energy
is ambiguous or contains both target and interference, it is best excluded
from the output;  as the  signal-to-noise ratio is only calculated over regions
that are passed, there is no direct penalty for deleting valid target energy
such as the perceptually-important, low-energy, low signal-to-noise ratio
channels in the higher end of the spectrum.  Brown argues that his scheme
can be used for comparison of different source separation systems, but in fact
it only applies to systems that generate their results via time-frequency
masks as his does;  other approaches which synthesize an output signal based
purely on abstracted parameters can’t use the separate-filtering trick.

Brown had the courage to make his sound examples widely available.
Listening to them provides insight into the assessment problem;  despite
marked improvements according to his metric, and although his system has
evidently been very successful in removing interference energy, the quality of
resynthesized targets leaves much to be desired.  They are patchy (often
sounding muffled owing to the missing upper spectrum) and subject to
considerable artifactual frequency-dependent amplitude modulation where
the system fails to identify the correct allocation of time-frequency cells.
Informal comparison of the original mixtures and separated targets gives the
impression that the target speech is more easily perceived before processing;
the removal of interference energy by the separation process does not
necessarily compensate for distraction caused by the artifacts.  This general
problem in sound-separation schemes has been more formally recorded by the
work of Kollmeier et al on sound-segregating directional hearing-aid
algorithms [KollPH93] [KollK94].  Despite having systems that are
demonstrably capable of rejecting the majority of off-axis and reflected
energy, they are obliged to limit the effects of their algorithms rather
dramatically in order to minimize deleterious artifacts when tuning them for
use by real hearing-impaired listeners.  In one case, intelligibility tests
showed an optimal balance gave a gain equivalent to only 2-3 dB
improvement in plain signal-to-noise ratio.
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Figure 2.2:  Illustrations of the four ‘data-driven’ systems discussed.  Panel (a),
drawn from [Cooke91], shows the synchrony strands extracted from a fragment of
voiced speech, along with the ‘harmonic sieve’ used to group the resolved
harmonics.  Panel (b) is drawn from [Mell91], showing the spectrogram of the
McAdams-Reynolds oboe-soprano sound, along with one of the sources extracted
by his system.  Note that up until 100 ms the system fuses all the harmonics, but
then it segregates the even harmonics on the basis of their common modulation.
Panel (c) shows the spectrograms of voice mixtures used in [Brown92] before and
after processing to extract one voice;  the effect of his time-frequency masking is
clearly visible as the extensive ‘white’ regions where interference has been
removed.  Panel (d) is reproduced from [Ellis94], showing the sinusoidal tracks
used to model a mixture of a harmonic sound (a clarinet) and a transient (a
dropped tin can).  The lower panel highlights the tracks corresponding to a
clarinet phrase, grouped on the basis of harmonicity.
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2.5 A critique of data-driven systems

The systems we have discussed are all highly original and significant pieces
of work.  However, when taken together, they reveal fundamental
weaknesses of their common paradigm which must be acknowledged.

The most basic criticism is that, essentially, these systems don’t work – at
least not particularly well.  Clearly, the motivation is to build a sound
processing system that will isolate a target sound from interference in a
manner similar to that achieved by a listener;  this cannot be said to have
been demonstrated.  Cooke and Brown come closest with their impressive
target-to-interference ratio figures, but the figures are far removed from
perceptual reality.  Listening to the resyntheses from Brown’s system, it is
obvious that the ratio of target energy to background noise has been greatly
improved, but missing target energy and the artifacts resulting from
discontinuities in the filter mask rather spoil the results.

In any case, the initial goal of a human-like sound understanding system has
in each case been severely diminished in the interests of tractability.  Thus
the systems of Cooke and Brown are mainly aimed at continuously-voiced
speech, and Mellinger only addresses the resolved harmonics of pitched
musical sounds.  Ellis’s system appears to be limited to the specialized
problem of removing rapid noise-like transients from steady, pitched tones.

Perhaps the most basic explanation for the limitations of these systems is
that the authors were simply too ambitious and underestimated the difficulty
of the tasks the initially addressed.  However, it is also possible to identify
some specific weaknesses in these systems that may be attributed to the
data-driven approach common to them all.  This category includes:

Inadequate cues: Each author acknowledges that their system functions
less well than might be hoped, and makes the point that this situation could
be improved if only they used more information from the input sound.
According to the Bregman account of auditory organization as the integration
of a variety of cues, each system would benefit from the addition of, say,
spatial information from binaural cues.  In most cases the authors suggest
that such additional information could be incorporated rather easily, or at
least outline the modifications necessary for such enhancements.

In addition to the acknowledged omissions, problems with cues include
uncertainty about the detection even of the ones that are used:  Despite a
seemingly unambiguous list from psychoacoustics (common onset and fate,
common location, harmonicity, continuity, ...), the precise formulation of
these cues in signal-processing terms is not known.  For instance, both
Mellinger and Brown implement onset detector maps as rectified
differentiators within each frequency channel, and both recognize the
importance of having a family of maps based on different time-constants to be
able to detect onsets at a variety of timescales.  But there is no consensus
over how to combine information from these different scales to generate the
‘true’ onset cue;  Mellinger uses information from any map that indicates an
onset, whereas Brown found that using only the very fastest map was
adequate.  Other authors have looked at combining information across scales
to register an onset only if it occurs in multiple maps [Smith93].  Onset
detectors also generate artifacts in the presence of frequency-modulated
tones, since a tone gliding into a particular filter’s band will cause an increase
in energy in that band which may resemble the appearance of a wholly new
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sound object.  (Note, however, various techniques for suppressing such
‘ghosts’ such as suppressing the neighbors of excited channels [ShahD94]).
Essentially, while the importance of an onset detector is universally accepted,
the right way to build one is still an open question.  A slightly more involved
cue, such as the common amplitude modulation exploited in comodulation-
masking release phenomena [HallG90], lacks even a speculative
computational model at this point.

Inextensible algorithms: Despite their authors’ protestations to the
contrary, these systems are not particularly flexible in providing for the
inclusion of new or modified cues that might become available.  The systems
of Cooke, Brown and Mellinger have an abstracted stage of similarity
judgment, where basic elements are added to the same group if their ‘score’ is
sufficient, and the score could be redefined to include contributions from
additional cues.  Ellis has parallel primary-grouping processes to which new
modules based on new cues could be added.  However, since each of these
strategies employ the new cues only in comparisons between the same
primary representational elements of the basic system, the scope of such
extensions is limited.  It is equally likely that cues need to be involved at an
earlier stage in the formation of the elements themselves, and this is not
addressed in these systems.

Rigid evidence integration:  The fixed processing sequence embodied in
the representation and grouping modules of these systems not only limits the
role of additional cues, but also seems a poor model of the robustness of the
human auditory system.  In Ellis’s system, for instance, a harmonic sound-
event is formed by first searching through all the elements to form groups
that appear to have harmonic relationships, then searching for groups of
elements that have close onset times, then comparing both resulting sets of
groups for corroborating pairs.  This fixed, procedural sequence of operations
is a definitive feature of these data-driven systems.  By contrast, the human
auditory system seems to be far more adaptable in the face of missing or
obscured evidence:  When a sound is presented with strong common-period
cues but missing or ambiguous onset information, the common-period
information will be used as the basis for the perceived object.  If, on the other
hand, the harmonic relationships are rather poor, but the onset is well-
defined and synchronous, the common-onset cue will ensure the perception of
a single event, at least for the first few hundreds of milliseconds of duration.
If energy that otherwise seems independently structured shows a common
spatial cue, that too can be the basis for a fused object [SteigB82].  Rather
than following a fixed sequence of steps to form a percept, the auditory
system appears to take stock of the reliability of whatever evidence is
available, then choose the best-suited object-formation strategy.  It is hard to
imagine how the pre-programmed grouping algorithms of the systems
considered so far could exhibit this kind of robust adaptation to the prevailing
conditions.

Inability to handle obscured data:  One particularly arresting example of
this robust adaptation of the perceptual system is illustrated by the various
‘auditory restoration’ phenomena.  In the classic example of [Warren70],
listeners were played a speech recording in which an entire syllable had been
deleted and replaced by a loud cough-like noise burst.  Not only did the
listeners succeed in inferring the linguistic information in the deleted syllable
(on the basis of semantic context), but they were unable to identify precisely
where in the speech the added cough had occurred; their preconscious
perceptual processing had restored the obscured syllable so confidently that
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their conscious experience was of ‘hearing’ the inferred, restored speech just
as clearly as any other part.

Clearly such restoration is a useful attribute of perceptual processing.  If
some data is not directly observable as a result of chance signal collision or
sensor limitations, but the information can be reliably guessed from the
context, higher-level processing is best served by a peripheral system that
can incorporate the ‘guessed’ information just as if it had been directly
perceived.  Data-driven systems, which operate by making a representation of
the raw data present in the input, then sorting it to generate output groups,
cannot accomplish this kind of restoration;  the obscured data simply doesn’t
appear in the representation, and there is nothing in the grouping process to
modify or add to the basic representation.  This is perhaps the starkest
illustration of the weakness of data-driven processing.  The usual comparison
is with top-down or context-sensitive processing, which explicitly incorporates
the idea that more abstract levels of analysis can affect the information
represented at lower (more concrete) stages.  Top-down systems are discussed
in the next section.

2.6 Advances over the data-driven approach

There have been a number of alternative approaches to aspects of the
auditory scene analysis problem, some of them more or less directly in
response to the problems of the data-driven systems discussed above.  It is
perhaps too early to present these developments as instances of a broader
pattern, but we will now consider some of them individually, paying attention
to the ways in which they overcome weaknesses of the data-driven systems.

2.6.1 Weintraub’s state-dependent model

Weintraub’s [Wein85] system was in fact the first explicit computational
model of auditory organization, yet it occurred so long before the more recent
systems discussed above that it is harder to relate to them.  This work
predates Bregman’s [Breg90] book, which I have presented as the impetus for
the subsequent models, although Weintraub was very definitely influenced by
the psychoacoustic results then being obtained by Bregman and others which
were eventually summarized in that book.

Weintraub actually describes two systems, a ‘first system’, and a more
successful ‘current system’.  The first system actually falls very neatly into
the data-driven framework:  The target mixture (two voices, both of which are
to be recovered) is analyzed by a front-end of a cochlea filterbank followed by
an autocorrelation-like ‘coincidence function’ that identifies significant
periodicities in each channel.  The coincidence functions are pooled across
channels to detect one or two voice-pitches, which are then used to group the
‘neural events’ (the low-level representation of acoustic energy in time-
frequency) into tonal ‘group objects’.  Another kind of object collects energy at
onsets, which would otherwise provide insufficient history to establish
periodicity.  Noise-based group objects were envisaged but never actually
implemented.

Thus the first three stages, front-end, representation and grouping are
readily identified.  No details are given of the system output, since it is
described mainly to indicate what didn’t work.  Weintraub states that the
system was incapable in many cases of detecting the presence of two voices,
and made errors at too high a rate.
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His second system sought to establish a more methodical ‘decision framework’
for integrating the various information determining the character of the two
voices.  This system is structured as a strictly left-to-right progression
through a sequence of processing stages (reflecting the batch-processing
restriction imposed by the computers of the time), but is marked out as
different from other auditory models by having a central  ‘hypothesis’
concerning its belief about the current state of the two voices assumed to
comprise the input.  Each voice can be in one of three stable states (silent,
periodic, nonperiodic) or four transition states between them.  It is prohibited
for both voices to be labeled ‘in transition’ simultaneously, so the joint
hypothesis for the two voices has a total 33 distinct states (3 stable states x 7
possible states for the other voice x 2 for the symmetric cases minus 3x3
duplicates of the states where both voices are stable).  This state is chosen on
the basis of the coincidence analysis of the signal and an exhaustive combined
pitch tracker for both pitches based on dynamic-programming.  The current
state determines the subsequent processing invoked to recover the spectra of
each voice; for instance, voice spectra recovery is trivial when either voice is
considered to be in its ‘silent’ state, since this implies its spectrum must be
zero, and hence any observed energy belongs to the other voice.

This centralized global state of the signal hypothesis is very different from
the more local, less restricted sound objects grouped by the other auditory
organization models.  Nothing in Brown’s system, for instance, limits the
number of objects that can be extracted, although in practice it is only a
single foreground voice that is generated as output [Brown92].  Weintraub’s
global hypothesis amounts to a high-level abstraction that governs
subsequent lower-level signal processing.  However, his fixed algorithm
results in the slightly awkward sequence of pitch tracking that leads to the
state hypothesis that leads, in turn, to spectral recovery – there is no
opportunity, for instance, for the state hypothesis to cause a revision of the
pitch tracking because pitch tracking is ‘complete’ before the state hypotheses
have been calculated.  This one-way processing is typically data-driven, but
the alternating levels of abstraction are not.

Weintraub exploits the restrictions implicit in enumerating every possible
state for the pair of voices by using a training corpus of voice mixtures, hand-
labeled according to his voice states, to derive his model’s parameters.  Thus
transitions between possible state hypotheses are weighted by the measured
a priori frequency of occurrence of such transitions in his 38 three-second
examples.  Similarly, the iterative mixed-spectrum separation stage is driven
by a set of histograms that store the likelihood of voice energy ratio (in a
single frequency channel) conditioned on three samples from the coincidence
function: at the two detected pitches and at their difference.  (Each
coincidence function value is quantized to five levels, giving 125 different
histograms derived from the training data for this one parameter).  Perhaps
the most difficult aspect of constructing this system was finding the right
normalization methods and attributes upon which to condition the
histograms.  A more open-ended space of central hypotheses would require an
exponentially increasing training set, even if such globally-conditioned
processing were possible.

Weintraub is quite clear that, in his view, any complete model of auditory
organization will necessarily involve more than just bottom-up, data-driven
processing.  He cites examples such as the improvement of comprehension
with familiarity and the benefit of visual cues as evidence that auditory
source separation must be intimately bound up with the process of
recognition, with plenty of top-down control flowing from the latter to the
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former.  Dissatisfaction with the performance of his first, purely bottom-up
system led him to a strikingly innovative state-based approach that managed
to include a measure of abstraction-guided processing without sacrificing the
computational efficiency of fixed, sequential processing.  However, his results
from testing the second system as a front-end to a speech recognizer are
inconclusive, and he concludes that far more emphasis needs to be put on top-
down, analysis-derived controls in future systems.

2.6.2 Blackboard systems

The majority of the problems ascribed to data-driven systems – difficulty in
incorporating new cues, fixed dependence on particular features and inability
to perform restoration – stem from the limitations of the data-driven,
procedural approach to solving the problem.  This approach is the dominant
paradigm in signal processing, where algorithms are described by data
flowcharts showing the progress of information along chains of modules.  But
this may be inadequate for modeling the more complex, adaptive, context-
dependent processing accomplished by the auditory system.

As a result, much of the interesting recent work deals with alternative
approaches to controlling the execution of the computation involved in
auditory organization systems, that is, different processing architectures.
Perhaps the most sophisticated of these is the blackboard architecture, which
has been developing for more than twenty years as a foundation for sensor
interpretation systems and other abductive reasoning problems.  A particular
collection of blackboard-based processing techniques has been developed at
the University of Massachusetts, Amherst and Boston University [CarvL91]
and has been applied to the very relevant problem of identifying different
sound sources in domestic environments [CarvL92a], among other domains.
The IPUS system, which extends this sound-understanding example, is
described in more detail below.

It is fitting that the blackboard paradigm should find new value in the
computational auditory scene analysis, since it was initially conceived as an
approach to solving a problem of auditory perception – namely, speech
recognition.  The Hearsay-II speech recognizer [LessE77] is usually
considered to be the original blackboard system (For a review of the
development of blackboard architectures, see [Nii86]).  Its defining
characteristics were:

• The blackboard, which is a global database of hypotheses, both
supportive and competitive, comprising the results of all the inferences
and predictions performed.  The hypotheses on the blackboard constitute
the entire ‘state’ of the analysis system, in a public, explicit form
available to all action modules.

• Hierarchic organization of hypotheses.  Blackboards are normally
divided into well-demarcated layers, where hypotheses are linked
between layers by “supports” (lower to higher) or “explains” (higher to
lower) links.  Sets of hypotheses linked together by such relations form
coherent partial explanations or ‘islands of certainty’ that may be
consistent or competitive with other such groups on the blackboard.

• ‘Knowledge sources’, or action modules, which create and modify
hypotheses.  Knowledge sources are independent domain-specific modules
that can create or modify hypotheses.  (Creating hypotheses at a higher
level is ‘explanation’; at a lower level, it is ‘prediction’).  Each knowledge
source is attuned to a particular set of circumstances which it recognizes
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and then develops.  Since the state of analysis is completely and
transparently encoded in the blackboard hypotheses, it is a simple matter
to add new action modules to extend an implementation.

• An opportunistic control system which chooses the action modules to
execute at each moment.  The control system typically has a certain
amount of knowledge about the likely consequences of each module, and
can also estimate the usefulness of different action modules in the current
blackboard context, typically through a module-supplied rating function.
Although many approaches have been used [CarvL92b], perhaps the
simplest is Hearsay II’s ‘agenda’ system, where the agenda is a list of
potential modules to run, sorted by their rating score.  The control system
simply executes the action at the top of the agenda, then refills, re-rates
and re-sorts it.

Blackboard systems have had the most success in applications where the
potential search space of hypotheses is enormous, but the fine-grained
adaptive control system finds solutions with only a small amount of
exploration.  It is in the control systems that most of the theoretical
refinements to the model have been made since Hearsay II.  The RESUN
system of [CarvL91] is a particularly refined example, where the knowledge
sources can be not only action modules that complete in a single step but also
plans that consist of a sequence of subgoals to be achieved over several steps,
incorporating the power of backward-chaining reasoning systems into the
blackboard paradigm.

The benefits of blackboard systems for models of acoustical scene analysis lie
in their provision for top-down, hypothesis-directed processing, in contrast to
the bottom-up, data-driven systems discussed in the previous sections.  The
structure of the blackboard makes little distinction between explanatory and
predictive operations;  predictions made on the basis of a partial abstract
analysis can arbitrarily bias and reconfigure the lower stages to which they
apply.  Thus, restoration and inference phenomena, where information
derived implicitly from the context is processed as if it had been extracted
directly from the raw data, fit very naturally into this processing structure.
A blackboard system is intrinsically extensible, since a significant part of the
design consists of defining hypothesis representations and summaries of
partial-blackboard states terms of general goals that are comprehensible to
any relevant knowledge source whether or not it currently exists.  Extending
a blackboard system is as simple as defining a new action module in terms of
the condition it responds to and the results it generates.  When suitably
registered with the control system, it will be called automatically as
appropriate.  Such extensibility also affords tremendous flexibility for the
researcher to investigate how the analysis proceeds with different subset of
action modules.  This flexibility of blackboard systems has been identified as
particularly valuable in the stage of system development characterized as
“exploratory programming” [Shiel83].

2.6.3 The IPUS blackboard architecture

Recovering causal explanations from sensor data has long been studied in the
artificial intelligence community as a useful computer application without
any particular concern for modeling the human performance of this function.
The IPUS system [NawabL92] [LessNK95] is a particularly interesting
example in this literature, both because it is one of the most sophisticated
approaches of this kind, and also because an example implementation
described in many of the IPUS papers is an environmental sound recognition
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system, the “Sound Understanding Testbed”, that has essentially the same
goals as the auditory scene analysis function that is our concern.

The paramount idea motivating the IPUS approach is that signal
interpretation should be a dual search: In common with other such systems,
there is the search in the abstract representational space for the explanation
that accounts for the data most effectively.  However, their premise is that
this search must be conducted in conjunction with a second search for the
signal-processing front-end configuration that best exposes the evidence for
this interpretation.  Moreover, this second search can be based on models of
the signal processing units’ behavior, derived from the domain’s underlying
signal processing theory.

The assumption is that, given the ‘correct’ abstract explanation of the signal
data, there exists an optimal configuration of the signal- processing front-end
which, when applied to the signal, generates ‘correlates’ that confirm
unambiguously the correctness of the explanation.  However, since neither
the explanation nor the configuration are known initially, the system must
iteratively search for both, reprocessing the data with each new suggested
configuration until an explanation has been confirmed with satisfactory
confidence.

In IPUS, this interaction between abstract interpretation and signal-
processing algorithm configuration is accomplished by four key modules
emphasized by the authors: Discrepancy detection, discrepancy diagnosis,
signal reprocessing and differential diagnosis.  The first three are the stages
necessary to extend a hypothesis abstraction system to adapt its numerical
front-end to the context: Starting with some initial front-end configuration,
discrepancy detection tests a collection of rules whose violation indicates that
the configuration needs to be improved.  These discrepancies may arise from
a priori constraints within and among the front-end processors (e.g. that an
overall energy increase in the time envelope must correspond to new energy
peaks in time-frequency analysis), or there may be discrepancies between the
system’s model-based expectations (predicted correlates) and the actual
observations.

The next stage, discrepancy diagnosis, seeks to explain the explicitly- labeled
discrepancies in terms of specific causes.  When a prediction has not been
confirmed, the cause may be mistakes in the system’s abstracted signal model
(the current interpretation) – the usual motive for exploration of explanation-
space in signal interpretation systems.  However, in IPUS there is the
alternative diagnosis that the front-end configuration is at fault and should
be improved.  The classic example involves the underlying Fourier theory of
time-frequency uncertainty: If the model-based predictions are that two
simultaneous sinusoidal components will occur close together in frequency,
but the observed correlate is only a single peak in the spectrum, the diagnosis
may be that the frequency analysis signal-processor was configured with too
coarse a frequency resolution, a problem that can be corrected by using a
longer time window for that unit.  Discrepancy diagnosis implements an
‘inverse map’ between discrepancy symptoms and reprocessing strategies
which are then implemented in the third module, signal reprocessing.  In this
stage, the original signal data is processed by the modified front-end
configuration to generate a new set of correlates which may then be tested for
discrepancies.

The fourth IPUS module described by the authors is differential diagnosis, a
well-known concept in signal interpretation systems that becomes
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significantly more useful when, as in IPUS, the search domain is extended to
front-end configuration.  Even if configurations have been found that satisfy
the discrepancy checks, there may still be a choice of several possible credible
explanations.  In the terminology of the RESUN [CarvL91]  blackboard
system, which is the foundation of the IPUS systems and which was
specifically designed to provide for differential diagnosis, the overall solution
has uncertainty arising from possible alternative explanations.  The RESUN
system detects this situation explicitly, thereby permitting the execution of
routines specifically intended to discriminate between the particular
alternatives.  This is in contrast to traditional evidence-aggregation
blackboard systems that will gather information that generally supports a
particular hypothesis without focusing effort on the particular information
that will distinguish between the alternatives under current consideration.
In the context of IPUS’s search for a front-end configuration, differential
diagnosis becomes particularly powerful as the discrimination techniques can
include reprocessing of particular portions of signal data with processing
units configured solely to resolve the ambiguity of the competing
explanations.

The IPUS architecture represents a new level of sophistication in knowledge-
based signal interpretation systems, offering unprecedented flexibility in the
knowledge-based control of the signal-processing front-end, as well as
indicating how the theoretical foundations of a particular problem domain
(such as the Fourier uncertainty) can be used as the knowledge to guide that
control.  There are perhaps some weaknesses to the underlying assumption
that an ideal front-end configuration will exist if only it can be found.  The
assumption behind diagnosis and reprocessing is that each object to be
detected in the signal-generating universe will produce a set of unambiguous
distinct features which will be resolvable into corresponding correlates by the
correct configuration of signal processing units.  However, referring again to
the Fourier domain example, there will be signal combinations that cannot be
resolved by manipulating the time-frequency resolution tradeoff, such as two
objects that happen to produce simultaneous sinusoid components at the
same frequency.  An interpretation system can detect this circumstance and
verify that observed correlates are consistent, but working within the
limitations of the front-end is contrary to the IPUS philosophy of removing
uncertainty by correcting the front-end; accommodating front-end limitations
is the resort of fixed-configuration systems.  Another possible weakness is the
assumption that an object is characterized by some canonical set of features
which are mapped to a specific set of correlates by the particular signal-
processing configuration.  The signature of a particular object can only be
defined with reference to a particular analysis procedure, and though the
underlying theory can define how to translate results from one configuration
into those expected of another, the idea of distinct a-priori features falls
down, for instance in the case of a single amplitude-modulated carrier that
may, in other situations, appear as a cluster of four or five closely-spaced
harmonics:  Which representation is to be used as the ‘canonical’ feature?
Systems with fixed front-ends know in advance the form of their signal
correlates, and thus have a much easier time choosing internal
representations.

The artificial-intelligence signal-interpretation literature embodied in the
IPUS architecture has had a deep influence on the model of perceptual
information processing presented in this thesis.  It is interesting to contrast
the two approaches:  my primary interest is to model the way in which the
auditory system extracts information about the real world, whereas the
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motivation for IPUS-like systems is simply to analyze complex sensor data to
achieve specific goals by whatever means are most successful.  Since artificial
systems cannot yet approach the capabilities of the human auditory and
visual systems, we might expect some convergence of state-of-the-art
automatic signal interpretation systems to the architectures embodied in our
perceptual physiology.  However, the reverse assumption may not hold:  It
would be foolish to assume that the best current interpretation algorithms
are those being used by the perceptual system; more likely, the perceptual
system uses far superior algorithms that we have yet to develop in artificial
systems.  However, the model-based, prediction-reconciliation architecture of
IPUS and related systems suggests intriguing explanations of several known
perceptual phenomena, as discussed in chapter 3, which have convinced me
that it is the best direction for current perceptual information processing
models.

2.6.4 Other innovations in control architectures

Other researchers have pursued different approaches to the problems of
flexibility and adaptability in the control of sound-understanding systems.
One of the most intriguing is the agent-based approach pioneered by Okuno
and his co-workers at NTT Basic Research Labs in Tokyo [NakOK94]
[NakOK95].  The philosophy behind this approach is to re-formulate the
sound-understanding problem in terms of a collection of co-operating, but
largely independent agents, each specializing in a particular task.  In
[NakOK94], the system operates by creating ‘tracker’ agents which attempt
to follow particular sets of harmonics in an input mixture as they vary in
frequency.  Supervisory agencies handle the creation of new trackers when
there is excess signal energy to be accounted for, and deleting trackers whose
signal has disappeared, as well as censoring degenerate conditions.  The
flexibility of the approach is vindicated in [NakOK95] where the same system
is extended with agents specializing in grouping harmonics according to their
binaural-spatial characteristics, and a further agent to account for steady
background noise.  Their demonstrations of separating and streaming
discontinuous mixtures of voices and tones are very impressive.

The independent, locally-specific agents created to track aspects of the input
signal correspond to an amalgam of knowledge sources and hypotheses in a
blackboard system, but the difference in metaphors results in a different
flavor of solution.  A hypothesis of a harmonic signal would probably be
matched in a blackboard system with a rule to anticipate the continuation of
that signal in the future;  in contrast, the creation of an agent specifically
assigned to that harmonic signal is tightly bound to an active search process
for continuation through time – these agents serve a kind of object-oriented
role of linking together all the knowledge associated with the detection,
characterization and tracking of a particular kind of signal.  As with
blackboards, the details of representation and information flow between
agents is not dogmatically specified, leaving unresolved some questions of
how best to combine the actions of agents using different principles to
contribute to the grouping of the same signals (for instance, the co-operation
between spatial and harmonicity agents mentioned above).  In this respect, it
is possible that the probabilistic formalization of the blackboard system,
where alternative signal hypotheses may be rated on their conformance to a
collection of criteria, has a conceptual advantage.

A further innovation in the NTT work is recognized in its title, the “residue-
driven” architecture, meaning that the residue signal – the result of taking
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the input and subtracting the currently-tracked signals – is analyzed for
evidence of newly-appearing sounds.  Although quite different in detail, the
prediction-driven approach described in the next chapter was much
influenced by this concept.

Another important issue in all such systems, that of combining evidence from
disparate aspects of a signal analysis.  There is no simple solution to the
problem of combining the confidence scores of a collection of pieces of evidence
into the score that should be conferred on an abstraction they support, and
the possibility of ‘don’t know’ (highly uncertain) data complicates matters
further.  This problem was considered carefully in the music
understanding/transcription system of [Kash95], which was able to integrate
knowledge and expectations over a huge range, from the typical behavior of
harmonics in signals to the common patterns of chord progressions in
western music.  This was accomplished using the techniques of Bayesian
belief networks, which permit the integration of all known information in a
hierarchic tree of supporting (and hence conditional) hypotheses.  Application
of such principled evidence integration becomes increasingly critical as
models of auditory information processing expand in scope and complexity.

2.6.5 Other ‘bottom-up’ systems

The cues or features employed by grouping principles are the basic
determinants of the ultimate success of the approach;  without the
appropriate information captured at the lowest level, no amount of clever
inference and abstraction is going to be able to reconstruct the sound.
However, the difficulty in developing cue-detection schemes is that their full
value may only become apparent when they are used in conjunction with the
correctly-attuned element formation and grouping strategies.  This is perhaps
why the majority of effort at the moment is going into developing processing
architectures; refining the low-level cues may need to wait for a good general
architecture to emerge.

Nonetheless, there have been some interesting recent developments in this
area.  Much attention has been paid to the way that the binaural cues of
interaural time and level difference are used by listeners to judge the spatial
position of a sound and to separate it from interference.  One goal of this
general area of research is prostheses for hearing-impaired listeners that use
the same or similar cues to amplify only voices from a particular direction –
since this is a common problem area for sufferers of hearing loss, even when
compensated by amplification.  The pure gains of beam-forming microphone
arrays are applicable [SoedBB93] [StadR93], but human performance
appears to exceed this, leading to proposals of nonlinear algorithms exploiting
steadiness of spatial location and the harmonic structure of speech
[KollPH93] [KollK94] [Woods95].

These techniques have been specifically applied to the problem of auditory
scene analysis in Blauert’s lab in Bochum, Germany.  Using a sophisticated
inhibited-cross-correlation model of azimuth perception that models the
combination of timing and level cues [Gaik93], they use Wiener filtering to
boost signals from a particular ‘perceived’ azimuth in an optimal fashion
[Bodden93].  Such a system is ripe for combination with other grouping cues
for improved signal discrimination [GrabB95].  Onset is known to be
particularly influential in the perception of location [Zurek87], so the
inclusion of common-onset-type cues should be particularly beneficial.
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Although it was effectively a component of the systems of both Brown and
Mellinger discussed above, the correlogram deserves separate mention as a
distinct approach to the problem of detecting common periodicity and
common modulation [DudaLS90] [SlanL92] [SlanNL94].  The correlogram is
a time-varying two-dimensional function of frequency channel and
modulation period, generated as the short-time autocorrelation of the
intensity in each frequency channel of a cochlea model.  Several aspects of
this structure are very neurally plausible and are even supported by
physiological evidence.  Animated displays based on the correlogram analysis
convert important acoustic properties – such as micro-modulation or jitter –
into highly detectable visual phenomena of correlated motion, suggesting that
correlogram processing might form a link between these two dominant
sensory modalities.  The correlogram forms a rich basis for process-oriented
representations such as the weft, which can be used for separating mixed
voices ([EllisR95], also described in chapter 4).

Correlogram analysis is often characterized as ‘time-domain’, since it detects
periodicities in the signal using autocorrelation (delay-and-multiply) rather
than a frequency transform.  Another time-domain approach, also motivated
by the perceptual importance of small period fluctuations (or ‘jitter’) was
described in [Ellis93a].  The ‘glottal-pulse synchrony’ model attempted to
detect repeated patterns of time alignment of energy maxima across
frequency, as would appear if the different frequency channels were being
repeatedly excited by the same source such as the vocal chords of a particular
individual.  Unusually, this model looks only at the timing skew within each
energy burst and does not take account of the time between energy bursts (the
voicing period) that is the usual basis for detection.  In the model, jitter
promotes segregation of independent voices because a random displacement
of the energy pulse will affect all peaks from a given source equally, but
disrupt any chance alignment they may have shown to independent signals in
the mixture.

2.6.6 Alternate approaches to auditory information processing

So far in this section we have discussed developments in control architectures
and in cue detection, both of which are recognized components of the general
computational auditory scene analysis model introduced in the preceding
sections.  Other work does not fit so comfortably into this framework but still
clearly belongs in this survey.  We will now consider some of these.

A typical psychoacoustic experiment will repeat a short sound-event, or
alternate a pair of events, giving the listener multiple opportunities to extract
whatever information they can from the signal.  The idea that information
from each repetition is being overlaid onto a single, composite record lies
behind Patterson’s model of the Stabilized Auditory Image [PattH90].  In this
model, cochlea and nerve models generate a firing pattern as a function of
time and frequency, which is repeatedly copied into a buffer, taking its
alignment from a particular threshold or trigger that should ensure
synchrony between successive copies.  Repeated instances of the sound can
then be accumulated according to this synchronization.  Patterson has had
notable success in explaining some rather esoteric perceptual phenomena
with this model [Patt94].  However, the model as it stands does not really
address the problem of separating components in real-world, nonrecurring
mixtures, our primary focus in this survey.
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2.6.7 Neural network models

As with many complex pattern detection problems, auditory scene analysis
has attracted the application of artificial neural networks, stemming from the
neurophysiological speculations of [vdMalS86].  Unlike static image analysis,
sound processing suffers the complication of having ever-advancing time as a
variable rather than a fixed dimension, but several systems have been
proposed to accommodate this situation [Wang95].  Perhaps the most
interesting model of this kind is the one proposed by Brown and Cooke
[BrownC95], who have both previously worked on symbolic sound analysis
systems as discussed above.  In a seemingly radical break from rule-based
sound organization, they have recently proposed a network of chaotic neural
oscillators, excited from the energy emerging from a cochlea filterbank model.
Since a signal that exhibits common onset will deliver a synchronized ‘kick’ to
the oscillators across all its regions of spectral dominance, these oscillators
will tend to fall into correlated oscillation.  Overlap between the passbands of
adjacent cochlea-model channels and ‘inertia’ in each oscillator give the
system a certain amount of smoothing in time and frequency.  This, in
combination with a model of grouping by correlation of channel oscillator, can
successfully reproduce properties such as common onset and proximity
grouping, as well as streaming by frequency proximity – an impressive range
of phenomena for a fairly simple structure that is not overtly designed for
these tasks.

Reproducing properties of high-level auditory processing by the ‘emergent’
behavior of biological-style networks presents some interesting problems in
the philosophy of research and modeling.  It is very likely that the particular
solutions to detecting grouping cues employed in the auditory system will be
efficient, multipurpose structures similar to these deceptively simple network
models.  On the other hand, the reductionist, explicit approach of
characterizing and implementing individually each inferred operating
principle may be a better first step towards understanding the ‘how’ and ‘why’
of auditory operation.  Recall the distinctions made by Marr between
implementation, algorithm and ‘computational theory’;  while we are still
struggling to understand the computational theory, we might want to stick to
inefficient, literal implementations.  Once we are sure we understand just
what there is to be calculated, we are well served by clever, integrated
models.  The (somewhat anti-Marrian) objection to this approach is that in all
likelihood there are many aspects of the information processing in the
auditory system, particularly the detection and combination of cues, which
are far more easily understood in terms of the specific implementations of
their detection than by some abstract theory – imagine trying to account for
color salience and ambiguity without knowing about the three classes of
color-sensitive detectors in the retina.  Ultimately, convergence and cross-
over between implementation-oriented modeling and computational-theoretic
modeling will furnish a definitive solution to the problem of audition.
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2.7 Conclusions and challenges for the future

It is only recently that computational modeling of human hearing has gained
enough momentum to deserve consideration as a distinct field, yet as we have
seen it already contains a broad range of approaches and outlooks.  In this
chapter I have tried to impose some structure on the work that is most
directly relevant to the current project, systems that sought explicitly to
model the process of auditory scene analysis.  As they stand, these models are
vehicles for testing implicit theories of how information processing in the
brain might be structured, rather than specific solutions to engineering
problems (although, for the particular problem of speech recognition in the
presence of interference, they come quite close).  However, the main lesson
thus far is that the auditory system is an extremely subtle and robust
mechanism that requires a great deal of delicate care in its emulation.  In
particular, we saw how the single-path, procedural ‘data-driven’ models of
early researchers experienced a host of problems when exposed to ambiguous
or obscured data.

These difficulties led us to consider a range of properties that we might look
for in more successful auditory organization models, including:

• The detection and integration of all the cues critical to human hearing, as
we become better aware of just what they are.

• Processing architectures that permit adaptive use of available and
contextual information, and which intrinsically provide for the addition of
new principles and cues.

• System outputs of a form useful to specific goals of a system, be they
resynthesis of source signals or identification of particular attributes
(such as verbal content).

Several of the recent developments in the field have incorporated these
refinements, particularly the systems based on the innovative control
schemes of agents and the blackboard architecture.  The next chapter will
propose an approach to modeling auditory function that arises from
observations of this kind, and an implementation based on the approach will
then be described and assessed.
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Chapter 3 The prediction-driven approach

In the last chapter we saw the typical approaches that have been taken to
computational auditory scene analysis and discussed some of their more
problematic limitations.  I will now present my proposed solution to these
problems, the prediction-driven architecture.  This chapter reviews the main
functional motivations behind the architecture and provides a theoretical
overview of its structure.  The following chapters will examine the
implementation of the system that has been produced.

3.1 Psychophysical motivation

In the background chapter we saw how the process of sound organization in
the auditory system has typically been modeled by a data-driven structure,
where specific features in the sound signal are used as the basis for
representational elements, which are then grouped into larger entities
forming the analogs of perceptual events or sources.  However, we also saw a
number of situations where this left-to-right processing paradigm was
insufficient to reproduce the kind of sound analysis actually performed by
human listeners.  It is these shortcomings that have motivated much of the
subsequent work in this area, including the system described in this thesis.
In order to explain the particular qualities of the prediction-driven
architecture I am about to describe, let us look once again at some specific
aspects of auditory perception that cannot be handled by a data-driven model.

Inference of masked or obscured information:  Listeners are able to
cope with situations where certain features are difficult or impossible to
recover from the input signal by making estimates of the missing information
based on other aspects of the signal.  The most extreme example of this kind
of phenomenon is the auditory induction of [Warren70], where an entire
syllable that has been replaced by noise is semantically restored without
conscious awareness.  However, I would contend that similar ‘filling-in’ occurs
at less dramatic scales in almost every listening task.

My attachment to this idea comes from the sometimes bitter experiences of
several researchers in trying to recover adequate acoustic features from
sound mixtures in the construction of data-driven models [Ellis93b].  Many
sound mixtures, despite being ‘transparent’ to the human ear, present a
signal that seems hopelessly confounded and disrupted when analyzed by
conventional signal processing techniques.  There are two possible
interpretations of this: Firstly, that signal processing techniques are
inappropriate or too crude to pick out the kinds of details that the ear is using
(no doubt true to some extent).  The second possibility is that the ear cannot,
in fact, extract information directly from these messy mixtures either, and it
is abandoning direct analysis of these convoluted regions to rely instead on
guesses based on information inferred from more evident features of the
signal.  Circumstantial evidence in favor of this second interpretation is that
we already know that the auditory system can perform very considerable
feats of auditory induction, all without conscious trace of their intervention.
Thus we should expect to have the experience of ‘directly’ hearing the pieces
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of a sound mixture, even if they have in fact been supplied by inferential
guessing.  The only way to distinguish what has been ‘truly’ perceived from
that which had been inferred is to construct trick stimuli where the inference
and the actuality are different (such as the [Warren70] phrases, where the
implied syllable had been deleted prior to the addition of the masking noise,
and thus was not strictly present, despite being ‘heard’).  All this tells us is
that inference can occur in auditory processing and we should not expect to
have any introspective indication of when it is being employed.

Other psychoacoustic phenomena illustrating this kind of effect include
various ‘continuity illusions’ [Breg90], where a tone alternating with a burst
of noise will, under suitable conditions, be perceived as continuing through
the noise, in spite of the fact that the sound stimulus was not constructed
that way.  (Note that we do not say that the tone isn’t there, since the illusion
only occurs when the noise energy is sufficient to make an objective
assessment of whether the noise contains the perceived tone mathematically
ambiguous).

The kinds of mixtures that prove difficult to analyze by data-driven models
are often less ambiguous than this.  One particular problem scenario for the
sinusoidal models such as [Ellis94] is the interference between harmonics of
different sounds.  If the harmonics fall into the narrowband region of
peripheral frequency analysis, where they would normally appear as
individual sinusoids, but are close enough together in frequency to exert
constructive and destructive interference on one another, the resulting ‘beats’
will confound any sinusoid-extraction algorithm.  What, then, are we to
conclude about the mechanism at work in the human listener who is able to
interpret the mixture as the crossing of two sinusoids without any
uncertainty or confusion?  My inclination is to attribute this perception to an
inferential mechanism that recognizes when the two tones are getting
sufficiently close together to confound the output of peripheral frequency
analysis, and simply checks that some minimal conditions of the combined
amplitude until the components move apart again.  Such a mechanism might
possibly be confirmed with psychoacoustic tests on the perception of an
artificial signal that appeared to be the crossing of two tone but that replaced
the region of their interference with some artificial substitute, preserving the
larger-scale spectro-temporal characteristics of their interference but
distinguishable by a more detailed analysis that predicted the exact phase
and amplitude of each sinusoid.  A stimulus of this kind would be delicate to
construct, and I am not aware of any investigations of this kind.

Even if it turns out that human audition is more sensitive to sinusoid
interference than I am predicting, the general principle that many important
features are masked at the periphery, and that our commonplace perception
involves considerable ‘restored’ inference, can hardly be doubted in view of
our ability to understand, with effort, telephone calls made from noisy bars,
or to recognized the music being played in the apartment upstairs, despite
the fact that the greater part of the sound information is absent in both cases.
Thus we must seek to build models of auditory organization that incorporate
abilities of inference and restoration.

Context sensitive interpretation:  A common flaw in auditory processing
models is that a given local acoustic feature will always be processed the
same way.  This is in contrast to a wide range of examples in human
audition, where a particular acoustic feature may have radically different
interpretations depending on its context, i.e. the other features with which it
occurs.  We term this variation in treatment ‘context sensitivity’, although
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there are many different faces of this basic idea.  For instance, a single
resolved sinusoidal component may serve as a harmonic of various
fundamental periodicities, but even a data-driven system will only assign it
the role of a particular numbered harmonic in the context of a pattern of
other harmonics that occur simultaneously.  However, other examples of
context sensitivity are beyond the scope of a data-driven structure.

One set of instances arises from the perceptual concept of ‘priming’, i.e. the
ability of certain stimuli to bias the interpretation of subsequent events.  One
of the best-known demonstrations in auditory scene analysis is the Bregman-
Pinker experiment [BregP78] in which a single harmonic may either fuse
with a co-occurring sub-harmonic (simultaneous grouping), or stream with a
temporally-alternating tone at approximately the same frequency (sequential
grouping).  This competition may be manipulated in favor of the sequential
grouping by desynchronizing the onset of the simultaneous tone.  This
example is usually used to illustrate the distinction between simultaneous
and sequential grouping and how they can be made to compete.  However, it
may also be viewed as an example of priming, since the presence of the
isolated tone ‘primes’ the perceptual system to interpret the matching portion
of the two-tone complex as a separate object.  None of the full-blown
organization systems described so far carry enough context to differentiate
the treatment of the target tone depending on whether a priming tone has
preceded it; their architecture cannot easily accommodate such plasticity of
processing, which is a key weakness.  (However, perhaps owing to the
ubiquity of this example, a number of more limited models have displayed the
‘appropriate’ sequential grouping - see [BeauvM91] [Gjerd92] [Wang95]
[BrownC95], all of which use proximity in a two-dimensional time-frequency
plane to reproduce the effect.  Note also [GodsB95] which specifically sets out
to provide context-sensitivity in these kinds of problems using blackboard
architectures – as will I).

Another challenging example of context sensitivity in auditory organization
occurs in [DarwC92].  Their experiments consist of manipulating a mistuned
harmonic in a complex, and measuring the perceived pitch.  The frequency of
the mistuned harmonic is kept constant, but its influence on the matched
pitch of the whole complex varies according to features known to influence
grouping.  For instance, when the harmonics all occur simultaneously, a 4th
harmonic mistuned by 3% will shift the pitch of the entire complex by 0.5%.
However, if the mistuned harmonic starts 300 ms before the rest of the
complex, its influence becomes negligible; we infer that the large onset
asynchrony has excluded the mistuned harmonic from the fused complex, and
the perceived pitch of the complex is based upon the frequencies of the
exactly-tuned harmonics only.

This is a hard enough phenomenon to reproduce in a data-driven system,
since we are now saying that rather than just inspecting the pattern of
harmonics present at a particular instant, we must also keep track of when
they started, and apply a grouping penalty for asynchronous onset.  However,
Brown’s system does precisely this: when the algorithm considers grouping
two harmonics, it checks for activity in the onset maps at their temporal
limits to confirm that the start of the harmonic as represented is a genuine
energy change in the signal.  If simultaneous onsets are detected, it adds a
fixed bonus to the ‘grouping score’ between the two components.  However,
the next experiment performed by Darwin & Ciocca adds a complication that
defeats this approach: By adding a set of aharmonic components to the 300
ms of ‘exposed’ mistuned harmonic, that stop as soon as the target complex
begins, the influence of the mistuned harmonic on the pitch of the complex is
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restored.  Their motivation for this experiment was simply to dispel the
possibility that the reduction in influence was due to low-level adaptation to
the mistuned harmonic rather than high-level grouping.  However, it
presents a neat example of context-sensitivity: the influence of the second
half of a sinusoidal component on the pitch of a harmonic complex depends on
the presence or absence of a cluster of components that can group plausibly
with the first half, thereby ‘freeing’ the second half to group with something
else.
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Figure 3.1:  The Darwin/Ciocca experiments.  In panel (a), a 3% mistuning of the
fourth harmonic leads to a shift of 0.5% in the perceived pitch of the entire
complex.  In panel (b), starting the mistuned harmonic 300 ms before the rest of
the cluster eliminates its influence on the cluster’s pitch.  In panel (c), adding a
group of inharmonic partials simultaneous only with the exposed portion of the
mistuned harmonic release the remainder and restore its effect on the pitch.

We conclude that the organization of auditory patterns is, in general, a global
operation that cannot be accomplished exclusively by bottom-up, local
operations but requires some kind of influence from the higher analysis.  This
parallels many results in visual perception and would appear to be a general
feature of advanced interpretation systems.  Particular aspects of the
inadequacy of bottom-up processing in vision are discussed in [ChurRS94]
and related to hearing in [Slaney95].

Ambiguity and revision:  The examples of context-sensitivity mentioned
above, where the interpretation of a particular acoustic element can take on
several different forms depending upon the surrounding elements, is a kind of
ambiguity.  But there is another kind of ambiguity posing yet more difficult
problems for successful models, where a single element has an interpretation
that changes over its duration as the balance of evidence shifts in favor of an
interpretation different from that initially adopted.  This is evident in the
McAdams-Reynolds oboe example [McAd84] described by Mellinger [Mell91].
Indeed one of the unique features of Mellinger’s system, in contrast to other
data-driven systems, was that it could ‘change its mind’ about the
organization of harmonic partials into auditory objects as time progressed.

This is a particularly thorny problem for computer systems.  The experience
of listening to the McAdams-Reynolds example is that the sound initially
resembles a bright, oboe tone.  However, as the note is held, frequency
modulation of steadily increasing depth is applied only to the even-numbered
harmonics (e.g. 2f0, 4f0, 6f0 etc.) and this ultimately causes the perception of

two sources – a hollow, clarinet-like tone comprising the odd, unmodulated
harmonics, and, an octave above the clarinet, a tone like a soprano voice
corresponding to the modulated harmonics.  At some point in time there is a
perceptual shift when the brain reconsiders its initial assumption that the
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harmonics all belonged to a single source and instead understands them as
the combined result of two independent sources.  It is as if the auditory
system concedes that its initial organization was in error, that the sound
should have been heard as two sources from the very beginning; it is not clear
what this implies in terms of the mental representation of the portion of the
sound that has already been ‘heard’.

Another example of retroactive modification of the interpretation of a sound
can be found in the alternating noise stimuli mentioned in [Breg95]
(originally reported in [Warren84]).  Here, short segments of noise with the
same power spectral density but different bandwidths are alternated (e.g. 400
ms of 0-1 kHz followed by 200 ms of 0-2 kHz, with no silence in-between).
Regardless of how the stimulus was actually constructed, the inclination of
the perceptual system is to interpret this sound as a continuous noise signal
in the 0-1 kHz band, to which 200 ms bursts of noise between 1-2 kHz are
periodically added.  Bregman cites this as a classic example of the ‘old-plus-
new’ organizing principle, where under a wide range of circumstances a
change in the structure of a sound will be interpreted as an addition of a
novel component rather than a modification of existing, stable sources.  The
concept of revision becomes relevant if the cycle begins with an instance of
the wider noise-band.  Without any narrow band of noise to constitute an ‘old’
comparison, the initial wide band of noise is interpreted as a single source.
However, this interpretation becomes unsatisfactory as soon as the second
band of noise appears, since this change is not a particularly likely
modification of the wide noise band; the preferred interpretation becomes to
regard the initial noise burst as the combination of a high noise band (which
terminates) and a lower band (that continues as the narrow noise band).
This interpretation does not arise until after the initial noise burst has
finished.
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Figure 3.2:  The alternating noise-bands of panel (a) are irresistibly interpreted
as a continuous lower band of energy with periodic bursts of a higher-frequency
band.  In panel (b), starting with the wider band of noise may cause the initial
burst to be interpreted as a single noise rather than a combination of bands,
necessitating a subsequent ‘revision’ of the interpretation.

Thus we have seen several varieties of commonplace auditory organization
– inference, context-sensitivity and ambiguity – which present
insurmountable challenges to a bottom-up, data-driven analysis.  This
tension has spurred the development of a new approach, the prediction-
driven architecture, which is now described.
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3.2 Central principles of the prediction-driven approach

Ultimately, auditory organization modeling must aim to present a definitive
model for these puzzling perceptual phenomena.  In order to reach that
eventual goal, we need an architecture that can at least plausibly
accommodate these kinds of processing – something that is not provided by
the data-driven approach.  This is the purpose of the prediction-driven
architecture.  There are, of course, many influences on the structure of the
architecture, some based on clear theoretical requirements, others derived
from poorly-defined intuitions resulting from previous experiences; it would
be futile to attempt to enumerate them all.  Having set the scene by
highlighting the problematic phenomena, I will being the presentation of the
architecture by introducing some of the key concepts related to its operation:

World model:  The first concept to introduce is the idea of a world model.  To
use Marr’s term, the ‘computational problem’ of audition is the construction
of a simplified representation of the external world that accounts for the
received acoustic stimuli while simultaneously satisfying other constraints,
such as sensory information from other modalities and underlying
assumptions about the environment.  For our purposes, a world model is
characterized as a collection of independent objects whose aggregate behavior
explains – and, critically, predicts – the observed signal.  (The choice of this
definition was made because it captures what I believe is the most important
aspect of our perceptual interpretation of the world, namely that we
understand the world as being constructed from the combination of
independent entities).

Interestingly, Churchland et al [ChurRS94] come out strongly against this
concept as a basis for modeling visual perception, preferring goal-specific
processing that derives only the variables of use to the task at hand, rather
than wastefully extracting details that will not be needed.  Their arguments
are powerful, but open to the rebuttal that as the number of special-purpose
tasks served by a perceptual system becomes very large, the economics shift
towards a single, general-purpose analysis; the approach best suited to the
human visual system may be qualitatively different from the goals and
constraints applicable to that of a fly.  It is also possible that audition is
significantly different from vision in that it has no limited ‘field of view’, nor
any obvious analog of the fovea;  it is practically impossible to ‘ignore’ certain
aspects of auditory stimuli, whereas resource limitations in the visual
periphery make selective attention a central and early principle of operation.

Avoiding the derivation of features other than those specifically required for a
task is one alternative to a world-model centered approach.  Another
distinction may be drawn between systems based around world-models and
systems which, while having no particular ideological objection to general-
purpose representation of the world, still lack a well-delimited portion of their
structure fitting this description.  This ‘delocalization’ of the world model
might occur for one of two reasons:  On one hand, many systems have implicit
narrow assumptions about the structure of the world, e.g. as a single pseudo-
periodic target signal amidst non-target.  In this situation, the ‘world model’
consists of the parameters of the identified target and an undifferentiated
‘everything else’; the limited expressive capacity of such a representation
leaves it poorly described as a world-model.  Another possibility is a system
that calculates all the information to make a world model, but chooses not to
organize it around representations of external objects – perhaps focusing
instead on one cue at a time without drawing connections between the
different cues as manifestations of the same cause.  While this may appear to
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be only superficially different from a world-model based system, the different
perspective is likely to have a profound influence on the types of computation
and reasoning performed.

Consistency:   How do we connect a world model with a stream of sensory
data?  The data-driven model presents one answer, which is to construct
successive levels of abstraction, each stage founded solely on the identifiable
features in the data.  The alternative here is to generate the abstractions by
some other means, then to require only consistency between the model and
the stimulus.  This concept arises as a result of the range of uncertainty
introduced by the abstraction process.  For a given perceived signal,
particularly if we consider sensory noise, there may be any number of
possible explanations.  How do we choose among them?  The data-driven
answer is to be maximally conservative, only to postulate entities whose
presence cannot be doubted.  In the prediction-driven framework, the model
itself is obtained by a wider range of mechanisms (i.e. predictions from the
existing components), and the ‘connection’ is limited to ensuring that the
model falls somewhere in the space of uncertainty.  Depending on how model
and stimulus uncertainty is represented, there may be a wide range of
possible matches, with a continuum of resulting confidence or quality metrics,
rather than a single, brittle yes/no comparison.

To provide a precise definition for consistency we will have to define our basic
beliefs about the use of cues by the auditory system, something inevitably
open to debate given our current state of knowledge.  A provisional list of the
most basic stimulus properties would include:

• Energy in the time-frequency plane:  Activity in a certain area of the
auditory nerve is directly indicative of acoustic energy in a certain
frequency region, and the basic task of the auditory system is to account
for any such deviations from absolute silence.  Absence (or inadequacy) of
perceived energy is also a very strong constraint: any explanation that
requires energy in time-frequency regions where no energy is in fact
detected is clearly inconsistent with the observations.  (This explains why
it is easier to understand speech interrupted by noise bursts that if the
interruptions are silent – the noise-burst corrupted signal is consistent
with a continuous speech stream, but the silences are not [Breg95]).
Thus close adherence to the time-frequency energy envelope extracted by
the peripheral filtering appears to be an important condition of
consistency.

• Periodicity:  A second very important cue is the presence of consistent
periodicity along time and across frequency.  This is detected by listeners
at surprisingly low signal-to-noise ratios [Colb77] and has a strong
influence on the percept, suggesting a particular mechanism for and
perceptual emphasis upon this feature.  We may conclude that
‘consistency’ must include an account of any such periodicities detected in
the signal.

Prediction as a starting point:  The third introductory concept for the
prediction-driven architecture is the role of the predictions themselves.  A
world model defines a representational space, and the criterion of consistency
allows us to decide when our model is acceptable, but how do we come up
with a candidate model, especially in view of the underdetermined nature of
our criterion?  The search space is huge and the solutions are not unique, but
rather than continually starting from scratch (the data-driven approach), we
can use predictions as the first estimate for the representation.  Ignoring for
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the moment the bootstrapping problem of starting from a situation of no
knowledge, if we already have some beliefs about the sound-producing
entities in our environment as embodied in our current world-model, we can
exploit that knowledge to predict what will occur next.  (In practice, this
encompasses simple first-order continuity prediction through to complex
inference on the basis of similarity to remembered sound-patterns).  If our
prediction is then consistent with new observations, we do not need to invoke
any further computation to account for the input signal; our analysis is
complete.  Even if the prediction is not immediately acceptable, we have a
starting-point that we can seek to modify to achieve consistency.

An interesting corollary of this approach is that the analysis may overlook
valid alternative explanations if it already has a satisfactory explanation pre-
empting the search for others.  This is a serious issue in artificial reasoning
systems based on this kind of approach – the ‘termination problem’ of
[CarvL92a] – but has a nice parallel with certain auditory illusions, where a
sound is unwittingly misinterpreted as the result of a misleading suggestion
(for instance, the fusion of musical instruments, sometimes perceived as a
single source owing to their carefully aligned onsets and harmonics, yet in
reality several different sources).

The key point about this process is that the prediction, originating in the
internal abstraction of the world model, can include many subtleties and
details that would not necessarily be derived directly from the observed
features, but are none the less consistent with them.  Thus our analysis
system has the potential to ‘detect’ the kind of detail that we typically
experience in real audition but which generally eludes current, data-driven
systems.  In this way, a prediction-driven system opens the possibility,
subject to sufficiently sophisticated prediction mechanisms, for inference of
obscured data and context-dependent treatment of features.

Model-fitting as constraint-application:  The process of delineating a
representational space – the world model – then choosing a point within the
space to correspond to observed data has been discussed so far as model-
fitting.  A subtly different perspective is to look at it as the application of
constraints:  the essence of any model is that it assumes a certain underlying
structure in the source, leading to codependence in the observations.  Finding
a model, at whatever degree of sophistication, that can be fit to part of the
observed data indicates that the data obeys the implicit constraints of
codependence.

It is these constraints that permit the model to make predictions.  For a
region where observations are hidden or ambiguous, the internal
dependencies of a model that has been fit to the observable parts of the data
permit reasonable estimation of the missing data.  For unobscured data, the
constraints operate to select among all possible model instances the one that
is appropriate; where data is obscured, their role changes to that of the source
of best-estimates of missing information.  The prediction-driven architecture
manages to unify both of these roles in a single predict-and-verify loop, but
the different interpretations are illuminating.

The constraints that are actually applied, i.e. the kinds of model that the
system employs, are intended to mirror the organization and sensitivities of
the auditory system.  These constraints might be viewed as arbitrary
empirical limitations arising from our overall aim to reproduce human sound
organization.  But of course the ear has evolved to be particularly well
adapted to kinds of sounds and sound mixtures that are actually encountered
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in the real world.  To the extent that we can successfully devise a
representation that duplicates the saliences and limitations of the auditory
system, we may assume that the constraints being applied are the useful and
powerful assumptions that listening must employ in order to perform its
astonishing feats of scene analysis.

3.3 The prediction-driven architecture

We can now examine how these concepts are assembled into the architecture.
For the purposes of the explanation, the prediction-driven system will be
divided into four main pieces: the generic sound elements at the core of the
world-model, the higher-level abstractions, the front-end processing, and the
prediction-reconciliation engine that connects them all.  The arrangement of
these pieces is illustrated in figure 3.3, and each part is discussed below.
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Figure 3.3: Basic layout of the prediction-driven architecture, showing how the
engine manages explanation of and reconciliation to the front-end features by the
core world model, as well as updating and deriving predictions from the higher-
level abstractions.

The core world-model:  We have already introduced the concept of a world-
model in abstract terms, and the core of this system is such a collection of
representations of independent sound sources perceived as existing in the
environment.  So far I have been rather vague about the concept of a
representation, but at this lowest level the meaning is quite specific: the core
consists of a collection of generic sound elements, instances of
representational entities that express the perceptually-relevant aspects of the
kinds of sounds that occur in the world by capturing all the overtly-dependent
energy from a single source into a single element.  At present there are three
classes of elements, whose structure has been chosen to give a satisfactory
expression of the different kinds of subjective experience of sound, to be a
reasonable basis for modeling arbitrary signals, and to embody some of the
real-world constraints apparently used in auditory organization [Ellis95b].
The elements are:

• Noise clouds:  The simplest explanation for the detected signal is as
unstructured noise energy.  Noise cloud elements have relatively few
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constraints on their structure, but they also encode rather little
information about the assumed source, weakening their ability to predict.
The rationale for having this kind of element lies in the everyday
perception of certain sounds as ‘noise-like’, e.g. wind blowing through
trees, water running through pipes, or the fricative sounds in speech.
When we hear a sound as noisy, we largely ignore its fine structure; it is
mainly the average properties (such as the overall spectrum) that are
significant.  Thus a noise element is parameterized by its intensity over a
range of time-frequency, but this surface is rather sparsely sampled,
reflecting an assumption of smoothness in the underlying expected time-
frequency intensity.  Noise clouds can, however, start and stop abruptly,
as with all elements.

• Tonal elements (wefts):  Another very broad and important class of
sounds is those  with a perceptible periodicity, generally experienced as
pitch.  Such sounds are represented by an element we have christened
the ‘weft’ [EllisR95].  Wefts have the same kind of smooth time-frequency
energy envelope that characterizes a noise cloud, but in addition they
have a period-track, recording the detected periodicity of the energy
whose extent is described by the envelope.  The periodic sounds that are
the domain of wefts were also the exclusive focus of the previous sound
organization models described in chapter 2; however, those models tended
first to extract individual sinusoids, then group them together on the
basis of their lying in a harmonic pattern.  The weft avoids this
perceptually suspect separation of individual harmonics by representing
all energy associated with a particular periodicity in a single  element
even at the lowest level.  (Note, however, that the analysis procedure for a
weft is derived from the ‘auditory objects’ of [Brown92].  The difference
lies mainly in the order of operations:  Brown carves up his time-
frequency plane, calculates a pitch-track for each segment, then groups
segments whose pitches match.  In weft analysis, the segmentation is
based on an initial pitch-track extraction from the entire signal, allowing,
incidentally, the segments to overlap.)  The details of weft analysis are
presented in greater detail in appendix A.

• Transients:  The third representational element is designed to account
for very rapid bursts of energy that are too short to have any pitch, and
also too short to be sensibly modeled as some kind of steady-state noise
process.  The brevity of such a transient event means that its spectral
detail is low, and it is characterized by a broad spectrum and some
indication of its duration and decay.  The class of perceptual events that
this element is seeking to model are the clicks and cracks of the everyday
sound environment.

The elements are intended to be the most generic components needed to
express any sound in terms of its perceptually important qualities.  Thus the
approximate nature of the noise model, where most of the detail of the signal
is deliberately ignored in favor of the average energy over some large time
window, would be entirely inappropriate for applications where information
may be present in that detail.  However, because we are dealing with human
perception of sounds, we are justified in treating certain large classes of
sound as essentially equivalent.  (The precise formulation of the noise
element does not exactly achieve this – however, the intention is to have an
element that precisely describes the experience without recording any
unnecessary detail).
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Higher-level abstraction hierarchy:  The generic sound elements of the
core world model form the lowest level of the system’s representation of the
sound-world.  They are the basis of an abstraction hierarchy wherein
elements are explained as the outcome of more sophisticated causal
structures (e.g. repetition of remembered patterns, instances of detailed
classes such as speech).  In theory, this abstraction could be arbitrarily
complex and refined (speech is a good example), just as long as it can be
realized into a collection of these bottom-level generic elements.  This
hierarchy is an important part of the overall architecture, although it has not
been very much developed in the current implementation.  It is responsible
for two of the key advantages of this approach: the ability to infer corrupted
or obscured information, and the possibility of extending a particular instance
of a sound understanding system with new knowledge in the form of
additional abstractions.

Front-end feature analysis:   This consists of the signal processing
primitives applied to the input sound waveform to derive the attributes that
the world model must match.  I have already mentioned the two kinds of
feature that must be explained – the overall energy envelope and the signal
periodicity.  The energy envelope is calculated as the rectified, smoothed
output of a fixed, linear approximation to a cochlear filterbank, and provides
a general indication of the signal energy at each time-frequency location after
removing the fine detail.  The periodicity detection takes the short-time
autocorrelation of the signal in each peripheral frequency band and
integrates this across channels to detect strong periodicities in the signal.
(Greater detail on this processing is provided in the next chapter).  Both of
these cues are ‘indispensable’, that is, a world-model cannot be deemed
consistent unless it accounts for these cues with a high level of accuracy.

It is possible to have additional forms of cues that are consulted only when
they are needed.  Onset is an interesting example:  Many auditory models
acknowledge the demonstrated importance of onset in the formation of
perceptual wholes by having specific onset-detector circuits.  (This tendency
is encouraged by direct physiological evidence of such detectors [HewM91]).
Such detectors are somewhat redundant in a system that is already following
the energy envelope of a signal, since an onset will be reflected in that
domain too;  it may be that the special perceptual importance of onsets is as
much an aspect of deeper processing as of the peripheral circuitry.  However,
a system that can explain a rapid increase in energy either as a brief click
(the transient sound element) or as the beginning of a sustained energy burst
(noisy or tonal) would benefit from some kind of peripheral detector to
distinguish these two conditions, perhaps by suitable filtering of the channel
envelopes.  This additional onset-discrimination cue would not be included in
predictions and would not be consulted in determining the consistency of a
prediction.  However, under certain conditions it could be used by the
explanation process to guide the creation or modification of model elements.

Prediction-reconciliation engine:  Tying these pieces together is the
engine comprising all the control logic to maintain the world model, supervise
the construction of the abstraction hierarchy and the formation of predictions.
It must then check the consistency of the predictions with the front-end cues,
reconciling any prediction error by modifying the representation as
necessary.

From the perspective of a real-time system, where sound is being explained
on-the-fly, the force driving the progress of the analysis is new information
becoming available from the peripheral cue detectors.  The first step is to
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compare this with the current predictions.  Assuming the stimulus is
behaving consistently with the current world model, these predictions should
be adequate.  There will be slight differences between the predicted and
actual observations, corresponding to the residual unpredictability of the
external sources, but these are reconciled by making minor modifications to
the current elements.  (Apportioning of prediction error between overlapping
objects is rather delicate, as discussed later).  This additional confirmation of
the current representation is propagated up the explanation hierarchy, which
then permits modifications of the current predictions to descend the
hierarchy and be reflected in the base representation.  In this case, the loop is
ready to start again.

However, the observed signal may not be consistent with the predictions, in
which case the engine must make more radical modifications to the world
model.  Where there is significantly less energy in the observed signal than in
the prediction, the engine looks for a world-model element to terminate, such
that its removal would restore consistency.  On the other hand, excessive
observed energy is handled by the creation of one or more putative
explanatory elements (perhaps on the basis of additional cues as discussed
above).  These changes to the bottom level of the explanation hierarchy will
trigger modifications at higher levels, according to specific rules attached to
each abstraction, and possibly resulting in further changes at the lowest
level.  The net result, however, is a new prediction with which to continue the
analysis.

The actual implementation of the analysis engine is as a blackboard system
and is discussed in chapter 4.

3.4 Discussion

The basic exposition of the architecture raises many issues, including relating
it to the perceptual phenomena introduced at the beginning of this chapter.
Some of the relevant qualities of the approach are discussed below.

Inference:  Under the right conditions, a prediction-driven system can
perform inference on incomplete data where some cues have been obscured.
As discussed above, model fitting is a form of constraint application: Each
level at which a model can be constructed reflects additional constraints that
the input data has been found to satisfy.  Assuming that there is sufficient
uncorrupted evidence to indicate an appropriate abstraction with little
ambiguity, the resulting analysis will be confirmed when the predictions of
that model are found to be consistent with the input – even in the area of
obscured data, since although a corrupting signal may have prevented cue
extraction in the first instance, it will also preclude the refutation of
predictions in that region.  Thus the combination of a specific explanatory
hierarchy, an analysis engine that searches the solution space, and a success
condition that demands only consistency, leads directly to a system capable of
inference-style phenomena, where missing cues appear in the internal
representation just as if they had been directly perceived.  The tricky part is,
of course, the model hierarchy – expressing the possible configurations of cues
with sufficient flexibility to match the full range of sounds that occur, yet
with sufficient precision to be able to make useful predictions of the cues that
are absent (or at least to extract the same level of information despite the
missing cues).  In order to perform the phonemic restoration examples –
where a linguistically-significant syllable is inferred – the internal analysis
needs to extend all the way up to the semantic constraints on the content of



60 3: Approach

the sentence.  While we are still a few years away from this degree of
automatic language understanding, examples of inference at lower levels –
such as the perceived continuity of tones through noise bursts – is quite
feasible.

Context-dependence:  A similar argument can be made to explain how this
approach to analysis results in treatment of particular cues that depends
heavily on their surrounding features.  The constraints represented by the
current context will determine the space of explanation uncertainty within
which a particular cue must be accommodated, and hence the role served by
that cue may be radically different in different situations.  This seems almost
too obvious to state given this kind of approach to analysis, but it should be
contrasted with a purely bottom-up analysis:  In systems of that kind, there is
no attempt to build a high-level abstraction on the basis of part of the raw
data, then adapt the processing of the remainder conditional upon that
abstraction;  the data-driven systems, as I have characterized them, work
only by synthesizing data at each level of abstraction, applying all possible
required processing at each ascending level of representation without the
benefit of previous, more abstract analyses.

Ambiguity:  A particular set of information may not uniquely specify an
abstract interpretation.  To use a very high-level example, we may hear a
sound and be unsure as to whether it is the doorbell or the telephone.  In such
situations, the system could create a range of plausible hypotheses and make
distinct predictions for each.  These hypotheses will be maintained as long as
their predictions can be reconciled to the input signal, the hope being that
some later information (such as the regular ringing pattern of the telephone
compared to the increasingly frustrated repetitions of the doorbell) will
eliminate the incorrect conclusions.  This approach of handling ambiguity by
pursuing multiple hypotheses is a common feature of blackboard systems
[Nii86] [CarvL92a], as well as having proved its value elsewhere [Rutt91]
[Rosen92]. However, difficulties arise when the number of hypotheses that
are produced becomes unmanageable:  Using flexible models to produce
fewer, more highly parameterized fits to a given signal helps to restrict this
problem, but there is a fundamental combinatorics problem between
independent ambiguities for which a solution better than enumeration has
yet to be found for this work.

Revision:  The second aspect of ambiguity mentioned at the start of this
chapter is the situation where an analysis at one stage of processing is
rejected sometime later on – for instance, the broad noise band that suddenly
loses a big chunk of its spectrum, suggesting that in fact it had originally
been two spectrally-adjacent noise signals and that one of them has stopped.
If there had been any prior hint that this was the case, the system might
have been maintaining two alternative hypotheses – the hypothesis that the
noise was a single-band, which would ultimately have been rejected, and the
alternative hypothesis that the signal is a combination of bands which would
have sustained.  However, assuming that the possibility of a combination had
not been postulated, the collapse of the single-band hypothesis poses
interesting processing choices.  To make the historical analysis consistent
with its revised beliefs, the system would need to go back in time and re-
represent the broad band of noise in light of the new information.  Nothing
about the architecture prevents this kind of backtracking, however, the focus
has been on processing new information as it arrives.  It is not clear how
much access or attention should be given to past events once they have been
processed, particularly since we assume that progressively less information is
held for events further in the past.  On the other hand, the context
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comprising these past events will influence the current and future processing,
thus the system needs at least to revise the more abstract levels of its model
to incorporate its changed interpretation of the passed noise burst, for
instance to ‘prime’ the analysis to interpret added noise in the future as a
repetition of the retrospectively-constructed second band.

Competition between hypotheses:  In the previous paragraph I invoked
the idea of the system maintaining multiple explanations as an interim
measure to handle the situation when the cues received are insufficient to
distinguish alternative interpretations.  Given the possibility of a large
number of competing hypotheses, we need some approach to choosing which
of them to develop, and a way to dispose of past possible interpretations that
have become very unlikely.  To achieve these aims, each hypothesis has an
associated quality rating which reflects the confidence with which that
abstraction accounts for the relevant aspects of the input data, and can be
used to choose the most promising from among a collection of hypotheses for
further processing effort.  This rating is derived from the goodness-of-fit
between the particular constraints of that model and the data it is seeking to
explain.  At higher levels of abstraction, it is also influenced by the ratings of
its supporting hypotheses.  Since the progress of the analysis is guided by
these ratings, they demand some care in their construction.  They can be
related to probability, since a successful explanation for a given set of data
with a low a priori probability provides the most additional information about
the situation, and is thus the most promising analysis to pursue.  A more
constrained hypothesis, such as a tonal sound, should be rated above a more
general alternative like a tone burst, all other things being equal.  The rating
of hypotheses, according to a probabilistic or minimum-description-length
principle, is described in chapter 4.

Prediction-led search:  As we observed above, the predictions provided by
the world-model provide a starting point for the search for explanations of
new data.  If the prediction is adequate, no search is needed at all.  But even
when some kind of exploration is required, having a specific starting point
that is presumably quite close to a good solution is a considerable advantage
over a system that starts from scratch to account for each new piece of data.
From the perspective of searching the solution space, the use of predictions
makes it feasible to have a more intricate, ambiguous space and still arrive at
good solutions with limited computational effort; data-driven systems tend to
require simple solution spaces with unique solutions that permit the direct,
bottom-up analysis of input data.  The explanatory redundancy of the generic
sound element representation, where a certain patch of energy might be a
single noise element, or the overlap of several, or perhaps a tonal element
instead, would be intractable without some way rapidly to locate and choose
between the possible alternative explanations.

Resynthesis:  There are many practical reasons to wish for a path to
resynthesis in a model of sound organization.  Perhaps the most important at
this point in the development of the field relates to assessing the outcome of
analysis – listening to a resynthesis based on a system’s analysis often gives
the most insight into system behavior, and opens the way to subjective tests
of the system (as discussed in chapter 5).  The definitions of the generic sound
elements ensure that they include sufficient information to permit a
resynthesis of an actual sound matching the recorded characteristics; because
the elements are essentially concerned with the physical properties of the
sounds they represent, such resynthesis is relatively straightforward.  For
noise elements, it is simply a matter of amplitude modulation of noise signals
filtered into the different frequency bands, and tonal elements can be
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similarly reconstructed by starting with a pulse train.  More details of the
resynthesis are provided in the next chapter.

Encoding uncertainty in predictions:  Throughout the system, signals
are represented not simply as levels, but as probability distributions – in
most cases by associating a variance to each ‘expected’ signal level.  Where
the value is not intrinsically uncertain, such as the observed signal coming
from the front-end, this variance can be zero, although a value indicating
sensor noise might be more appropriate.  This stochastic formulation is
necessary for instance in the predictions made by noise elements, since the
noise is modeled as a steady average power which predicts the distribution,
but not the individual values, of the samples observed at the front end.  The
stochastic representation of predictions has other uses, such as permitting
the expression of uncertainty in model parameters.  It also provides a
convenient domain for the combination of predicted levels, even those
contributed by disparate elements.  One particular example is in the
combination of tonal elements:  if two narrow-band periodic signals overlap in
frequency, the likely result is constructive and destructive interference
between their waveforms – known as ‘beating’ in the case of close, steady
sinusoids.  The precise amplitude contour of this beating is sensitive to the
exact phase alignment between the two signals, yet the representation,
following perception, is not particularly concerned with phase and does not
predict it.  However, beating can be accommodated by recognizing the
situations where it is likely to occur, and widening the variance of the
amplitude prediction in that area to encompass the full range of intensities
that can result from the interference.

Error allocation by parameter uncertainty:  In the description of the
engine’s processing loop, I mentioned that when a prediction is found to be
adequate, there will still be a small prediction error, which is then divided
among the contributing elements to trim their parameters to match the
known input as closely as possible.  This distribution can be troublesome, for
instance in the case where more than one object has contributed to the
predicted level in a particular time-frequency cell: what error should be
assigned to each one?  One approach might be to pro-rate the error according
to each object’s contribution to the prediction; a better approach is to weight
this allocation according to the parameter uncertainty of each element.  An
element that has been successfully and accurately predicting the observations
should not be asked to accommodate as great a proportion of the prediction
error as a recently-created element whose precise identity has yet to be
quantified, even if the more stable element contributed a larger value to the
prediction.  To permit this kind of behavior, each element provides an ‘error
weight’ indicating its parameter uncertainty and hence its preparedness to
accept prediction error, and the error is apportioned on this basis.

3.5 Conclusions

The prediction driven architecture is presented as an alternative to
conventional data-driven systems.  It is better able to emulate some common
hearing phenomena that bottom-up analysis is hard pressed to reproduce.
We have reviewed some of these phenomena, then considered the underlying
concepts and the main modules of a prediction-driven system.  The ways in
which the architecture helps to address the motivating problems have been
developed in more detail.  There remain a couple of broader issues, mentioned
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in the introduction, which should now be considered: extendibility of the
architecture, and its plausibility as an auditory model.

Extendibility:  This was a principal motivation behind the development of
the architecture, different from the consideration of problematic phenomena.
At this early stage in the field, it is unrealistic to aim to build a model of
auditory organization that is anything like complete, or even that is largely
correct in the details it does address.  Recognizing that the process of
continued research in computational models of auditory scene analysis will
involve many modifications and additions to the systems of today, it would be
preferable to work with an architecture that is amenable to changes without
entailing major changes to every component.  This is a luxury; it is difficult
enough to build a model of any kind, and imposing additional constraints
unrelated to the actual function of the immediate goal may not be feasible.
On the other hand, the robust adaptability to different conditions shown by
the auditory system suggest that it is highly modular and plastic, and thus
this should be an attribute of a model for functional, as well as logistic,
reasons.

Serving the twin goals of suitability for future development and embodiment
of modular, adaptable theory of auditory organization, the prediction-driven
architecture offers significantly improved flexibility for extension compared to
previous auditory organization models.  To a certain extent, this extendibility
arises from the fact that the architecture in itself does not comprise a
complete, operational model: it requires the addition of abstractions and their
associated rules to provide the structure in the explanation hierarchy.
However, the framework that such abstractions fit into provides for the
addition of such innovations with the very minimum of programming.

The second aspect contributing to the extendibility of the system is the way in
which the engine incrementally develops hypotheses according to their
current rating scores, a common feature of such blackboard systems.  Rather
than having a system where the sequence of analysis steps is explicitly
specified in advance by the programmer, the system as described selects,
from among the possible hypotheses and rules, the one that is currently rated
as most probable.  Thus if a new class of abstraction is added, all it must do is
ensure that the rules it provides give themselves a sufficiently high rating
when the circumstances are right for their instantiation.  The engine will
then automatically invoke the new methods, even though it was previously
unaware of this kind of abstraction.

Finally, new rules may also employ information from new kinds of front-end
cue detector, which they will know to invoke.  There are, of course, limits to
the adaptability of the basic engine: there is no way to add new
‘indispensable’ cues without rewriting the prediction-reconciliation rule.
However, there is no barrier to adding ‘advisory’ cues to guide the creation
and development of new kinds of element or other representation.

In the face of such broad claims to flexibility, it might be useful to review
what the architecture actually provides over a general-purpose programming
environment.  Apart from the basic hypothesis hierarchy and rule system
framework, the key aspect of the system is the emphasis on analysis by
prediction.  Added abstractions must provide predictions so that the basic
analysis-prediction loop can continue, allowing the advantages of inference
and context-sensitivity to accrue.  The implementation provides a base set of
rules and abstractions around which larger systems may be built.  The
specifics of the rule system developed so far are presented in chapter 4.
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The prediction-driven architecture as a theory of auditory
perception:  In the introduction, I emphasized that the goal of this work was
to model human auditory organization both in terms of its functional output
(so far as that can be established) and in terms of its internal processing by
which it arrives at those results.  But the presented architecture is based on
specific computer-science ideas, such as the blackboard structure, that have
only the most tenuous relation to human information processing.  Has the
goal of modeling the internal operation of the auditory system been
abandoned?

Well, not deliberately.  Systems described as seeking to duplicate the internal
operation of the brain often involve models of neural circuits: the operation to
be duplicated is conceived at a very literal level.  However, as discussed in
chapter 2, and as powerfully argued by Marr [Marr82], there are many levels
at which to model the function of a perceptual system.  While symbolic
reasoning systems such as the prediction-driven architecture raise profound
questions over how they could be implemented with neurons, the fact remains
that such systems often provide an intuitively satisfying reproduction of the
more abstract aspects of our cognition (for instance, the classic planning
systems of [NewS72] or the broader theories of mind in [Minsky86]).  The
prediction-driven architecture is offered in this vein: I do not venture to
suggest that exact analogs of hypotheses or the flow of abstraction will be
found (although they might exist).  However, the strength of the architecture,
and its claim as a model of perceptual processing, lie in its ability to
accommodate actual phenomena of restoration and inference;  it is difficult to
think of any system for which this could be true other than one more or less
based on the concepts that have been presented.

At this stage we have seen the kinds of phenomena motivating the new model
architecture, and discussed several aspects of why the architecture that has
been presented is an appropriate response to these challenges.  These rather
abstract ideas will become more concrete in the next chapters, where the
architecture is examined through the description of an implementation that
has been developed to test these ideas.
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Chapter 4 The implementation

This chapter describes the computer implementation of a system that follows
the prediction-driven principles of chapter 3.  This ‘sound organization’
system analyzes real sound scenes into an abstraction founded on generic
sound elements through a process of incremental prediction and
reconciliation between the observed sound and the internal representation.
Multiple hypotheses concerning the explanation of the actual sound compete
through their ability to make accurate predictions.

The current system cannot be considered complete, certainly not as a model
of human auditory organization, nor even as an implementation of the
prediction-driven architecture.  However, it does serve to make concrete
many of the concepts involved, and despite its limitations it exhibits
interesting and useful behavior in the analysis of real-world sounds.  These
will be described in chapter 5, Results.

4.1 Implementation overview

4.1.1 Main modules

Before describing each system component in detail, a brief overview of the
broad system structure and operation will give a context for the more specific
descriptions.  Reflecting the structure introduced in chapter 3 and repeated
in figure 4.1, the implementation divides into four pieces:

• The front-end: Fixed numerical signal-processing algorithms are
applied to the raw acoustic signal to translate it into the domains in
which the prediction and explanation occur.  The main pieces of the front
end are a filterbank to model the frequency-selective decomposition of the
cochlea, and a correlogram-based periodicity-detection scheme acting as
the foundation for periodicity-based signal grouping and explanation.
There is considerable evidence for  some structure broadly comparable to
the correlogram in the early auditory physiology [Lang92].

• Core representational elements:  These are the pieces from which a
model explanation of the observed sound is constructed.  As introduced in
the previous chapter, there are three different kinds of elements,
specifically aimed at noisy sounds, transient sounds and pitched sounds.
Each kind of element is characterized by a set of internal constraints,
which, in conjunction with the parameters for a particular instance,
define the sound-object to which it corresponds.  Resynthesis into sound
for individual elements can be accomplished based on this information.

• The prediction-driven engine: The blackboard-based collection of
rules and procedures comprises the engine by which the internal model of
the sound is constructed, and its predictions are reconciled to the
correlates of the observed sound.  This portion includes the management
of competing hypothesis-explanations and addresses issues such as the
allocation of prediction error between overlapping elements.
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• Higher-level abstractions: Larger-scale organizations of the basic
elements to accommodate more complex structures present in the real
sound.  Although rather inadequately developed in the current
implementation, this open-ended explanatory hierarchy gives the
prediction-driven system the potential to recognize and track arbitrarily
complex signals even when they are obscured – the kind of phenomena
observed in auditory restoration.
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Figure 4.1: The main modules of the prediction-driven architecture (as fig. 3.3).

4.1.2 Overview of operation: prediction and reconciliation

The prediction-driven architecture specifies that an internal model should be
developed through reconciliation of its predictions with external observations;
in practical terms, this proceeds as follows: At a given moment in time, the
internal configuration of sound elements and the abstractions they support
allows a prediction to be made of the observed signal for the next instant.  For
example, a noise element, in the absence of a more sophisticated
interpretation, will predict that the next time slice will contain the same
noise spectrum that was the model for the current slice, and a click element
will predict that the energy from its transient will have decayed from the
current values at the rates assigned to each channel.  Where the elements are
the support for higher-level abstractions, the predictions could be
correspondingly more sophisticated.

The predictions that are made are probabilistic, that is, the expected value of
the signal is given along with a margin of uncertainty, encoded as separate
deviation bounds for positive and negative differences from the expectation.
This variance in the prediction arises both from uncertainty in the
parameters of the predicting model, and from the fact that certain models
cannot exactly specify the future form of their element’s signal (such as noise
clouds, which contain an nondeterministic component).  At a given time,
there may be several competing hypotheses as to the correct explanation of
the observed signal, each with its own set of elements.  Within each group,
the predictions of each element are gathered and combined according to rules
specific for each group; generally the elements are considered to be
incoherent, and thus their predictions add linearly in the power domain.
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When the information for the new time slice arrives, it is compared with the
prediction that has been made.  If the actual signal is within the error bounds
specified, the prediction is deemed to have been adequate, and no changes to
the set of elements is needed.  The engine simply notifies the elements of the
actual signal observed (to allow them to update their parameters), then
continues.  On the other hand, if there is too much energy in the observed
signal to be accountable with the prediction, the engine seeks to create an
additional element to ‘soak up’ that energy.  If the observed signal contains
less energy than the minimum predicted, the engine will try to terminate
some of the existing elements to permit a consistent explanation.

In the remainder of this chapter, each of the main modules is considered in
detail, giving a complete picture of the overall implementation.

4.2 The front end

The numerical processing of the front-end converts the raw acoustic signal
(one-dimensional pressure variation as a function of time) into the domains in
which explanations must be provided.  As the first stage of a model of the
auditory system, it has the strongest correspondence to an identifiable
portion of the auditory physiology – namely the periphery of the cochlea and
immediately succeeding neural centers.  However, even in this most literal
subsystem, the correspondence is inevitably stylized, reflecting the beliefs
implicit in this model about the relative importance of various aspects of
peripheral processing.  The arrangement of front-end processing modules is
illustrated in figure 4.2 and each is discussed below.
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Figure 4.2:  The various components of the front-end processing in this
implementation.

4.2.1 Cochlear filterbank

In common with other models of auditory processing, the analysis begins with
a frequency decomposition corresponding to the frequency-selective resonant
properties of the cochlea.  The particular implementation used here is based
on the model of [PattM86] [PattH90] which has been widely used, for
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instance by [Brown92] and [MeddH91] – my particular implementation is
based on the work of [Slaney93].  It has the following properties:

• Fixed, linear array of bandpass filters:  It has long been known,
through measurements of auditory nerve fiber firings in response to
swept tones, that the effective tuning of the cochlea is variable, tending to
broaden or saturate with increasing intensity.  However, for the purposes
of this model, this effect is assumed to be secondary to the breakup of the
signal into different frequency bands which is taken as the most
important function of the cochlea; the filterbank used here models only
this primary function.  Note that several models have addressed the
nonlinearity of frequency response [Sieb68] [Ghitza88] [Slaney88]
[GigW94], but the manner in which this aspect of the physiology benefits
the process of hearing is not clear.  A linear filterbank, on the other hand,
has the advantages of efficient and well-characterized operation, favoring
this selection in the absence of a more concrete reason for its rejection.
Preserving as much linearity as possible also greatly aids the inverse
problem of resynthesis, although carefully-designed nonlinear elements
can similarly support this [SlanNL94].

• Simple 8th-order IIR filter structure:  The basic ‘gammatone’ filter
structure advocated by [PattM86] [PattH90] is simply a cascade of
repeated pole-pairs, in this case four pairs.  Although this filter structure
represents a good approximation in view of its great computational
simplicity [Irino95], it lacks the very abrupt high-frequency rolloff
observed in the actual cochlea transmission line (as modeled in
[Slaney88]), which some researchers have argued is critical to the
excellent frequency discrimination of hearing [Sham89] [Wein85].

• Bandwidth increasing with center frequency:  In middle and high
frequencies, the bandpass filter characteristics of the ear seem well
characterized as constant-Q i.e. with bandwidth proportional to center
frequency (when measured under comparable conditions) [MooreG83].  At
low frequencies, cochlea filter bandwidths appear to plateau, meaning
that a purely constant-Q model will result in unrealistically narrow
filters in this region.  Although experimentation failed to reveal any
significant qualitative difference between analysis based on strictly
constant-Q analysis and a more realistic distribution of bandwidths,
imposing a lower limit on channel bandwidths does serve to keep the
impulse response time-support (and hence the time-blurring) down to a
manageable level in the lower bins, and was adopted for this practical
reason.  The filter bandwidths are those in the implementation of
[Slaney93], based on the recommendations of [MooreG83], with the
equivalent rectangular bandwidth (ERB) approaching a Q of 9.3 at the
high frequencies, and bottoming-out at around 250 Hz, representing a
good match to physiological measurements of real cochleae.

• Logarithmic spacing of filter center frequencies:  For a constant-Q
filter bank, the most natural filter spacing is in proportion to those
frequencies, i.e. a uniform density of filters when plotted against a
logarithmic frequency axis.  This makes the responses cross at the same
level relative to the maximum in each filter, and again seems to reflect
both the relevant physiological and psychological knowledge.  Although
the filterbank used was not strictly constant-Q, exact logarithmic spacing
was used for computational convenience, with the effect that the lowest
frequency channels are rather more overlapped than the rest.  The filter
density used was six samples per octave (i.e. each filter’s center frequency
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approximately 12% larger than its predecessor);  this gives a generous
overlap between filter responses.  A greater density of filters would
contribute only redundant information to the subsequent processing.
Real cochleae contain several thousand inner-hair cell structures
collecting information on the energy in highly overlapped frequency
bands [Pick88], a density much greater than this model.  However, the
ear has additional challenges such as the noisiness of neural encoding to
overcome, which may provide an explanation for this very dense
sampling.

The composite frequency response of the cochlea filter bank is show in figure
4.3  The sampling rate of the original sounds for this implementation was
fixed at 22.05 kHz, thus the Nyquist rate for these filters is at 11 kHz.  There
are 40 filters used starting from 100 Hz, which, at six per octave, places the
highest center frequency at 10160 Hz, or just below Nyquist.  Although
human hearing extends as much as an octave above this frequency, the
assumption is that in the great majority of cases information outside this
range is of no great environmental significance, and can safely be overlooked
for the purposes of this work.  100 Hz was adopted as a lower limit for the
pragmatic reason that the filterbank implementation becomes unstable in the
octave below this, and it was again assumed that it is rare for the loss of
bandwidth below 100 Hz to impair the prospects for organizing a given sound
significantly.  In particular, following real audition, the periodicity detecting
mechanisms in this model are not disturbed by the absence of a fundamental,
so the lower limit on peripheral frequency analysis does not correspond to a
limit on pitch perception.
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Figure 4.3:   The magnitude-frequency responses of the 40 linear filters in the
front-end filterbank.

The phase response of this kind of pole-zero filter is of course nonlinear.  For
convenience, a pure delay was added to the output of each filter so that the
theoretical envelope maximum of the impulse response would be aligned in
each frequency channel.  It is interesting to note that the propagation delay
down the cochlea introduces a delay to the lower frequencies just as exhibited
by this kind of filterbank.  Patterson [Patt87] found no unusual perceptual
effect of pre-compensating for this delay (arranging for all the stimulated
nerves in the auditory fiber to fire simultaneously);  we might guess that the
higher auditory centers incorporate some equivalent to these delays to
remove the systematic but uninformative between-channel time differences.
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4.2.2 Time-frequency intensity envelope

The multiple band-pass signals generated by the filterbank constitute a
multiplication of the amount of data used to represent the raw sound signal,
which is completely recoverable from those outputs;  this is not yet a
particularly interesting representation of the sound i.e. one that has ‘thrown
away’ some information deemed to be unimportant [EllisR95].  The next
module addresses this, by converting the array of bandpass signals at the full
sampling rate into a much more sparsely sampled unipolar intensity envelope
in time-frequency.  This envelope is calculated by half-wave rectifying the
output of each frequency channel, squaring this signal, then smoothing the
result through a simple one-pole lowpass filter with a time constant of 25 ms.
(These particular choices were made for compatibility with the correlogram
analysis, explained below).  The smoothed output is subsampled at 5 ms
intervals.  The sort of envelope returned by this procedure is illustrated in
figure 4.4, against the corresponding band-pass signal, in this case the output
of a filter centered at 4 kHz.
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Figure 4.4: Typical bandpass signal at 4 kHz and its subsampled envelope
representation.

The rationale behind this representation, as reflected by its role in the
subsequent processing, is that it is on approximately this scale that energy
present in the incident sound must be explained.  5 ms is comparable to the
latencies and propagation delays of the basic neural hardware of the brain;
any sensitivities finer than this timescale will rely on special-purpose
dedicated sensors which will presumably only be employed in situations
where such information is particularly useful.  Such situations include spatial
location through interaural time difference (which has a resolution on the
order of tens of microseconds [ColbD78]), and pitch detection based on
temporal structure (which needs sub-microsecond accuracy to account for our
pitch discrimination at fundamental frequencies up to 1 kHz and beyond).
However, for higher level phenomena, such as the jnd of note onsets in music
perception, a few milliseconds seems to be the upper limit [Palmer88],
roughly equivalent to that afforded by the subsampled representation
calculated in this module.
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Although the front-end described so far has made many compromises
compared with an exact model of the auditory periphery, it is still credible
that a representation of essentially this kind is employed within the auditory
system.  Summation of all the nerves excited by a given frequency band,
smoothed by the inherent sluggishness of a neuron, would give a measure of
the net intensity within a given frequency channel over some smoothed
timescale somewhat similar to this envelope parameter.  A typical time-
frequency intensity envelope for a fragment of speech is illustrated in figure
4.5.
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Figure 4.5:  Example time-frequency intensity envelope for a short sample of
male speech, “this is mere...”.  The speech waveform is shown beneath.

4.2.3 Correlogram

The intensity envelope discards all the information in the fine structure of
the bandpass-filtered signal which is however indicated to be perceptually
salient by many hearing phenomena.  Thus the front-end must include
additional processing to extract some of these features.  Pitch is the most
significant perceptual attribute that is obscured by the particular
combination of broad frequency channels and heavy frequency smoothing of
the intensity envelope, hence the front-end includes an autocorrelation-based
processor to permit the detection and extraction of common periodicity in
different frequency bands, the usual cause of a pitch percept.

Considerable success in explaining pitch phenomena has been obtained in the
models of [MeddH91].  The basic idea is to measure the similarity of a signal
in a given frequency channel to time-delayed versions of itself, a process
generally achieved by autocorrelation (the inner product between the shifted
and unshifted versions of the signal).  In the three-dimensional correlogram
representation [SlanL92] [DudaLS90] (used in the auditory scene analysis
models of [Mell91] and [Brown92]), the short-time autocorrelation as a
function of delay or ‘lag’, is calculated for every frequency channel at
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successive time steps, giving an intensity volume as a function of lag,
frequency and time.  If the original sound contains a signal that is
approximately periodic – such as voiced speech – then each frequency
channel excited by that signal with have a high similarity to itself delayed by
the period of repetition, leading to a ‘ridge’ along the frequency axis at that
lag in the correlogram.  Note that the relatively broad tuning of the bandpass
filters, along with a bandwidth that increases with frequency, mean that the
upper spectrum of a broadband periodic signal will be analyzed not as the
resolved harmonics of a high-resolution, fixed-bandwidth Fourier analysis,
but as a wider-bandwidth signal showing amplitude modulation at the
fundamental period.  Although a resolved harmonic would indeed show an
autocorrelation peak at the modulation period (since harmonics have periods
that are integer subdivisions of the fundamental, and autocorrelation gives
peaks at all multiples of the period), it would not be locally distinct from
adjacent peaks.  However, with the amplitude-modulated broader-band
energy, autocorrelation reveals the underlying common period far more
clearly.

time

lag

freq

A correlogram slice at a particular time
reveals the short-time autocorrelations
of every channel at that time, arranged
as rows (freq x lag)

The zero-lag face of a correlogram
is the time-frequency intensity
envelope of the sound (freq x time)

The three-dimensional correlogram volume
(freq x lag x time)

Figure 4.6:  Illustration of the correlogram volume, which represents signal
intensity as a function of three axes: time, frequency and short-time
autocorrelation lag.  A correlogram slice (a two-dimension function of time and
frequency at a specific time instant) shows the periodicities present in each
frequency channel at that instant;  the extreme of the volume where the
autocorrelation lag is zero is effectively the time-frequency intensity envelope of
the signal.

In the straightforward autocorrelation of an amplitude-modulated, bandpass
signal from the upper frequency region (i.e. far above the fundamental of the
periodic modulation), we would see fine structure at lags corresponding to the
center-frequency of the channel resulting from the autocorrelation of the
carrier frequency;  superimposed on this fine structure would be the broader
effect of the amplitude modulation, revealing the pitch-related information
which is our particular interest.  If the fine structure occurs at a period
outside the useful pitch range (which begins to run out at about 1 kHz,
although the piano continues for another two octaves [Pierce83]), it is not of
interest, and we should take just the envelope of the autocorrelation by some
process of rectification and smoothing.  But if this is our eventual intention,
we might as well take the signal envelope before autocorrelation, since the
autocorrelation may be more cheaply performed on the lower-bandwidth
envelope signal than on the full-bandwidth frequency channel – an argument
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that probably applies equally to the computer model and to the biological
prototype.  Thus it is the bandpass signal envelope, showing the amplitude
modulation but not the high-frequency carrier, that is autocorrelated.  The
envelope is calculated by half-wave rectifying the bandpass signal, then
applying light smoothing over 1 ms time window to remove supra-pitch-rate
information.  Half-wave rectification is important here to ensure that the
autocorrelation of a resolved sinusoid shows autocorrelation maxima only at
its true period and not at half that period, as would result from full-wave
rectification.

The effect of autocorrelating the full-bandwidth signal and its half-wave
rectified derived envelope are compare in figure 4.7 for the 4 kHz band of
some male voiced speech.
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Figure 4.7:  Comparison of autocorrelation of a 4 kHz frequency band excited by
voiced speech with a fundamental frequency of around 110 Hz.  The top half
shows the unprocessed filterbank output and its autocorrelation.  The lower two
panes shows the envelope, downsampled by a factor of 10, and its autocorrelation.
Using the envelope smoothes out the fine structure in the autocorrelation while
retaining the correlates of the fundamental modulation (the peaks at 9 and 18
ms).

Sampling the lag axis

There now arises the interesting question of the lags at which to sample the
autocorrelation.  In discrete-time systems, it is generally convenient to
calculate autocorrelations at multiples of a fixed lag such as the sampling
period;  this also makes sense on information-theoretic grounds, since the
bandwidth of the autocorrelation signal will be the same as the original, and
thus it can safely be sampled at the same density without loss of information.
However, the pitch-detection goal of this processing suggests a quite different
sampling:  Fundamental-frequency discrimination, like the peripheral
frequency analysis, is roughly constant-Q, that is, the just noticeable
difference is proportional to the frequency itself over the major range of pitch
perception [Moore89].  It would be natural to have an autocorrelation lag axis
with a sampling density that followed the perceptual resolution for
fundamental frequency, which this feature will be used to model.  This would
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suggest a log-time sampling of the autocorrelation function, with the shortest
lag corresponding to the highest frequency to be considered a fundamental
(set somewhat arbitrarily at around 1 kHz), and successive lags each some
constant factor larger than their predecessors, out to a maximum lag
corresponding to the lowest detectable fundamental period.  This
arrangement gives a constant number of autocorrelation bins per octave of
fundamental frequency.  The autocorrelation function will be oversampled at
the low-period end (adjacent bins corresponding to fractional delays differing
by less than one discrete-time sample) and potentially undersampled at the
long-period extreme, unless the signal to be autocorrelated is smoothed
appropriately.  It has the advantage of providing a ‘natural’ view of the lag
axis, with each octave of period detection occupying the same space.  This was
the scheme employed;  in order to minimize the smoothing necessary to avoid
undersampling, a rather dense sampling of 48 lags per octave was chosen,
and the periods measured ranged over five octaves from 40 Hz to 1280 Hz.  A
comparison of linear- and log- time sampled autocorrelations is illustrated in
figure 4.8.
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Figure 4.8:  Comparison of linear- and log-time sampling of the autocorrelation
lag axis.  The left panel shows a single short-time autocorrelation function for a
channel containing a mixture of male and female voices.  Note how the two
different periods present result in regularly-spaced sets of autocorrelation
maxima with different spacings indicating the different periods.  (The arrows
above the trace indicate the peaks resulting from the lower 120 Hz male voice; the
arrows underneath the trace point to the peaks arising from the 200 Hz female
voice).  The same function, displayed with log-time sampling in the right panel,
shows each period resulting in a series of peaks that get closer together along the
lag axis, but for which the difference in fundamental period results in a simple
shift rather than the dilation apparent in linear sampling.  Note also that ‘zero
lag’ cannot be included on a finite-sized log-time axis.

Calculation of short-time autocorrelation

Although plain autocorrelation is uniquely defined, there are two approaches
to calculating short-time autocorrelation that should be distinguished.  If the
autocorrelation of x(t) is defined as a function of lag τ as:

  
Rxx τ( ) = x t( )x t − τ( )dt

−∞

∞

∫ (4.1)

then one definition of the short-time autocorrelation at time t0 would be to

window x at time t0 and autocorrelate that short time version of x, i.e. if w(t)

is a local time window, the windowed version of x is:

    
xw t, t0( ) = x t( )w t − t0( ) (4.2)
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and the short-time autocorrelation at time t0 is:

    
Rxwxw

τ, t0( ) = xw t, t0( )xw t − τ, t0( )dt
−∞

∞

∫ (4.3)

This however has the disadvantage that longer lags have attenuated
correlation owing to the narrowing effective window, w(t,t0)·w(t-τ,t0), in the

integral.  This is avoided by separating the window from the signal and
applying it directly inside the integral:

    
Rwxx τ, t0( ) = w2 t − t0( )x t( )x t − τ( )dt

−∞

∞

∫ (4.4)

Unlike (4.3), this form allows short-time autocorrelations to be calculated for
lags longer than the time window without difficulty.  Further, (4.4) may be
calculated as the product of the delayed and undelayed signals smoothed by a
filter whose impulse response is w2(-t):

    
Rwxx τ( ) = x t( )x t − τ( )[ ]∗w2 −t( ) (4.5)

where the short-time index t0 has been dropped to indicate the implicit time

variation of the output of the convolution.  This smoothing of the product of
the signal multiplied with a version of itself, delayed by the lag, is the
approach used to calculate the correlogram here, as illustrated in the block
diagram in figure 4.9.  The smoothing is accomplished by simple one-pole
lowpass filters with time constants of 25 ms, determined experimentally to be
a good compromise of eliminating pitch-rate variation while responding to
rapid changes in the signal.  The intensity envelope described above uses the
same smoothing filter so that it is, in fact, equivalent to the correlogram
output for zero delay (and can, incidentally, be used to normalize the
correlogram rows for the periodogram, described below).
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Figure 4.9:  Block diagram of the calculation of the correlogram.
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The disadvantage of this approach to calculating autocorrelation is that it
cannot be implemented using the very efficient fast Fourier transform (FFT)
technique, which is the motivation for the use of the form of eqn (4.3) in
certain published auditory models [SlanL92].  On the other hand, the log-
time sampling chosen for this system is not particularly efficient to derive
from the linear-time sampling of the FFT method, whereas it is conveniently
incorporated into the delay-and-multiply scheme by setting the appropriate
fractional delay in the delay line.  The delay-multiply-and-smooth structure is
very physiologically plausible and was indeed first proposed as an auditory
periodicity detection mechanism over four decades ago by Licklider [Lick51].

Note that this autocorrelation scheme is roughly equivalent to its
physiologically-motivated antecedents[MeddH91] [SlanL92].  One distinction
is that the use of nonlinear elements (rectification) has been kept to the
minimum, used only to calculate the subband envelope prior to
autocorrelation.  Physiological models generally include an equivalent
element representing the effective half-wave rectification of the inner hair
cells of the cochlea, along with some kind of amplitude-range compression
and perhaps an argument about the representation of the ensemble effect of
many spike-carrying nerve fibers as a firing probability suitable for
autocorrelation.  Limits to phase-locking observed in auditory nerve firings
run out at a few kHz, meaning that temporal fine structure information is
presumably limited to this bandwidth, which can justify the kind of
smoothing included here to remove unwanted non-pitch information; in this
model, the signal is rectified as a necessary part of smoothing to obtain an
envelope.  Rectification of the signal prior to autocorrelation has the
additional benefit of guaranteeing a nonnegative autocorrelation function,
avoiding the question of how negative quantities might be encoded in nerve
firings.  While it is reassuring that the current structure is still close to
models motivated by explicit physiological considerations, the limited
concessions to known physiology in this model are based on the principle that
processing should be motivated only by functional considerations, and not
include aspects of the physiology whose practical significance cannot be
explained.

4.2.4 Summary autocorrelation (periodogram)

The correlogram evidently contains useful information reflecting periodic
modulations in the original signal, but we have yet to describe how it may be
used to advantage in the analysis.  As mentioned, the most significant aspect
of correlogram analysis is the way in which periodic modulation that affects
multiple frequency channels will be displayed:  Such features will appear as a
distinct vertical structures on a two-dimensional slice of the correlogram at a
given instant, lying on a line of constant lag matching the fundamental
period of the excitation.  A structure of this kind is illustrated in fig. 4.10.
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Figure 4.10: Instantaneous slice of the correlogram analysis for some voiced male
speech, showing how the common modulation period of 9.0 milliseconds appears
as an intensity peak at this lag across many frequency channels.  This vertical
structure is the basis of pitch detection.  The lower trace shows the summary
autocorrelation, with pronounced peaks at 9 ms and its alias 18 ms.

As an intermediate stage in extracting the perceived ‘pitched’ objects in a
sound, it would be valuable to reduce the correlogram volume to a more
manageable two-dimensional function of fundamental period likelihood
versus time, known as a periodogram.  Each vertical slice of the periodogram
represents the net short-time autocorrelation information for all frequency
channels at a particular time instant and is normally termed the summary
autocorrelation.  A common approach is to collapse the frequency channel
axis of a correlogram slice (intensity as a function of autocorrelation lag and
frequency channel) by adding all the autocorrelations together [MeddH91]
[Brown92].  Some normalization is required to equalize the significance of
peaks in channels whose absolute energy might be quite small compared to
other remote frequency channels; their contribution should be comparable
both in view of the relative indifference of the auditory system to static
spectral imbalances, and on the information-theoretic grounds that the
evidence for a certain modulation period in a frequency channel is not
proportional to the total energy in that channel, but depends instead on its
signal-to-interference ratio.

In physiological models, the nonlinear hair-cell model normally accomplishes
within-channel normalization more or less explicitly [MeddH91] [SlanL92].
Further normalization of each row of the correlogram slice may be applied
based on the peak value, at lag zero, which follows the total energy of the
signal in that channel [Wein85].  An alternative approach is to select all local
maxima in each autocorrelation function, regardless of absolute amplitude,
and sum them up across channels with unit amplitude [EllisR95], although
this loses useful information from the relative height of different peaks
within a single autocorrelation function.  In the current model, I adopted
straightforward normalization by channel energy before averaging across
channels.  Thus the summary autocorrelation for the lag of zero (if indeed it
were included on the log-time axis) would always be unity.
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Figure 4.11:  Periodogram (intensity as a function of lag period and time) for a
mixture of male and female voices (fundamental periods of 125 Hz and 200 Hz
respectively), along with a slice (a summary autocorrelation) at t =0.775s.  The
different periods of the two voices are apparent, along with their aliases at
multiples of the periods.  Note the log-time spacing on the lag axis is flipped in
the periodogram display so that the short lags are at the top, permitting it to be
labeled in frequencies instead, forming an equivalent log-frequency axis.  This
convenience of display facilitates visual comparison with other time-log-frequency
displays such as the time-frequency intensity envelope, although the information
displayed is of course quite different.

The result is a single ‘periodicity intensity’ as a function of period lag for each
time instant, a two-dimensional function (the periodogram) illustrated in
figure 4.11 along with a representative one-dimensional slice (a summary
autocorrelation).  The local maxima of the summary autocorrelation indicate
the dominant periods in the full signal and are used as the basis for the ‘weft’
periodic elements as described later.

4.2.5 Other front-end processing

The approach used in this implementation, partially on practical grounds, is
to conduct all the numerically-intensive front-end processing in an
independent module whose results form the input to the context-sensitive
explanations of the prediction-driven analysis.  In the previous chapter, a
distinction was drawn between indispensable and optional cues, the former
being those that the abstraction must explain (such as positive energy in
some region of time-frequency), and the latter being other functions of the
input signal that might only be consulted in special circumstances.  The
autocorrelation volume, while not subject to prediction itself, is consulted in
the characterization of the periodic weft elements (described below) and thus
is a kind of optional cue; the periodogram however must be fully explained
and is thus indispensable.
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Onset map

A second optional cue is the onset map, which is used to help decide whether
to create a new click element to explain an excess in observed energy.  The
basic form of an onset map is very simple, and is a feature common to
previous auditory organization systems [Brown92] [Mell91].  Brown’s
approach was rooted strongly in known aspects of auditory physiology,
including the existence of populations of neurons that fire in response to
abrupt increases in the energy of a given peripheral frequency channel.  His
system ran a range of band-pass filters over the intensity in each channel,
which, when rectified, indicate energy onsets over different timescales – to
account for the salience of both rapid and more gradual energy increases in
real sounds.  Brown uses the term ‘map’ to refer to a multidimensional array
of sensors that respond to conjunctions of parameters varying systematically
over each dimension – such as a 2-D array of onset-detectors tuned to
combinations of peripheral frequency channel and onset rise-time.

The current implementation uses a simpler scheme in which a single onset
score is calculated for each time-frequency cell to indicate if an abrupt
increase in energy is occurring.  The relatively coarse 5 ms time-step means
that for most channels simply using the increase over the preceding time step
is a sufficient indication of energy increase.  In order to normalize for the
absolute level in the channel, this differencing is done in the logarithmic
domain (i.e. on the channel energy in decibels).  Consequently, if the energy
in a channel doubles in the space of one time step, the onset score will be 3 dB
regardless of the absolute energy in the channel.  Some of the lower frequency
channels have sufficiently narrow bandwidth that even the most abrupt onset
is spread over several time steps; to avoid penalizing the onset scores in these
channels compared to the faster-responding higher-frequency channels, the
onset scores of the four temporally-adjacent time-steps are weighted and
added-in to the overall score; the weights depend on the channel bandwidth
compared to the frame-rate.  Since the onset map is only consulted when
reconciliation suggests the need for a new element, it is less important if the
map registers extra features where no onset event is generated;  the
important quality is that it should be able to reject candidate onsets from the
reconciliation that occur when the energy envelope does not exhibit a rapid
increase in energy.

Figure 4.12 shows the onset map for a brief fragment of speech shown
alongside its energy envelope.  The onset score can be seen to follow energy
onset even for the low-energy channels, and even for the more gradually-
increasing low frequency channels.  The effect of weighting several successive
time steps in the lower channels causes the onsets to be considerably blurred
in time for those channels.
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Figure 4.12:  Onset score values for a brief fragment of speech (lower panel)
compared to the energy envelope for the same piece of sound (top panel).  The
onset score is normalized for absolute channel energy, and summed across several
time-steps in the lower frequency channels in order to capture the full extent of
slower onsets in these channels.  Thus the onset at t=0.40s is strongest in the
highest channel, even though the level in this channel is relatively small.

Fixed front-end processing is of course anathema to the IPUS architecture,
which is motivated by the idea that numerical processing should be
determined by context inferred from the symbolic abstraction created for the
signal [LessNK95].  From a different point of view, physiological results
concerning the variable characteristics of the filtering effected by the cochlea
have led to more signal-dependent adaptive models [GigW94], and this gains
credibility from speculation over the role of the efferent auditory nerve fibers,
carrying information back from the auditory centers in the brain right to the
outer hair cell bundles on the cochlea.  However, patients who have lost their
efferent fibers are not reported as having a vastly impaired ability to hear
[Scharf94], and for the purposes of this model, no particular disadvantage
was noticed arising from the use of fixed front-end processing.

4.3 Representational elements

In the prediction-driven architecture, the process of analysis is governed by
the goal of generating an internal representation that is consistent with cues
derived from the actual sound.  This representation is expressed at its lowest
level as a collection of generic sound elements which capture the
perceptually-important qualities of the sound, while at the same time
embodying inherent constraints on the useful structure that the perceptual
system can extract from a sound.  As introduced in the previous chapter, the
current implementation includes three kinds of generic sound element, aimed
at representing noisy sound energy, short-duration transients, and pitched
sounds respectively.  While this is a rather limited vocabulary, one of the
purposes of this implementation is to see how successfully such elements may
express complex, arbitrary sounds as a way to assess the implicit hypothesis
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that the auditory system employs primitives of this kind.  The details of the
internal constraints, analysis and synthesis methods for each kind of element
are now presented.

4.3.1 Noise clouds

The goal of the noise-cloud element is the representation of areas of sound
energy with no obvious local structure, but which none-the-less are perceived
as, and typically generated by, a single source.  By contrast, energy that has
coherent intensity variation with time, or energy with some degree of
periodicity, has a more substantial basis for its organization and is handled
by different elements.  However, a great many everyday sounds fall into this
“noisy” category, from voiceless fricatives of speech, to the sound of wind
blowing, to the crunching of paper.  As a rule, such sounds have been
neglected by previous models of auditory organization in favor of the more
structured class of pseudoperiodic sounds (exceptions being the noise beds of
[LessNK95] and the stochastic components of [Serra89]).

Signal model

In the noise cloud elements, sound is modeled as a white noise process to
which a static frequency envelope and a slowly-varying time envelope have
been applied.  Thus, in the time domain, the signal is modeled as:

xN(t) = h(t)*[A(t)·n(t)] (4.6)

where h(t) applies the fixed spectral coloration (expressed as H(w) in the
frequency domain), A(t) is the slowly-varying time envelope, and n(t) is a
white noise process.  The analysis problem is to estimate the spectrum of
H(w) and the magnitude of A(t).

This constraint that the noise energy envelope be ‘separable’ into time and
frequency envelopes might seem like a rather severe restriction on the kind of
sounds that can be represented.  For example, a noise signal whose average
spectral content changes smoothly and slowly – such as the classic ‘moaning’
of the wind – would not be amenable to such a decomposition.  However, the
intention of these generic elements is to define a set of components that
encode the very minimum amount of perceptually-important information
about sound events;  if a sound is largely conformal to a separable model, it
would seem that the independent marginal frequency and time envelopes
would comprise a salient description.  Also, the generic sound elements are
the very lowest level of representation, and it is intended that more complex
percepts, which may ultimately be experienced as a single event, might be
composed of a sequence or combination of the basic elements.  Thus the rising
‘whoosh’ caused by a gust of wind could possibly be approximated by several
spectrally-static noise clouds in succession.  While this would seem like a
clumsy analysis, it should be remembered that the tremendous data
reduction achieved by storing only the marginal spectra rather than
attempting to sample the entire two-dimensional surface might make the
clumsy representation still a more efficient encoding compared to a more
flexible general-purpose noise envelope.  However, a frequency-modulation
term would appear to be a valuable future extension to this element.

Analysis is performed in the domain of the downsampled time-frequency
intensity envelope calculated by the front end, X[n,k], where n is the
downsampled time index (in 220.5 Hz steps) and k is the frequency channel
index (proportional to the log of filter center frequency).  The  smoothness
constraints on A(t) and H(w) are defined such that each can be regarded as
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constant over a single time-frequency tile of X[n,k], thus the intensity
envelope of the model formulation (4.6) may be expressed as:

XN[n,k] = H[k]·A[n]·N[n,k] (4.7)

where H[k] and A[n] are the discretized, piecewise-constant spectral and
magnitude envelopes respectively, and N[n,k] is the time-frequency intensity
envelope of a white noise process.
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Figure 4.13:  Diagram of a noise cloud, showing how the sustained, noisy time-
frequency energy is modeled as the output of a random process with a smooth
underlying expected power, separable into a spectral profile and a time contour.

Analysis

In order to recover H[k] and A[n] it is necessary to average over many
samples so that the effect of the random variation in the samples of N[n,k] is
reduced.  Consider estimating H[k] from a single row of XN[n,k] where A[n] is

assumed known or constant and the noise has been adjusted to deliver unit
power through the filterbank channel in question: the correct value of H[k]
would be the expected or average value of XN[n,k].  If the successive time

samples of XN[n,k] were independent, and their variance was known, H[k]

could be estimated with arbitrary accuracy by averaging enough values of
XN[n,k], thereby reducing the variance in proportion to the number of points

averaged.  (A perceptually-inspired target of a noise estimator with a
standard deviation of 0.5 dB was adopted).  Although the successive values of
an oversampled bandpass-filtered noise signal are not independent, the
correct averaging time to achieve an estimate of a given accuracy may be
derived by the following argument:

Considering a single frequency channel (k constant), XN[n,k] would be

obtained by squaring and smoothing the output of a bandpass filter excited
with white noise.  The square of a bandpass signal has a lowpass spectrum,
extending up to √2·B/2 for the ideal case of a Gaussian bandpass spectrum of
bandwidth B.  Estimating the underlying energy of the noise process is
effectively further low-pass filtering this squared signal so that the
proportion of noise energy (variance) relative to the central d.c. peak (mean)
is reduced to the desired level.  The constant-Q nature of the bandpass
filterbank means that for each frequency channel this noise spectrum will
have essentially the same shape up to a dilation factor of the filter center
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frequency, thus to reduce the variance-to-mean ratio in estimating H[k] to a
given level, the squared signal must be low-pass filtered to a bandwidth
proportional to the original frequency channel’s center frequency.  This is
done by applying a simple one-pole filter to the successive samples in each
channel, where the time constant of this smoothing filter is longest for the
lowest channels which require the narrowest bandpass filters to reduce the
variance in the estimate.  The actual size of the time constant to achieve the
desired estimator variance was adjusted empirically for a prototype channel,
then scaled for the other channels.

Estimating A[n] involves equalizing the assumed variation of each relevant
frequency channel (by dividing by their estimated mean level), summing
them together, then smoothing this result to get estimated overall amplitude
profile in time.

Although once established, the underlying noise process energy envelope is
constrained to be smooth, the system permits noise clouds to start and stop
abruptly when so required by the analysis.  During the startup period of an
abruptly-created noise cloud, the per-channel spectral profile estimates are
simple unweighted averages of all the intensity samples seen so far, until this
time exceeds the normal smoothing time constant, whereupon simple one-
pole smoothing resumes.

Resynthesis

Resynthesis from parameterized noise clouds is simply derived from the
underlying model.  The desired noise intensity envelope G[n,k] is formed by
making the ‘outer product’ of the final estimates of H[k] and A[n]:

G[n,k] = H[k]·A[n] (4.8)

This is then used as a time- and frequency-varying mask to gate a white noise
signal broken into frequency bands by the analysis filterbank (cochlea model).
It is necessary to precompensate for the considerable overlap of the analysis
channels by ‘deconvolving’ each frame of intended spectral levels by the
spreading functions i.e. to obtain an output spectrum of G[k], the weights
W[k] applied to each channel of the filtered white noise excitation are
obtained from:

G = B·W (4.9)

where G and W are column vectors of the spectra G[k] and W[k], and B is a
square matrix of real weights bij indicating the energy of the overlap between

analysis channels i and j, i.e.:

  
bij = hi t( )∫ ⋅ hj t( )dt = Hi w( )∫ ⋅ H j

∗ w( )dw (4.10)

where hi(t) is the impulse response of the ith bandpass filter in the filterbank,

and Hi(w) is its frequency response.  Since the weights are being applied to

energy in different frequency channels, they cannot be negative; hence the
inversion of (4.9) to find W from G must be performed by nonnegative least-
squares approximation.

After applying the weights W[n,k], the filtered noise channels are added
together to form a full-bandwidth noise signal whose time-frequency intensity
envelope matches G[n,k].
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Prediction and error weights

The basic mode of the noise cloud element is to assume that it will continue
without systematic change.  Thus when required to make a prediction of the
future, in the absence of higher-level guidance, the noise element simply
repeats its current estimate of the average level in each frequency channel.
The deviation bounds of this prediction are based on two factors, the
parameter uncertainty and the intrinsic variability of a noisy signal.  The
uncertainty in the model parameters, which is approximated as a recursive
estimate of the variance of those parameters.  If the observed signal has been
fluctuating considerably, preventing the model parameters from settling
down to stable levels, the resulting changes to the model parameters at each
time step will result in a significant variance for the history of the
parameters when considered as a time-series.  By contrast, if the observed
sound is well matched by the assumptions of the model, the parameters
should rapidly stabilize close to their optimal values, and the recursive
estimate of the variance for the history of each parameter will become very
small, indicating high confidence in that parameterization.  (The uncertainty
of the single magnitude contour, A[n], is combined with that of each channel’s
profile level, H[k], to give a net uncertainty in each channel).

This basic parameter uncertainty, expressed as a standard deviation,
constitutes the error weight vector for this object, upon which basis the error
between prediction and observation is apportioned between overlapping
elements.  However, the deviation bounds of the prediction are greater than
this, because even if the model is a perfect fit to the data, the fact that it is
noisy energy that is being modeled means that there will be an inevitable
spread between the expected value of the intensity in each channel and its
observed value at a given time.  The range of this spread depends on the
smoothing applied to the envelope of each channel relative to the bandwidth
of the noise energy in that channel: The smoothing of the front-end intensity
envelope extraction is the same for all channels, but the higher frequency
channels pass a much broader band of noise.  Consequently, the theoretical
variance-to-mean ratio of the time-frequency envelope for static noise
processes actually decreases in the higher channels, where the fixed
smoothing filter has removed a larger proportion of the noise energy
superimposed on the average signal level.  Thus, the predictions of noise
elements have a variance component, added in proportion to their level, with
the constant of proportionality based on the empirical measurement of the
variance in the envelope of noise analyzed by the system front-end for the
particular frequency channel.

4.3.2 Transient (click) elements

Like the noise clouds, the second kind of generic sound element is intended to
handle a class of sound that has been largely ignored in previous auditory
organization models, namely short-duration isolated energy bursts, typically
experienced as short clicks, cracks or bangs.  The basic idea is that, like the
noise clouds, such events are essentially characterized by a single spectrum
and a separate description of their time variation.  However, in the case of
transients, the variation of intensity with time is more constrained:  The
perceptual characterization of a transient event is assumed to be an
instantaneous onset of energy with some intensity profile followed by a rapid,
exponential decay of that energy.  Exponential decays arise from processes
whose rate of energy loss is in proportion to their intensity (i.e. d(intensity)/dt
= - k·intensity, the simple first-order differential equation solved by an
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exponential) and occur very frequently in nature.  There is some evidence for
the special processing of sounds that conform to this general pattern,
exemplified by the dramatically different perception of a sound consisting of a
series of exponentially decaying tone-bursts and the same sound played
backwards [Patt94].  Time asymmetry arising from the unavoidable
constraint of causality in the lowest levels of auditory processing must
certainly account for some of this difference, but the categorically different
perception of sounds with rapid onsets and gradual decays compared to
sounds with gradual onsets and rapid decays [Breg90] supports the idea that
the environmentally commonplace pattern of a sudden energy burst smoothly
dying away may involve a specialized perceptual representation.  Note also
that acoustic reflections will often adorn a sharp energy transient with a tail
of decaying ‘reverberation’ energy; such tails are very often exponential in
nature , and moreover listeners seem to be peculiarly able to isolate and
discount such additions when they are not of interest [Beran92].
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Figure 4.14:  The structure of a click element:  A region of decaying energy in
time-frequency is modeled as an initial spectrum with a separate decay time for
each channel.

Signal model

In the system, transient elements are characterized by three parameters:

• their onset time

• their initial spectrum

• their exponential decay rate within each of the peripheral frequency
bands

Thus, in the same sampled time-frequency intensity envelope domain used to
model the noise clouds in (4.7), the intensity envelopes of transient elements
are modeled as:

XT[n,k] = H[k]·exp( (n-n0)/N[k] ) (4.11)

where  H[k] is the transient’s spectral profile, n0 is its onset time-step, and

N[k] is the per-channel decay time constant.  Again, as with the noise clouds,
analyzing a fragment of sound into such an element is a matter of extracting
n0, H[k] and N[k] from a region of X[n,k];  resynthesizing a transient element

is a question of generating a sound whose time-frequency energy profile
matches equation (4.11).
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Analysis

The process of selecting a region of intensity envelope for modeling as a
transient element is part of the prediction-driven analysis engine which is
described later.  However, once a section of energy has been targeted as a
transient element, the analysis is rather simple: the envelope in each
frequency channel is tracked until it reaches a local maximum; this is then
the spectral intensity for this transient in this channel.  Once the peak has
been reached, the decay rate is formed as an average of the ratios of
successive intensity samples in that channel, weighted by their absolute
intensity, so that the initial few samples, most intense and therefore
presumably most immune from noise corruption, dominate the exponential
decay curve that is fit to them.  The onset time is taken as the average of the
times at which the maximum was recorded in the different channels,
weighted towards the high frequency end of the spectrum, since the much
broader band-pass filters in this region have the sharpest time resolution,
meaning that their onset time estimates are more precise.

When considering short-duration transients in the context of a time-
frequency analysis, it is important to pay full attention to the implications of
the time-frequency uncertainty tradeoff.  The filters underlying the time-
frequency intensity envelope, and the Fourier theory underlying those filters,
mean that the samples of time-frequency intensity cannot take on arbitrary,
independent values, but are compelled to have a certain correlation with their
neighbors.  There are several possible interpretations of this condition; one is
to consider the output of a filterbank as samples of an ‘ambiguity function’ – a
kind of time-frequency distribution capable of arbitrarily sharp time and
frequency boundaries, but with other undesirable characteristics – that has
been smoothed by a ‘blurring’ function that removes the unwanted (nonsocial)
artifacts, but causes a certain redundancy between adjacent time and
frequency samples [Riley87].  The precise shape of the blurring function can
be chosen arbitrarily, however, its total volume must exceed some minimum,
imposing a joint lower limit on combined resolution in time and frequency.
Equivalently, the redundancy between adjacent samples may be seen to arise
from the overlaps in their support;  as discussed above, the bandpass filters
have quite considerable spectral overlap, so energy exciting one will most
likely excite its neighbors to some degree.  Similarly, the spacing between
time samples may be significantly smaller than the time support of a given
filter’s impulse response, so successive samples will share a portion of
exciting energy.

In the higher frequency channels, the smoothing and subsampling of the
time-frequency intensity envelope occurs at a time-scale much larger than the
intrinsic limit on timing detail imposed by these broad bandpass filters.
Thus, other than the smoothing involved in constructing the envelope,
successive time samples are independent, and a very brief transient signal
will result in an equivalently brief transient in the intensity envelope.  At the
lower frequencies, however, the narrow bandwidth of the peripheral filters
(only a few tens of Hertz for the lowest filter centered at 100 Hz) means that
most rapid variation that can occur in the envelope of that channel is
significantly slower than the 220 Hz sampling of the envelope is capable of
representing.  Thus even the briefest click would result in an envelope with a
measurably slow decay in the lower channels, which is one reason why the
decay time is estimated separately for each frequency channel: otherwise,
artifacts of the analysis filterbank might obscure the underlying
characteristics of the signal.
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A second, related reason to measure decay rate separately in each channel is
that many real-world transients do exhibit slower decay in the low
frequencies, even when analyzed by a fixed-bandwidth filterbank that has no
intrinsic bias towards sluggishness in low frequency.  The reverberant
impulse responses of rooms, while not the most obvious ‘transient’ in
themselves, are a good example, showing much more rapid decays at high
frequencies than at low [Beran92].  This can be attributed to various aspects
of the real-world, such as processes that lose a certain proportion of their
energy in each cycle (meaning that energy loss is slower when the cycle-rate
– i.e. frequency – is lower, an equivalent definition of constant-Q), absorption
constants that increase steadily with frequencies (meaning that lower
frequencies will persist through a greater number of reflections), the ability of
lower-frequency sound waves to diffuse around obstacles of a certain sound
(meaning high frequencies are more likely to be shadowed or otherwise
removed by objects in space).  It is interesting to speculate that perhaps the
variable-bandwidth structure of frequency analysis in ears evolved not simply
for reasons of efficiency of construction or compromise among detection
characteristics, but because we live, in some sense, in a ‘constant-Q’
environment.

Resynthesis

The time-domain constraints of the analysis filterbank must be taken into
account in the resynthesis of transient elements also.  Our representation of
the element gives a well-defined shape in the intensity-envelope domain as
described in equation (4.11);  we could simply use the same amplitude-
modulation of narrowband noise channels that was used to generate noise
matching a given intensity envelope for the noise cloud elements.  However,
because the timescales of transient elements are likely to be short compared
to the filterbank constraints, it may be important to factor out the time-
blurring implicit in each analysis filter to generate a sound whose re-analysis
will have the same decay time as represented in the model.  Thus, although
the resynthesis technique is essentially the same as for the noise clouds, some
attempt is made to precompensate the decay envelopes applied to the noise
channels for the blurring that would occur on re-analysis.

Predictions

The predictions of the basic transient element are simply the extension of the
current spectral profile and per-channel decay rates by another time step.
Both the deviation bounds and the element error weights are based on
recursive estimates of the parameter uncertainty, which rarely have the
opportunity to stabilize.  Unlike noise elements, no additional margin is
added to the deviation bounds to account for intrinsic signal unpredictability.

4.3.3 Weft (wideband periodic) elements

The third element to be described is in many situations the most important,
but it is presented last as it is also the most complex.  The concept of the weft
element (whose name comes from the Anglo-Saxon word for the sets of
parallel threads in a woven fabric through which the warp is threaded) arose
from a comparison [EllisR95] between the discrete narrowband elements of
the analyses used by [Cooke91] and [Ellis94], and the more promising, but
unsegmented, correlogram representation of [SlanL92] [DudaLS90].  The
simple idea is to use combined information from short-time autocorrelations
within each of several frequency channels to detect the presence of periodic
signal in a sound, then to recover as much as possible of the information
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about the spectrum of that sound by looking into the autocorrelations of each
channel.  Rather than considering the periodic signal as a collection of
resolved Fourier components, as would result from a narrow, fixed bandwidth
analysis, the assumption is that each of the peripheral frequency channels is
so broad as to encompass several harmonics.  The constructive and
destructive interference between these harmonics will cause the energy
contribution of the wide-band periodic excitation in that channel to be
reflected in an autocorrelation peak at the fundamental period.  Of course, in
situations where the frequency channel is sufficiently narrow to pick out a
single Fourier harmonic, this harmonic would also give a peak at the
fundamental period, since its own period will be an integral division of the
fundamental, and autocorrelation produces aliases at period multiples.

Signal model

The signal model which weft analysis seeks to extract is a periodic wideband
excitation with a somewhat smoothly-varying period, shaped by a time-
frequency envelope also subject to smoothness constraints.  Thus the weft
signal,

    
xW t( ) = e τ( )∗hW τ; t( )[ ] t( ) (4.12)

where hW(τ;t) is the time-varying filter, and e(t) is the pseudoperiodic

excitation.  The model is thus very reminiscent of the tradition source-filter
model of speech, where the pseudoperiodic glottal-pulse-train is shaped by
the resonant cavities of the vocal tract [RabinS78].  The pseudoperiodic
excitation is defined as:

  

e t( ) = δ t − ti( )
i

∑ (4.13)

– a train of impulses δ(t) at times ti given by:

    

ti = arg
t

2π
p τ( ) dτ = 2π ⋅ i

0

t

∫











(4.14)

where p(t) is the time-varying instantaneous period of the excitation.  (Since
information about p(t) is only obtained at each impulse occurring in e(t), it is
further constrained to be smooth on that time scale).

The time-varying spectral modification is defined as a scalar weighting
surface sampled at the particular discrete-time and -frequency matrix used in
the system, as for the noise elements.  Thus in the sampled time-frequency
domain of (4.7) and (4.11), the weft element is:

    
XW n, k[ ] = HW n, k[ ] ⋅ E n, k[ ] (4.15)

where E[n,k] is the transform of e(t), and the time-varying spectral envelope
HW[n,k] is constrained to be sufficiently smooth to be approximated by a

constant value within each time-frequency cell.  The task of weft analysis is
to recover the smooth spectral envelope, HW[n,k], and the instantaneous

period track, p(t), for a particular wide-band periodic element detected as
present in a mixture.
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Figure 4.15:  Diagram of the analysis of weft elements.  Ridges in the
periodogram (top-left panel) indicate the presence of periodic modulation across
many frequency channels visible as a vertical structure in the correlogram slice
(top right panel) and give the period, p(t) for the weft element;  an individual
unnormalized autocorrelation function for a given frequency channel and time
slice (lower right pane) is inspected for a local maximum at the appropriate lag;
any such peaks found are used as the basis for an estimate for one cell of the weft
energy envelope, HW[n,k] (lower left pane).

Analysis

The approach, which was touched upon in the description of the correlogram
and periodogram front-end features, is to first extract a likely period track
from the periodogram, then to estimate its spectral envelope by looking at the
appropriate lag-time in the short-time autocorrelations of each frequency
channel from the correlogram.  The periodogram was devised for the single
goal of exposing the presence of wide-band periodic excitations in a signal, so
the starting point for extracting a weft is a peak that exceeds a simple
threshold in a slice of the periodogram (a summary autocorrelation).  Since
the periodogram is already normalized, there is no need to adapt the
threshold; it was set through experiment to give a reasonable discrimination
between desired and spurious periodic components.

When the analysis has decided that there is indeed a wideband periodic
modulation present at the current time-frame with a certain, known period
(one point in p(t) ), its amplitude in each frequency channel must be obtained
to ‘fill in’ the column of HW[n,k] for the current time-step.  This is done by

looking at the short-time autocorrelation for each channel at that time step;
if a given channel’s autocorrelation contains a local maximum very close to
the fundamental period for that time slice, and assuming the periodic
excitation dominates the energy in that channel, the square-root of the
unnormalized autocorrelogram sample is taken as the time-frequency
envelope value for that cell.  (If there are interfering simultaneous signals,
the value is compensated as discussed below).  The rationale here is that if
the frequency channel contained only a purely periodic signal, the
autocorrelogram sample would be the smoothed output of the product of that
signal multiplied by itself delayed by exactly one period.  Since for a periodic
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signal the delayed waveform would exactly match the undelayed signal, the
autocorrelation value would be just the time-smoothed square of the
(rectified) filterbank output, whose square-root is the overall time-frequency
intensity envelope used by the system as the basis for energy explanation.
Although factors such as time-variation in the period and amplitude of the
signal make the true situation more complicated than this, the assumption is
that a value based on these simplifications will give a reasonable indication of
the energy in the frequency channel due to signal components modulated at
that period.

In channels that do not have a clear local maximum, the weft’s envelope is
recorded as a ‘don’t know’ to permit later interpolation if it turns out that
periodic energy in that channel has been masked by another signal.  The
actual autocorrelation value is recorded as an ‘upper limit’ on the envelope in
that channel, since if the periodic component had been more intense than
would correspond to this level, its autocorrelation bump would presumably
not have been masked.

When there is periodic energy from more than one source in a given channel,
there will be interaction in their autocorrelation signatures.  If the signals
have similar periodicity, there comes a point when nothing can be done
locally to separate their contributions – the best we can do is add some later
processing to notice the collision, and perhaps fix it up by extrapolation from
better-distinguished time frames.  A comparable situation occurs if one signal
has a period which is close to an integer multiple of the other;  although their
‘fundamental’ autocorrelation maxima may be well separated, the
fundamental bump of the longer period may be distorted by the higher-order
aliases of the shorted period’s bump, since a correlation between a signal and
itself delayed by a lag of D will usually be accompanied with a very similar
correlation at a delay of 2D.  In fact, if we assume that the signal is static
over that timescale, the bump at 2D will be a precise replica of the local
maximum at the fundamental delay D.  This opens the way to a kind of
compensation:  When the weft analysis detects a signal at some short period
D (corresponding to a high fundamental frequency), it can generate a ‘mask’
for the predicted higher-order aliases of the autocorrelation maxima in each
channel by copying the fundamental maximum at shifts corresponding to
multiples of the fundamental period.  This mask predicts features expected to
arise from this short-period signal at larger periods in the correlogram slice,
and can be subtracted from the full autocorrelation functions in an attempt to
remove the effect of higher-order correlations on the traces of other periodic
signals in a channel.  (Since a given bin in our autocorrelogram scheme has
an average level significantly greater than zero, this subtraction is performed
in a domain where the normalized average level for each bin has been
subtracted).  Thus the search for local maxima in the summary
autocorrelation proceeds upwards in period (i.e. starting from the highest
fundamental frequency considered), and each recognized periodicity causes
its higher-order aliases to be factored out of subsequent processing.
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Figure 4.16:  Illustration of the removal of higher-order aliases for an identified
‘bump’ in a summary autocorrelation.  Panel (a) shows the initial summary
autocorrelation (on a log-time axis) with a clear periodicity bump at a lag of 5 ms.
Panel (b) shows the isolated bump extracted by the analysis.  In panel (c), the
bump has been shifted by multiples of its average lag time (i.e. to 10 ms, 15 ms
etc.);  the log-time sampling makes each alias appear successively condensed.
Panel (d) shows the residual summary autocorrelation after the aliases have been
removed, from which other periodicity features (e.g. the bump at 8 ms) may be
extracted.

The effect of non-periodic interference (i.e. added noise) on a channel’s
autocorrelation cannot be handled so neatly.  Channel noise tends to boost
the autocorrelation at every lag in a nonlinear fashion, leading to
overestimates of periodic energy.  Some compensation for this effect is
accomplished by comparing the ratio of peak and average correlogram values
to that expected for noiseless periodic signals, and reducing the signal level
estimate if an abnormally large average level indicates added noise.  The
basis of this calculation is presented in more detail in appendix A.

Resynthesis

The weft analysis procedure can extract multiple period tracks and associated
time-frequency envelopes from the periodogram (summary autocorrelation)
and the 3-D correlogram volume.  Resynthesis of a weft from its period and
envelope characterization is straightforward and analogous to resynthesis of
the noise elements;  first, a pseudoperiodic impulse-train excitation is
generated from the period track p(t), then it is broken up into frequency
channels, each of which is modulated by smooth, scalar envelope derived from
HW[n,k], where the derivation incorporates compensation for the differing

amounts of energy contributed by the excitation to each frequency channel (in
proportion to the channel’s bandwidth) and factoring-out the overlap between
adjacent channels by non-negative least-squares approximation.
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Predictions

As the only elements capable of accounting for features in the periodogram,
the predictions of weft elements are made both in the intensity-envelope
domain (as for the other elements) and for the next summary autocorrelation
(periodogram slice).  The basic prediction principle is to assume that the
element will continue unchanged into the next time slice, in the absence of
any higher-level model which might, for instance, be tracking pitch slope.
The deviation bounds are set as a small proportion of the intensity.  However,
an interesting problem arises compared to the noise and transient elements:
Whereas overlapping noise elements have an essentially unconstrained
problem when apportioning observed signal energy between them, a weft
element is less accommodating:  The process of extracting a spectral envelope
from the correlogram has produced a separate estimate of the actual energy
associated with this modulation period, regardless of the other elements
present.  While the correlogram extraction mechanism has a certain amount
of error associated with its results (reflected in its associated variance values
and carried through to the prediction), it is less able to participate in the
apportioning of error between predicted and observed signal energy, since it
is separately constrained to follow the levels derived from the correlogram.
Thus the intensity variations absorbed by weft elements, and consequently
the error weights they offer, are rather smaller than for other kinds of
elements.

4.4 The reconciliation engine

The third component of the prediction-driven architecture is the engine that
manages the creation, modification and termination of the internal model of
the sound-scene to match the external signal.  At the lowest level, this is a
question of maintaining the set of elemental sound representation objects to
be consistent with the cues supplied by the front-end analysis.  It also
encompasses the updating of the higher-level back-end hierarchy of
explanations for these sound elements.  Before going into the detail of how
this is achieved, we examine the blackboard system through which this
operation is accomplished.

4.4.1 The blackboard system

The engine implementation is based on a blackboard system, as discussed in
general terms in chapter 2.  The actual code is derived from the ICP (IPUS
C++ Platform), whose features are described in [WinN95] [LessNK95], and
many of whose key features are based on the RESUN architecture of
[CarvL91], although this specific lineage is not crucial to the flavor of the
system.  Using a blackboard architecture is largely a programming
convenience as it provides a structured foundation for a system that consists
of numerous competing hierarchies of hypotheses at different levels of
abstraction.  Blackboard systems address the issue of flow-of-control in such
situations by using an explicit rating to choose and develop the hypotheses
that seem the most promising.  This is particularly valuable in systems where
analysis can proceed in various directions, some of which may be fruitless
wastes of effort.

This blackboard implementation is characterized by four aspects:  the levels
of the hypothesis hierarchy, the basis for rating the quality of each
hypothesis, the idealizations of solution state in the problem-solving model,
and the actions defined for developing hypotheses.
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Figure 4.17: Diagram showing the major components of a typical blackboard
system.

The hypothesis hierarchy

The sound organization system defines four initial levels on the hypothesis
blackboard, although the intention of the system is that further levels,
representing more abstract analyses, may be added.  The blackboard
architecture assumes a hierarchic relationship between the levels of the
blackboard, with hypotheses at lower levels providing ‘support’ for hypotheses
at higher levels, which correspondingly provide an ‘explanation’ of their
support.  The four levels defined for this implementation, starting from the
lowest (least abstract), are:

• Surface.  This level contains only one ‘hypothesis’, standing for the raw
input data obtained from the front end.  This is the grounding support for
all the other hypotheses in the system.  The actual data here is both the
time-frequency intensity surface and the periodogram;  the goal of the
analysis is to provide satisfactory ‘explanations’ of both these data sets.
Although the data in the surface is in fact read into memory in a single
operation, it is analyzed incrementally via a steadily-advancing time
horizon, as if the new data were arriving in ‘real time’.

• Subscene.  The immediate explanation of the surface is provided by the
subscene hypotheses, each of which represents the lowest level of a
putative complete explanation for some patch of the surface (i.e. a limited
range of time).  When a prediction is made by querying each element of a
candidate explanation, it is within the subscene hypothesis that the sum
of the predictions is recorded, to be compared against actual data from
the supporting surface hypothesis in a later time-step.  Each set of objects
proposed to explain a portion of the sound thus has a single subscene
hypothesis at its base.

• Element.  Directly above the subscenes in the explanation hierarchy are
the sound element hypotheses which correspond to single elements of the
types specified in the previous section.  A given subscene may contain any
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number of elements depending on the complexity of the explanation it is
constructing.  It is by gathering the individual predictions of each of its
explaining elements that the subscene constructs its aggregate
predictions for the entire surface.

• Source:  As explained in the discussion of the internal sound model,
elements are merely the most concrete aspect of descriptions of sound-
producing entities in the external world that may be arbitrarily abstract.
In this implementation, there is just one level of explanation for the
elements; in theory, there could be multiple levels of explanation, each
adding higher-order constraints on the predicted behaviors of the
elements at the base of its support.  Note that there is a ‘fan-out’ between
subscenes and elements, with a single subscene potentially supporting
many elements.  Above the elements, however, there is a ‘fan-in’, with
each element permitted to support only one source-level hypothesis, and
potentially several elements being controlled by each source.

Fan out

Fan in

Surface hyp

Subscene hyp

Element hyp

Source hyp

Subscene hyp

Element hyp Element hyp Element hyp

Figure 4.18:  The various hypothesis classes present on the blackboard, and an
illustration of the fan-in and fan-out on each side of the element hypotheses.

The rating of hypotheses

In order to make the choice of where to apply processing effort, a blackboard
system must have a method by which to compare the ‘promise’ of the different
partial solutions represented by its hypothesis.  A common problem, not
avoided in  sound organization system, is that of devising a rating system
that can be usefully compared between entities of different types.  The goal is
to produce some kind of estimate of the likelihood that a particular partial
solution will lead eventually to the correct (or one of the acceptable) analyses
of the input.

In the sound organization system, the common principle adopted was the
information-theoretic concept Minimum Description Length (MDL), where a
particular explanation is ‘scored’ according to the number of binary digits it
requires to account for the observed data [QuinR89] [Riss89].  MDL is used in
situations where a choice needs to be made between radically different
models which do not permit any direct comparison except at this most basic
level.  The difficulty or art in applying MDL lies in devising the specific
representations whose size is to be measured, and in calculating the
description-length penalties to be associated with the ‘model specification’
part of a description (which specifies the particular competing model to be
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used) as distinct from the ‘model parameters’ part (the actual coefficients for
that model to account for the observations).  MDL has a close relationship to
probability theory, particularly Bayesian analysis, where the model
specification lengths equate to Bayesian priors associated with each model.
Overall, the description length score of a particular explanation may
correspond to a likelihood that it is correct according to Shannon’s equation:

b = -log2(p) (4.16)

which relates the number of bits, b, in a code for a symbol (or outcome) to the
probability, p, of that symbol occurring.

In the sound organization system, the rating of a hypothesis is intended to
reflect the average number of bits that hypothesis requires to account for
each time-frequency sample it covers.  In this way, hypotheses that have been
able to account for a sound with the simplest set of parameters will be
preferred over more complex explanations.  However, there also needs to be
some accounting for the accuracy with which the model has predicted the
signal:  Recall that a putative explanation provides a probabilistic prediction
of each future input sample, i.e. an expected level and a tolerable deviation
bound around that level.  If the model is explaining the signal as a random
noise process, this prediction is necessarily uncertain since the precise
fluctuation of the noise energy cannot be predicted.  However, if a competing
hypothesis makes a much narrower prediction of the signal level (one with
much smaller deviation bounds) which turns out to be correct, the competing
hypothesis should possibly be rated as superior to the high-variance noise
prediction, even though it might have employed more bits of
parameterization to achieve that prediction.

Such a comparison is afforded by calculating the MDL scores as the number
of bits required to specify the input signal to a fixed level of accuracy.  By this
mechanism, a ‘loose’ (high-variance) prediction is penalized, since in order to
encode the signal to the specified accuracy it would need additional
information to specify, to the required level of accuracy, where within its wide
prediction range the observed signal fell.  A model providing a very narrow
prediction range might need no additional information if it already predicts
the level to within the required accuracy, and the amount of extra
information required increases with the variance range.  Thus broad
predictions are penalized compared to more specific predictions, and the
advantage of the MDL approach is demonstrated by the ease with which the
concept of the rating may be extended beyond the characterization of an
explanation itself to encompass its accuracy too.

A modification to the basic MDL rating was required to handle the case of
very small signals.  Since deviation bounds are normally roughly proportional
to prediction levels, a model predicting a very small signal in a given channel
will also have a very small deviation bound for that channel.  Such
predictions run the risk of a larger but modest signal appearing in the
channel whose level is none-the-less very remote from the prediction in terms
of the tiny deviation bound.  The MDL rating for the object incorporates the
negative log-likelihood of this level under the probabilistic model of the
prediction (according to (4.16), and the huge score for this situation would
effectively doom the object to immediate guaranteed abandonment.  This is
rarely the correct treatment, so to avoid this undesirable situation, an upper
ceiling was imposed on the number of bits calculated to be required for any
single sample.  This ceiling was set at the word-length required to store the
sample in a linear binary representation at some fixed resolution:  The
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rationale for such a ceiling is that this linear encoding achieves the greatest
accuracy required of any time-frequency sample, and if encoding under a
model would require a longer description, the linear code would be used in
preference.

Note, of course, that the description of the signal whose bit-length is being
considered is never actually constructed.  It is merely that the ratings of
element and subscene hypotheses are calculated as the length of an
imaginary code that would be required precisely to represent the observed
signal under the models they comprise, since the length of this theoretical
encoding forms a suitable basis for comparison.

The problem-solving model

The RESUN architecture of [CarvL91] is based on the view that signal
analysis in blackboard systems is essentially a process of eliminating
uncertainty in the explanation until a sufficiently likely answer is obtained.
To this end, it includes a summary of the state of analysis called the problem-
solving model or PSM.  The PSM keeps track of the ways in which analysis
may be continued by tracking all the sources of uncertainty (SOUs) attached
to current blackboard hypotheses.  Every hypothesis type has an associated
range of SOUs that might apply to it; as each fundamental analysis action is
applied to a hypothesis, it will add and remove SOUs to indicate how the
state of analysis for that hypothesis has changed.  For example, when the
initial ‘surface hypothesis’ is created, containing the raw data from the front-
end processing, it is tagged with a ‘no-explanation’ SOU, indicating that the
most obvious immediate reason that the system has not yet produced an
answer is that no explanations have been suggested to account for the
bottom-level data.   Although their specific interpretation depends on the type
of hypothesis to which they are attached, the basic SOU types defined
include:

• ‘no-explanation’ and ‘no-support’, indicating that the hypothesis hierarchy
needs to be extended, either in the bottom-up, abstraction direction, or
the top-down, prediction, direction respectively.

• ‘partial-extension’, indicating a hypothesis capable of being extended into
future time-steps.

• ‘inadequate-explanation’ and ‘inconsistent-explanation’, which are used to
flag predictions providing too little or too much energy relative to the
actual observations.

When an action is applied to a particular hypothesis, it is also responsible for
altering the SOUs attached to the hypothesis to indicated the new analysis
state.  Typically, this will involve removing the SOU which was actually
responsible for invoking that action.  Hypothesis development can be viewed
as a sequence of states, each labeled by an SOU, with particular actions
comprising the transitions between those states.

A given hypothesis may have several attached SOUs.  SOUs have an intrinsic
priority to determine which should be resolved first, all other things being
equal.  Thus, an ‘inconsistent-explanation’ SOU, indicating that a particular
prediction has failed to match up to the observed data, is addressed before a
‘partial-extension’ SOU, whose resolution advances that hypothesis to the
next time step.
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The analysis actions

Having represented the state of the solutions offered by each hypothesis, the
system has to decide what action to take to make progress in the analysis.
This must be based on a combination of choosing the most promising
hypothesis, and knowing what may be done to improve it.  Ratings provide
the first part of this by indicating which of the existing hypotheses has been
most successful thus far, and might therefore be a promising bet for further
development.  Through the  specific ‘sources of uncertainty’, the problem-
solving model facilitates the second part of this choice, by explicitly labeling
the various deficiencies in a particular hypothesis that the system may
choose to resolve.  The RESUN framework actually incorporates a subgoal-
based planner, which achieves more abstract goals (such as ‘solve-problem’)
by breaking them down into sequences of smaller goals (such as ‘select-SOU’
then ‘resolve-SOU’); each possible action that the control engine may invoke
has a particular subgoal that it can solve, along with a precondition that tests
whether it is applicable.  Thus the action to extend a subscene hypothesis
into the next timestep meets the ‘resolve-SOU’ goal, but only in the situation
where the selected SOU is of the ‘partial-extension’ class attached to a
subscene hypothesis.  All this information is attached to the action itself,
thereby giving the control engine sufficient knowledge to proceed through the
analysis.

Some examples of the actions involved in the analysis are:

• ‘solve-no-explanation-sou-element-hyp’:  A sound element hypothesis has
been created, but as yet there is no more abstract source hypothesis that
it is supporting (indicated by the ‘no-explanation’ SOU attached to it on
creation).  This action will attempt to find or create a higher-level (source)
explanation for this element, and will remove the SOU if it succeeds.

• ‘solve-partial-extension-sou-subscene-hyp’:  A subscene (a collection of
elements explaining a particular patch of the observation surface) has
been reconciled with only a limited ranged of the observed time -steps;
this action will widen its purview to include the next time step, thereby
triggering the creation of predictions by all the elements and sources it
supports.  This, in turn, will cause an ‘incomplete-support’ SOU to be
attached to the subscene to indicate that it contains predictions that have
yet to be reconciled to the underlying support.  Only after this
reconciliation (and the modifications to the explanatory hierarchy it may
entail) will the refreshed ‘partial-extension’ SOU, also added by this
action, be invoked to advance the analysis still further in time.

• ‘solve-inadequate-explanation-sou-subscene-hyp’:  A prediction for some
part of the observed signal surface failed to account for all the energy that
was actually observed; this rule will attempt to create a new element to
add to the explanation of this subscene that can account for the excess
energy.  Creating a new element will firstly look for current source
hypotheses that might predict possible additional elements of a specific
form, then fall back on explanation as default noise or transient elements.
Very often, there will be several choices for the additional explanation
which each seem quite plausible given the information to date.  In this
case, the subscene hypothesis will ‘fork’ into several alternative versions,
each pursuing a different possible explanation.  Each candidate
explanation will then have its own chance to account for the actual
observations;  the less appropriate solutions will rapidly fall into neglect
as their ratings fail to compete with their more successful siblings.
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4.4.2 Basic operation

The interaction of the various components of the blackboard system is best
understood by walking through a typical sequence of analysis operations.
Although this suggests a central analysis ‘loop’, one of the defining features of
blackboard implementations is that nowhere is such a loop directly encoded;
rather, it emerges from the set of possible actions available to the system, the
states which they connect, and the particular characteristics of the data
under analysis.  One motivation for using a blackboard architecture is that
the structure of the problem frustrates attempts to specify an analysis loop in
advance;  a blackboard system can proceed with an analysis regardless.

Prediction and reconciliation

Since the analysis is incremental, new time steps are considered only when
all the data to date has been satisfactorily explained.  The first action to occur
concerning a new timestep is the construction of a prediction for the
indispensable domains – the energy envelope and the periodogram.  A
subscene hypothesis that is sufficiently highly rated compared to its
neighbors will have its ‘partial extension’ source-of-uncertainty selected for
resolution, and the resulting action will gather and combine the predictions of
the attached sound-element hypotheses.  The elements themselves will
generate predictions based on their existing context (i.e. their history) and on
any source-hypothesis they support.

Predictions are combined within each class of element, and then into single
overall predictions of the energy and periodogram slices for the new time
slice.  The predictions are all probabilistic, consisting of expected values along
with positive and negative deviation bounds.  Each class of element has a
separate rule for combining predictions with those of its siblings;  for noise
elements, this is simply a matter of adding the expected levels in the power
(amplitude-squared) domain, and adding the variances, taken as the squares
of the deviation bounds.  A weft rule may have more complex logic to account
for more slowly-varying phase interactions between resolved harmonics,
although this was not included in the current implementation.  Combining
the predictions of the different element classes into the single overall
prediction is again done in the power domain i.e. assuming incoherent phase
interaction between the different elements.

A complete prediction is flagged by a ‘partial-support’ SOU on the subscene,
which triggers the process of reconciliation of that prediction to the observed
input.  For the time-frequency intensity envelope, the difference in each
frequency band between the predicted and actual amplitudes is scaled by the
deviation bounds of the appropriate polarity; the norm of the resulting vector
of scaled differences is equivalent to the Mahalanobis distance between the
prediction and the actual [Ther92].  The positive and negative components of
this vector are treated separately:  If the norm of the positive vector elements
exceeds a threshold, then there is energy in the input that exceeds the
prediction by more than the prediction’s own deviation bounds, and an
‘inadequate-explanation’ SOU is generated, motivating the addition of a new
element to the explanation.  If the norm of the negative vector elements
becomes too large, the observed energy in those channels is significantly
smaller than predicted, and an ‘inconsistent-explanation’ SOU is created
which will trigger a search for an element that may have terminated.

Similarly in the periodogram domain, the actual summary autocorrelation for
this time step (i.e. the periodogram slice) is searched for significant peaks
that were not predicted by the element ensemble.  These are flagged as



4: Implementation 99

explanation inadequacies.  It is not, however, necessary to flag predicted
periodogram features that are not observed, since each weft element will
consider its own termination during parameter update if an autocorrelation
peak at the desired period cannot be seen.  Also, if a periodic source has
terminated, it is likely to be reflected by a change in the energy envelope too,
and resolution of ‘inconsistent-explanation’ SOUs for the energy envelope
may also terminate wefts.

Hypothesis creation

Handling the ‘inadequate explanation’ SOU that results from excess input
energy is one of the trickiest parts of the system.  It is also an important
window of opportunity through which higher-level abstractions, including
future system extensions, can influence the analysis.  As a well-defined
hypothesis-SOU conjunction, any newly-added actions that address this
situation will automatically be invoked as appropriate.  The current action
operates as follows:  Firstly, the periodogram surface is consulted to see if
there is cause to generate a new weft element.  An increase in signal level
may result from the addition of periodic or aperiodic energy, and the periodic
explanation takes priority (since periodogram features cannot otherwise be
explained).  If a new summary autocorrelation bump is found, a weft element
is created for that period and added to the subscene’s explanation.

If the excess signal is not accounted for by periodic energy, it is passed on to
be explained as a noise or click element.  These elements are rather similar at
onset, and the choice between them may not be possible until the signal has
been observed for several more time-steps.  At a later time their different
handling of the post-onset behavior of energy (decaying in click elements,
sustained in noise elements) will distinguish the preferable choice.  In
creating these new elements, the following considerations also apply:

• The onset map (described earlier in this chapter) is consulted to check for
evidence of a rapid onset.  From this map, an average local rate of energy
increase is calculated over all the channels indicated as contributing to
the observed energy excess.  If this value (already normalized for absolute
signal level) exceeds a threshold, the energy is judged to have arisen from
a genuine onset event, and new elements are created.  If the threshold is
not reached, however, the observation of excess energy is considered
spurious and ignored.  This can happen for several reasons:  If the
deviation bounds attached to the prediction become extremely small
(because predictions have gained confidence through past accuracy), a
modest deviation in the observed energy will become greatly magnified
when normalized by the deviation bounds.  This can lead to an
‘inadequate-explanation’ event which should in fact be ignored, with the
effect that the worsening prediction performance of the existing elements
will cause wider variation bounds for future predictions.  Another source
of spuriously inadequate explanations is the enforced decay of a click
element, which, if attempting to fit a non-decaying energy source, will
provide successively diminished predictions that leave a growing shortfall
compared to the actual input energy.  In this case, refusing to add a new
element to absorb this shortfall is an important step in letting the rating
of the associated subscene hypothesis deteriorate, reflecting the
inappropriate match of the explanation to the data, and leading to the
eventual abandonment of the hypothesis.

• Abstract explanations of previous observations may result in the
anticipation that a particular element or conjunction will occur at some
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point in the future.  At present, this is limited to the situation of a
terminated noise element generating an anticipation that a noise element
with the same spectral profile may reappear; in general, a more
sophisticated abstraction of the signal could generated more complex
anticipations when a particular pattern or sequence is recognized.  These
anticipated elements are checked for compatibility with shortfalls in the
prediction, and may be realized if they provide a promising explanation.
By starting with parameters that are already attuned to a particular form
of energy, an anticipated element will out-compete a completely new
element on the basis of ratings, provided of course that the new energy
does in fact conform to the anticipation.  This mechanism may be thought
of as analogous to the concept of ‘priming’, usually considered in relation
to vision, where a particular context can increase a subject’s sensitivity to
a particular pattern, predisposing them to interpret new information in a
specific way.

• There are several special-case rules to help with the correct operation of
the example implementation.  Bootstrapping at the start of a sound is one
such situation:  The system is obliged to add a noise element to an
inadequate scene that contains no other elements, ensuring that there is
a continuous ‘background-noise’ explanation within the subscene.  The
large amount of onset energy at the very beginning of a sound example
would otherwise favor a click element, but such a hypothesis, decaying
away again to nothing, is not worth pursuing.

• It was advantageous to inhibit the creation of multiple click elements in
rapid succession by imposing a minimum time interval between the
creation of such elements.  Without this constraint, a single transient
might generate several elements as its initial spectrum developed in the
first few time steps to confound the element that had initially been
created.  By refusing to create additional elements, the first element is
forced to conform to the true form of the transient.  This situation might
be more properly addressed not in the element creation logic but with
more sophisticated predictions of click elements at onset.

Typically, several alternative elements can account for the excess energy,
and, lacking evidence to choose between them at this stage, the subscene
hypothesis branches to generate several alternative continuations.  These
variations on the original hypothesis will then be able to compete for
development further into the future on the basis of their success at predicting
the observations, as reflected in their ratings.  Branched hypotheses inherit
copies of all the active explanation elements in the subscene, which must be
distinct entities since they will develop independently henceforth.  This
branching of hypothesis versions during the resolution of inadequate-
explanation events is the only mechanism that generates the multiple
alternative hypotheses on the blackboard, at least in the current
implementation.

Once a new hypothesis has been created including the additional element
intended to account for the excess energy, the prediction and reconciliation
for the current time-step are repeated.  This should always result in a
successful prediction of the current observations, since the new element has
been added specifically to achieve that end.  The new hypothesis will then be
ready to advance forward and predict the next time step.
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Hypothesis termination

The previous subsection described the handling of the situation in which the
energy observed in certain frequency channels exceeds the predictions for
those channels, suggesting that new elements should be added to the
explanation.  In the converse situation, where the energy observed is in fact
significantly smaller than predicted, the system will consider eliminating
elements to reconcile the ‘inconsistent-explanation’ SOU that has been
generated.  In principle, this is a simple matter:  For each current element,
predictions are made based on a subscene that has had that element
removed, and these reduced predictions are compared to the actual
observations.  If the exclusion of a particular element leads to a better match
with the observations (according to the Mahalanobis, or variance-weighted,
distance metric), then that element is terminated and the subscene continues
without it.

In practice, there are a couple of modifications to this basic principle.  Firstly,
this comparison is made in the time-frequency intensity envelope domain.
This could result in the elimination of a weft element whose energy
contribution was unnecessary, while at the same time providing a crucial
explanation of a feature in the periodogram domain.  Thus each tonal (weft)
element is only considered for termination if its periodogram support is
relatively weak; otherwise, eliminating the element in one time-step would
simply result in its regeneration on the next, as the newly-exposed peak in
the summary autocorrelation demanded explanation.  Secondly, it was found
to be necessary to provide ‘protection’ for certain hypotheses:  For instance, a
relatively low-level background noise explanation might be eliminated to
provide a short-term benefit when a more intense foreground element
predicted a little too much energy.  Later on, when the foreground element
decayed, the previous termination of the background would leave the
hypothesis in a difficult situation.  This situation could be handled through
competition between alternative hypotheses, generating branches on element
termination with and without the excess element, and relying on the ratings
to eventually favor non-termination when it was the correct choice.
Pragmatic considerations made it preferable to ‘nudge’ the system towards
the correct choice at the decision point; this was achieved by prohibiting the
termination of elements that had existed for more than a certain amount of
time.

The handling of inconsistent-explanation SOUs is only one way in which an
element may be terminated.  In addition, each element has some logic for
self-termination based on its parameter updates.  Click and noise elements
monitor their levels relative to the peak level in each channel and will drop
out of the explanation if they have become small relative to their past and to
the current total signal.  Weft elements are governed by the presence of
periodogram features that they explain; if their fundamental-period pulse
disappears for more than a couple of time frames, they too will terminate.

Apportioning prediction error

Even when a particular combination of elements provides a satisfactory
prediction of the observed signal energy, there will still be some residual
error between the actual and the prediction.  This to should be passed to the
elements to allow them to trim their parameters for improve future
predictions.  Simply informing each element of the overall error will not work:
Consider a channel in which the prediction was a little smaller than the
actual observation;  each element, notified of prediction error, might increase
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its level in that channel to compensate.  But if there were many elements, the
combined effect of the individual compensations might over-predict the next
time step, leading in all likelihood to oscillation.  The ideal solution would be
to inform only the ‘right’ element – the one which really ought to have made a
larger prediction – and none of the other.  Of course, there is no obvious basis
upon which to decide which element is ‘right’.

Instead, the total error is divided up so that each element involved is passed
only a fraction of the overall error, with the fractions summing to the whole
error.  This division is made on the basis of the error weights through which
every element rates its own confidence in the prediction it is making.  The
error weight is often the same as the deviation bound (i.e. the ‘standard
deviation’ of the probabilistic prediction), although for noise elements a very
low error weight may be attached to a prediction whose variance is still quite
large, reflecting the intrinsic variability of noise signals.  The error weight
itself follows both the magnitude of the prediction (so that an element
contributing a greater proportion of the prediction will similarly received a
greater proportion of the prediction error, all other things being equal) and
the parameter uncertainty for that element (so that a newly-created click
element that has had little opportunity to gain confidence in its model
parameters will ‘soak up’ the major portion of the prediction error).

Error allocation involves summing the error weights for all the currently-
active elements, allocating prediction error to each (in the magnitude-squared
domain) on the basis of their proportion of the total error weight, constructing
a new ‘target magnitude’ for that element, then backing off any error
allocation that would take the target magnitude for a certain element in a
particular channel below zero.  In this way, an element making a low-
magnitude prediction with a large error weight will not inadvertently absorb
a large negative error which it cannot accommodate.  Since the total
prediction is essentially the sum of the element predictions, and since the
observed level will always be nonnegative, the prediction error can never
become so negative as to be incapable of absorption by the elements.

Each element is passed its apportioned error, which it then uses to update its
own parameters, possibly propagating through to a higher-level source
explanation.  The modified element is then up-to-date with the current time-
step and ready to make a prediction for the next instant.

Note that the question of error-apportioning would not arise in a data-driven
system, where the explanation would have been abstracted directly from the
observation.  By contrast, the prediction-driven approach can arrive, through
context, at a situation where more than one element is overlapped to predict
a single observed value – commonly the correct interpretation in a real sound
scene, and thus one that the a successful system must be able to construct,
but one that carries with it the problem of apportioning deviations from
prediction between basically inseparable components.

Calculation of ratings

Each element hypothesis is given a rating score notionally related to the
number of bits required to represent the actual signal in the context of the
model, as described above.  When a subscene consists of a single element
predicting the observations, the rating may be calculated unambiguously.
When several elements are acting in combination, it is necessary once again
to divide up the difference between actual and prediction between each of the
elements, constructing the  ‘target magnitudes’ of the preceding subsection,
which would have predicted the actual observations exactly.  Each element’s
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rating within the mixture is then the appropriate description-length score for
the respective target magnitude in the context of the prediction and deviation
bounds.  Note that if the error weights are just the deviation bounds (as they
are in the click and weft elements), then the deviation-based component of
the rating will be balanced across all the elements (although the individual
ratings will vary owing to the aspects of the rating calculation that reward
more specific predictions at a given level of accuracy).

The overall rating of a subscene hypothesis is simply the sum of the ratings of
the elements it supports, in keeping with the idea that the rating measures
the number of bits required for a partial description of the sound, and the
entire sound is described by combining all the parts.  A lower rating therefore
corresponds to a superior hypothesis,  indicating that it described a sound by
using fewer elements, or with fewer bits in addition to its elements because
the elements made an accurate prediction.

Startup, termination and competitive behavior

After re-rating the hypotheses, the system is ready to continue on to the next
time step, first by making a prediction, and then by reconciling it to the
actual data; the central ‘loop’ is complete.  Some special cases warranting
further discussion are startup and termination of entire explanations, and
also the typical behavior of competition between hypotheses.  Starting the
analysis from scratch is in some senses an artificial problem affecting only
the model:  A ‘real’ sound-organization system will have some kind of current
context at all times.  As mentioned above, the very beginning of a sound is
treated as a special case by the element-creation code – the newly-created
subscene will have no elements with which to account for the observations.
In this case, a noise cloud element is constructed to act as the underlying
noise floor, and that element is allowed to stabilize for a short while before
creating additional explanatory elements.  In the examples used to assess the
system, stabilization required only on the order of a hundred milliseconds.

Analysis termination is in general a complex issue in blackboard systems,
since the first complete explanation generated might not be the best – some of
the other partially-complete hypotheses might, when fully developed, turn
out to provide better overall explanations of the data.  Empirically, the
current implementation can take many tens of time-steps (i.e. hundreds of
milliseconds of input sound) to settle on its favorite hypothesis after an event
such as the appearance of a new sound object.  This did not, however, lead to
any disruptive ambiguity, at least in the examples employed.  Although it
was not necessary in the current implementation, the system could insure
against overlooking a temporarily-disadvantaged explanation by developing
to completion all partial explanations of comparable rating after the front-
runner has exhausted the input data.  Then the best solution could be picked
based on the final ratings.

The general pattern of competition between different hypotheses tends to
operate as follows.  When a potential solution diverges (i.e. at an onset event
whose correct explanation is ambiguous), the two forks are initially very
similar, having almost equal ratings, and will be developed in an interleaved
fashion for a while.  Within a few tens of time-steps, one of the branches will
often turn out to be a better fit, and will begin to be awarded more of the
analysis effort on the basis of its superior rating.  Normally, within a hundred
time-steps or so, the ‘losing’ branch will have been completely abandoned,
since, as the leading hypothesis advances into the future, its rating will
improve with the cost of adding a new element being averaged over a larger
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number of time steps.  Occasionally, however, a hypothesis will obtain a
short-term advantage (e.g. by eliminating a low-level background element)
which will turn out to be a major disadvantage later on (when the masking
foreground element decays);  in these cases, the rating of the front-runner
will start to grow as the inappropriate fit becomes apparent, until the rating
of the languishing alternative is once again worthy of consideration.  In the
examples explored, it has never been necessary to go back more than one
second (i.e. approximately 200 time-steps) to find an alternative hypothesis,
and indeed for reasons of practical efficiency hypotheses that fall more than a
couple of hundred time-steps behind the front-runner are ‘retired’ – removed
from future consideration.

4.4.3 Differences from a traditional blackboard system

Although I have placed considerable emphasis on the value of using a
blackboard architecture as the basis for a hypothesis-oriented, prediction-
driven analysis scheme, there are several aspects in which the system as
described is not a particularly compelling instance of a blackboard
implementation.  One curious oddity is the way in which the subscene
hypotheses act as a point of convergence for multiple higher-level elements
and source explanations, reversing the more common pattern in abstraction
hierarchies where a single higher level element explains and combines many
lower level elements.  This may reflect the slightly unconventional goals of
the analysis system: Rather than trying to answer a specific question, such as
“can I hear a car approaching?”, the sound organization system is trying to
construct a complete explanation for all the sound it receives.  In a traditional
sensor-interpretation blackboard system – for instance, the helicopter signal
tracker of [CarvL92a] – the ultimate answer is a single, abstract causal
explanation (“reconnaissance mission”) for the interesting signal data.  By
contrast, the desired output of the sound organization systems is not a single
causal account, but several high-level abstractions to reflect the several,
causally-unrelated external sound sources that have overlapped to create the
total sound scene.  From this perspective, the low-level subscene hypothesis
takes on great significance as the point at which the otherwise independent
source hypotheses are combined and finally reconciled with the observed
sound.  It is at the level of the subscene hypothesis that the final complete
‘answer’ is chosen, which then indicates the set of preferred source-level
explanations by association.

Probably the greatest advantage argued by proponents of blackboard systems
is their ability to switch between analysis procedures at widely differing
levels of abstraction on an opportunistic basis.  However, until the
abstraction hierarchy of the current system is deepened through the addition
of higher-level explanations, there is a rather shallow range of abstractions
with which the system is dealing, and the ‘choice’ of which level at which to
pursue analysis is normally trivial.  None the less, a blackboard architecture
has turned out to be a very convenient approach to handling the competition
between hypotheses and the distinct levels of explanation involved in this
problem.  Moreover, it is an approach very well suited to the future
extensions that any approach to computational auditory scene analysis must
expect to require.
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4.5 Higher-level abstractions

The final major component of the prediction-driven architecture is the
collection of higher-level abstractions which provide explanations and
interpretations for the basic sound elements created at the lower levels.
Much of the theoretical attraction of the architecture relies on this part of the
system and its ability to disentangle confounded or masked cues through
context-dependent interpolation.  Regrettably, the most glaring shortfall of
the current implementation is that this part of the architecture is hardly
developed.

In the description of the blackboard’s hypothesis hierarchy, the ‘source’ level
was introduced as containing hypotheses that were supported by one or more
sound elements that together formed a larger, interrelated pattern.  These
source hypotheses embody a more sophisticated level of knowledge about the
sound-world, incorporating both general rules about sound patterns from
distinct sources, and more specific recognized conjunctions that permit
detailed predictions.  A system that is able to recognize these larger-scale and
thus more highly constrained patterns will also be able to make more specific
predictions and thereby accomplish a more efficient analysis.

Presently, the only object in this class is the rather humble model of
repeating noise bursts.  When a noise-cloud element is created, a noise-burst-
source hypothesis is also created as its explanation in the source level of the
blackboard.  Although in general source hypotheses will modify the
predictions and parameterizations of their supporting elements, this
particular source allows the noise element to develop without additional
constraints.  However, when the noise element is terminated, the source
hypothesis remains active and creates a specific anticipation that a noise
element with the same spectral profile will reappear at some time in the
future.  This anticipation is embodied on the blackboard as a noise-element
hypothesis that supports the noise-burst-source hypothesis, but without any
support of its own and without a specific time range.  This anticipated
element is ignored until an inadequate-explanation situation arises, meaning
that the underlying subscene has failed to predict enough energy and needs
to consider adding a new element.  At this stage, any ‘anticipated’ elements
are considered in preference to a completely unparameterized new element,
as described in the section on hypothesis creation above.  Assuming that the
new energy does indeed arise from a recurrence of something very similar to
the previous noise burst, the anticipated element will immediately provide a
good fit to the observations, and will form part of a successful and highly-
rated hypothesis.  When the new noise element terminates, the source
hypothesis will generate yet another anticipation, and so on.

The noise-burst-source hypothesis is a very simple example of one kind of
source-level hypotheses dealing with extended temporal patterns.  Other
possible functions of hypotheses at the source level include:

• Implementation of grouping heuristics.  Gestalt principles of similarity,
continuity and common fate that are not captured directly in the sound
elements may be detected at the level of source hypotheses.  Sound
elements whose onsets are aligned, or whose onsets coincide with the
offsets of other elements, are probably related, as are elements with
similar characteristics which occur close together in time.  Manual
simulation of this kind of grouping was implicit in the combination of
several weft hypotheses to form single ‘car horn’ source-events in the city-
sound analysis example, described in the next chapter.
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• Short-term acquisition and anticipation of patterns.  I believe that a very
important aspect of context-sensitivity in sound organization is the way
in which a particular sound pattern will have an acute influence on the
auditory system to interpret any closely-following similar sounds as
repetitions of that pattern.  The noise-burst-source hypothesis was one
example of this behavior, but a more general implementation would
encompass conjunctions of multiple sound-elements, perhaps grouped by
Gestalt principles, which would then provide a short-term bias and
specific anticipations if parts of the pattern were seen to repeat.

• Recognition of previously-learned patterns.  The idea of short-term
predisposition extends over longer time scales to a system that has a
repertoire of known sound patterns, again possibly biased by context,
which can be brought to bear on the current sound scene. These can
suggest highly specific interpretations, and correspondingly constrained
predictions, for specific low-level sound elements.

Ultimately, hypotheses at the source level can themselves support still more
abstract explanations, conceptually extending all the way to very abstract
explanations such as “the mail being delivered” or “Jim talking about his
roommate”.  The benefit of these additional layers of explanation lies in the
extra constraints they bring to bear upon the supporting sound elements;  if
the constraints are successful in matching the sound observations, then the
predictions have been both specific and accurate, and the system has made a
much more sophisticated interpretation of the data.  In practice, problems
might arise from an exponentially-growing number of alternative
interpretations as the number of abstraction levels increases, but this is
precisely the kind of computational challenge that a blackboard system
handles by dynamically limiting its search to the promising areas of
hypothesis space.

Higher level abstractions are a very important part of the overall vision of the
prediction-driven architecture and represent the crucial dimension for the
development of the sound-organization system described in this chapter and
other such implementations.  However, even despite the extreme limitations
of the current implementation, it has been able to accomplish some
interesting and valuable analyses of otherwise problematic, dense sound
scenes, using only the unguided development of the low-level sound elements
themselves.  These results are described in the next chapter, along with a
comparison to the performance of human subjects listening to the same
sound-scenes, and subjective quality ratings by those listeners of the system’s
output.
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Chapter 5 Results and assessment

The previous two chapters presented an approach to automatic sound
organization, and described an implementation of a computational auditory
scene analysis system based on this approach.  In this chapter, we will
examine the performance of this system from two viewpoints.  In the first
half, the behavior of the system in responses to various illustrative sound
examples will be considered.  This will show qualitatively how the basic
components of the system – such as the different generic sound elements and
the hypothesis-blackboard system – operate in practice.

The second half of this chapter makes a comparison between the behavior of
the implementation and the prototype of which it is supposed to be a model
– the auditory system.  This is accomplished through listening tests with
human subjects.  I will described the test that was devised, emphasizing the
qualities that make it particularly appropriate for working with an
intrinsically-defined phenomena such as auditory scene analysis.  The results
of the experiment provide some kind of answer to the question of whether the
model is truly modeling the human organization of complex sounds.

5.1 Example analyses

In this section the various features of the implementation will be illustrated
by considering the results of the system when processing some simple sounds.
Although the system was developed with a specific orientation towards dense
sound mixtures of the kind used for the subjective tests described later, it is
instructive to see how it handles less complex examples.  Also, the finer detail
discernible in less dense sound scenes makes them in some senses a more
difficult domain, compared to rich ambient sounds where the majority of
detail is possibly masked.

5.1.1 Bregman’s alternating noise example

The first example is a completely synthetic stimulus, cited by Bregman to
explain his concept of ‘old-plus-new’ auditory analysis [Breg95] – i.e. that the
auditory system is inclined to view a significant change in sound quality as
the addition of a new sound element, rather than the complete replacement of
one source by another, whenever the acoustic evidence is consistent with this
interpretation.  (Clearly this principle has a sound ecological foundation, i.e.
one source starting requires less co-ordination in the environment than a
source that starts at the same instant as another finishes, constituting a
simpler, and hence preferable, explanation).

The stimulus, which was discussed in chapter 3, is illustrated in the top
panel of figure 5.1 by its cochlea filterbank spectrogram – i.e. the time-
frequency intensity envelope calculated by the model’s front end – as well as
its periodogram, uninformative in an aperiodic sound of this kind.  The sound
consists of bursts of low-frequency noise (below 1 kHz) alternating with a
broader band of noise (up to 2 kHz), with the spectra of both matching below
1 kHz.  Bregman makes the point that although the signal could have been
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constructed either by having two different noise bands that alternate in time,
or by having a continuous sub-1 kHz noise to which bandpass noise of
1 to 2 kHz is periodically added, it is only the latter interpretation which is
available to the human listener;  the continuity of noise energy below 1 kHz
between the two bursts guarantees that the auditory system will arrive at the
‘simpler’ interpretation that the episodes of broader noise energy result from
an addition to a continuous band of low noise, rather than a complete
substitution, conforming to the ‘old-plus-new’ principle.

This is also the natural result of analysis by the prediction-driven system.
The model’s outputs are illustrated in the lower panels of figure 5.1.  The
system models the sound as a continuous, smooth background noise from 0 to
1 kHz, to which additional noise bursts between 1 and 2 kHz are periodically
added.  This simple and rather obvious result illustrates numerous aspects of
the implementation, which are now discussed.
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Figure 5.1:  The Bregman alternating noise stimulus:  The top pane shows the
time-frequency intensity envelope and periodogram of the original sound.  The
three middle panes and wider bottom pane are the envelopes of the four noise
clouds by which the system explained the example.

Modeling noise

This is a noise-based stimulus without any perceptible periodic component,
and the elements with which the system describes it are all noise-clouds.
(The periodogram feature and the weft elements will be discussed in the next
example).  The difficulty in modeling signals as noise is that the relationship
between observed characteristics and model parameters is statistical rather
than direct, and the parameters must be estimated over a time window.  As
explained in chapter 4, the noise cloud model is a steady underlying noise
function whose spectral profile and total magnitude fluctuation are
separately derived.  The smoothing windows applied to the actual signal
values in order to estimate the underlying expected level vary according to
the effective bandwidth of the frequency channel;  the broader, high-
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frequency channels require less smoothing to achieve a given level of stability
in the estimates than the more slowly-varying narrow low-frequency
channels.  Figure 5.2 shows a slice along time through the intensity envelope
for a single frequency channel, showing the fluctuations of the envelope of the
noise signal and the evolving estimate of the underlying level extracted by
the system.  The smoothing time is proportionally smaller at the very
beginning of a new element to permit more rapid accommodation during
onset.  Note that the model’s level at each time step is a product of the value
for this frequency channel in the ‘normalized’ spectral profile with the scalar
overall magnitude value for that time step; thus, the level can vary in
response to across-spectral variations in intensity even after the normalized
spectral profile estimates have become very stable.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Actual intensity and model in chan 14 (504 Hz)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time / s

Noise element

Actual

Figure 5.2:  A slice through the intensity envelope for the 500 Hz channel
showing the time variation of the noise signal envelope, and the corresponding
estimate of the underlying noise expectation from the noise cloud element
explaining the signal.

Handling overlapped noise elements

Although the different noise elements occupy largely separate spectral
regions (0-1 kHz for the continuous band and 1-2 kHz for the additional
bursts), there is a degree of overlap at the edge, raising the issue of the
reconciliation of predictions based on more than one element to a single
signal value.  Although the long, background noise element has its energy
concentrated below 1 kHz, there is always some energy in the higher
channels (due to ‘bleeding’ in the peripheral filterbank if nothing else);  when
the low noise band is present alone, this element must account for the entire
spectrum, so it must have a nonzero spectral profile in every bin.  Figure 5.3
shows a slice across frequency through the intensity envelopes in the middle
of the first broad noise burst at t = 0.54 s.  The profile of the background
element can be seen to decay towards the high frequency indicating the
average signal intensity envelope during the low-band noise episodes.

The profile of the second noise band is obtained by calculating the energy
needed in addition to the low band to bring the total prediction in line with
the observations.  The noise model has noted that there is no need for
additional energy below 1 kHz, and thus the second element is exactly zero
over most of these channels.  Note in figure 5.1 that immediately after onset
there is in fact some energy allocated to the lower frequency channels of the
second noise element, since the random fluctuation in these channels cannot
immediately be distinguished from a systematic increase in level that should
correctly be associated with the new element.  However, these spurious
channels are soon deleted when it becomes apparent that, over time, the
useful contribution to these channels by the new element is negligible.
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Figure 5.3:  A vertical slice through the intensity envelopes of signal and model
elements at t=0.54 s.  The broad band of noise is explained as the overlap of the
‘background noise’ element, with its energy concentrated below 1 kHz, and an
additional high band of noise between 1 and 2 kHz.

When developing this pair of overlapping noise elements, the system is faced
with the problem of apportioning any discrepancy between prediction and
actual amongst the different contributing elements.  Because the background,
low-band noise element has proved to be a stable and accurate model of the
signal during the first few hundred milliseconds, its error weights have
already become quite small by the time the broader band of noise begins.
Consequently, the much larger error weights associated with the new
element cause it to absorb the majority of the excess energy.  Figure 5.4
shows the variation with time of the intensity envelopes for a single channel,
showing how the second element comes to account for the excess energy.  The
error weight parameters in that channel for both elements are also
illustrated, showing that the error weight of the original background noise
has decayed to be very small by the time the second element is created.
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Figure 5.4: Time-intensity profiles for a single frequency channel showing the
addition of the ‘high-band’ element to account for the sudden energy increase at
t=0.4 s.  The error weights decay after onset  while the prediction succeeds.
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Creation and termination of noise elements

The operation at the center of the prediction-driven approach is the
reconciliation between the predictions based on the internal model and the
observed signal features.  As described in the last chapter, this comparison
between predicted and actual signal characteristics can result in the system
flagging, through ‘source-of-uncertainty’ objects, situations where extra
elements are required to enable a subscene to account for an observation, or
alternatively that the subscene needs to terminate some of its current
components to allow the observed energy to encompass the whole prediction.
These situations are detected through the norms of the normalized positive
and negative difference vectors – that is, the vector difference between
predicted and actual spectra at a given time slice, separated into positive
(more energy in observation) and negative (more energy in prediction)
components, then normalized by the deviation bounds for each channel.  The
norms of these two vectors are compared against a simple threshold, and
when the positive deviation norm becomes too large, an ‘inadequate-
explanation-sou’ is raised to set into motion the creation of a new element; a
large negative deviation norm gives rise to an ‘inconsistent-explanation-sou’.
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Figure 5.5:  The positive and negative deviation norms (norms of the vector
difference between predicted and observed spectral slices, normalized by
deviation bounds and split into positive and negative components) for the
‘winning’ explanation of the Bregman noise example, whose intensity envelope is
shown at the top of the figure for comparison.  The second pane shows the
combined envelopes of all the explanatory elements – the complete explanation.

The time variation of these two norms is shown along with the overall signal
envelope in figure 5.5.  Each subscene (comprising a set of elements that
explain some portion of the input) has its own deviation norms;  those
displayed relate to the ‘winning’ explanation illustrated in figure 5.1.  The
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results are just as might be expected;  after a startup period, both norms are
rather small during the period of stable low-band noise, although there is a
fair amount of variation between timesteps as the random fluctuation of the
noise signal is more or less similar to the stabilized explanation.  When the
wider band of noise begins, the positive deviation grows very quickly;  the
signal is exhibiting proportionally massive increases in signal level in the
upper channels which have rather small deviation bounds by virtue both of
having been stable for many timesteps and being of low energy to begin with.
As soon at the positive deviation norm exceeds the threshold, the engine
creates a new noise element, and the norm immediately drops to a very small
value – again, as a result of the dual effects of the extra energy provided by
the new element eliminating the shortfall between prediction and
observation, and because the very large deviation bounds of a newly-created
element cause any residual prediction error to be magnified far less in
normalization.

The increase in deviation bounds also effects a temporary damping of the
negative deviation norm.  However, within a few tens of timesteps, the
prediction of the broader band of noise as the combination of the two
elements has more or less stabilized, and the norms resemble their behavior
before the onset.  Then, at t = 0.6 s, the upper band of noise disappears from
the input.  Note that the smoothing applied in the calculation of the intensity
envelope means that there is a somewhat softened decay on the trailing edge
of the noise bursts; however, the predictions are now consistently in excess of
the actual signal, and the negative deviation norm begins to grow.  For a
while, the system cannot find a way to resolve the ‘inconsistent-explanation’
condition, since the high-band noise element is still required to account for
the decay tail of the burst (i.e. removing the element makes the prediction
still worse), but eventually the signal decays to a small enough level that the
prediction is better without the second element;  the large negative deviation
norm means that the system is still on the lookout for an element to remove,
and thus the high-band noise element is terminated, and the negative
deviation drops down again (at t=0.7 s), mirrored by a temporary jump up in
the positive deviation norm, which is ignored for lack of evidence of an onset.

The creation and termination of the elements for the remaining noise bursts
are similarly marked by peaks in the positive and negative deviation norms.

Competition between explanations

Thus far, the discussion of the system’s analysis of the Bregman noise
example has only considered the single hypothesis that was returned as the
overall ‘best’ explanation.  However, the system was not able to construct this
explanation without any false moves; rather, at various decision points it had
to construct several alternative hypotheses and develop them all for a little
while until it became clear which ones held out the best promise for a
complete solution.

As described in chapter 4, the current implementation only forks hypotheses
into competing versions at the times when new elements are being created;  if
there is ambiguity concerning which type of element to add (such as
frequently occurs between the initially similar noise and click elements), the
system will create both alternatives, and leave it to the rating process in
subsequent timesteps to sift out the better solution.  In this short example,
there are four instants at which new elements are created (including the
initial startup);  if each creation led to two alternatives (with the added
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element being either a click or a noise), there would be sixteen different
subscene hypotheses that could be developed through to the end of the sound.

In fact, the number is different from that for several reasons.  The
‘evolutionary tree’ of subscene hypothesis versions is illustrated in figure 5.6.
The element creation at startup leads only to a single hypothesis, since a
special-case prevents a sound explanation consisting of nothing but a click
element (which would decay away to leave absolutely nothing).  However,
when the first broad-band noise enters at time-step 86, this hypothesis splits
into alternate versions that explain the new energy with either a click or a
noise.  The sustained level of the noise burst is poorly matched by the click
element, which will always try to decay, with the result that its associated
hypothesis is only developed for a few timesteps before the rating of the
alternative explanation, consisting of two noise elements, is sufficiently
attractive that the hypothesis including the click element is permanently
abandoned.
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Figure 5.6:  Diagram of the evolution of the various alternative explanations for
the Bregman noise example.  Most of the unsuccessful explanations were
identified as unpromising rather soon after their creation, and have thus not been
developed for very many timesteps.  The time range (in 220.5 Hz timesteps) as
well as the terminal rating (expressed in average bits of description per time-
frequency cell) are noted alongside each hypothesis.  The ‘winning’ explanation is
SubsceneHyp9, which covers the full 484 time steps of the original.

Anticipatory noise bursts

At the next onset, the main hypothesis actually splits into three different
versions – explaining the additional energy as either a new click element, a
new noise element, or an anticipated noise element.  In the last section of
chapter 4, I explained that although the implementation of abstractions
above the level of sound elements had been largely neglected, the one
exception was the ‘noise-burst-source’, which inclined the system to recognize
a recurrence of a noise burst that had existed in the past by posting an
‘anticipated’ noise element with the same characteristics but initially without
any support from the subscene hypothesis.  When handling an ‘inadequate-
explanation’ condition, the system will inspect any anticipated elements, and,
assuming there is a passable similarity between the prediction shortfall and
the characteristics of the anticipated element, the anticipation will be
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realized as part of a new explanation.  Rather than trying to make a difficult
choice between the preset anticipated element and a new, unmodified
element, the system just creates them both, relying again on the competitive
mechanism to sort out the best hypothesis.

Of the three branches arising from the onset of the second broad noise burst
at time-step 218, the one based on the anticipated noise element rapidly wins
out, since the new noise burst follows the profile of the previous burst very
closely, and thus the anticipation is a close match.  While the unanticipated
noise element would certainly fit itself to the noise burst in due course, its
initial unnecessary fumblings in lower frequency channels result in a
considerable short-term rating disadvantage, so it is only the hypothesis
including the realized anticipation that is developed through to the third
noise burst at timestep 350.  Here again, it branches into three versions, and,
once again, the branch based on the anticipation created when the previous
burst was terminated is the one that wins out, going on to form the complete
explanation that is the one returned by the analysis procedure.

5.1.2 A speech example

The artificial Bregman noise example was useful in highlighting many
aspects of the system performance, but it is not sufficient to build a system
that can handle the contrived tests of psychoacoustics if it cannot also handle
the far more common examples of the everyday world.  The noise example
also failed to contain periodic sounds that would involve the ‘weft’ element.
We will now consider a brief fragment of speech to redress these omissions.

Figure 5.7 summarizes the system’s analysis of the example – a male voice
saying “bad dog” against a background of office noise.  In addition to the time-
frequency intensity envelope, the periodogram (the summary of the three-
dimensional correlogram volume projected onto a time-frequency plane) is
also displayed for the entire sound.  The analysis consists of all three kinds of
element – noise, click and wefts;  the weft elements are displayed as both
their energy envelope and their pitch track, on the same axes as the
periodogram of the input sound.

The analysis of the sound consists of three components, each represented by a
different type of sound element.  Firstly there is the background noise (the
recording was made in an office using a distant microphone).  A fairly steady
background has been captured as a static profile in the element Noise1.  Note
that having over 300 ms of ‘run-in’ noise in the example before the voice
starts was very helpful in giving the noise element a chance to stabilize.

The second component is the voiced speech, represented by the two weft
elements which are displayed together as Wefts1,2.  Looking at the
periodogram of the original sound, some prominent features appear a little
before time = 0.4 seconds as the voice begins.  These features indicate the
periodicity of the wide-band voice energy visible in the intensity envelope,
and occur at the fundamental frequency of around 100 Hz, as well as an
octave below that at about 50 Hz.  The periodogram features are explained by
the period-track of the two wefts which follow the higher pitch;  the upwards
search in lag time (corresponding to a downwards search in fundamental
frequency) followed by the cancellation of higher-order autocorrelation aliases
ensures that the 50 Hz subharmonic is properly interpreted as part of the 100
Hz feature (in the manner illustrated in figure 4.16).  The intensity spectrum
extracted for the wefts (by sampling the 3-D correlogram volumes at the
appropriate time, frequency channel and lag co-ordinates) appear to follow
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the energy visible in the full signal quite closely;  note, however, the holes in
the weft envelopes, particularly around 300 Hz in the second weft;  at these
points, the total signal energy is fully explained by the background noise
element, and, in the absence of strong evidence for periodic energy from the
individual correlogram channels, the weft intensity for these channels has
been backed off to zero.
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Figure 5.7:  The “bad dog” sound example, represented in the top panes by its
time-frequency intensity envelope and its periodogram (summary
autocorrelations for every time step).  The noise and click elements explaining the
example are displayed as their intensity envelopes;  weft elements additionally
display their period-track on axes matching the periodogram.
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The third component of the sound comprises the click elements which capture
the aperiodic transients of the speech – notionally, the stop releases for the
/b/, /d/ and /g/ phonemes in “bad dog” (the two syllables are elided).  The click
onsets have been well located at the beginnings of the syllables;  however, the
rapid increase in energy from the voicing, along with a small amount of delay
in creating the weft elements, mean that the click onsets have become
blurred over about 50 ms before settling into their final decay.  Click3,
encoding the release of the /g/, has a clean attack, but has also picked up
some energy around 350 Hz which probably doesn’t belong to it, arising
instead from a chance alignment of a fluctuation in the background noise.
Although the noise elements are all where they ought to be, in a resynthesis
consisting of just wefts and clicks with the background noise removed the
clicks do not fuse well with the speech, sounding more like distinct transients
that stream apart from the vowel-like periodic signal.  The factors governing
integration of vowels and consonants are rather complex [Klatt83], and they
are not well preserved in the resynthesis of this example;  I suspect that most
of the fault lies in click elements that are too blurred and incorporating too
much low- and middle-frequency energy that does not belong with them.

In the figure we see only the ‘winning’ explanation.  In particular, each of the
click elements was chosen in preference to an alternative hypothesis which
used a noise element to account for the same energy onset.  Click elements
provided a preferable explanation in each case because of their intrinsic
decay;  the tendency of noise elements to be sustained was not a successful
match to these examples where the first two transients are rapidly followed
by voicing that can mask sustained noise for a while, but eventually
disappear, leaving a noise explanation for the onset with predictions too large
for the observations;  in the click-based hypotheses, the onset-explaining click
has already disappeared by the time the voicing fades away, so there is no
inconsistent prediction at the syllable ends.  Also, the bulk of the syllable has
been explained by one element (weft) rather than the overlap of two (weft and
noise), leading to an additional rating advantage.

The only other event of interest in the analysis occurred at around t = 0.5 s
during the first syllable.  The rapid pitch and formant shifts of the vowel led
to a situation where the weft prediction was lagging a little behind the actual
data, and the system found itself with a prediction inadequate to explain the
observed energy in some frequency channels.  However, the attempt to
construct a new noise or click element to account for this excess was
suppressed because the onset map gave insufficient evidence for a genuine
onset (discussed under ‘hypothesis creation’ in section 4.4.2); within a couple
of time-steps, the weft had caught up, and the inadequacy resolved itself.
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5.1.3 Mixtures of voices

As mentioned in chapter 2, one of the perennial problems considered in
speech processing is the separation of overlapping, periodic signals.  While
not an explicit focus of this project, it is without doubt an important task in
the analysis of real sound mixtures, and moreover one that the within-
channel periodicity detection of the weft analysis scheme should be able to
handle.  Here we consider a single example of this kind, illustrated in figure
5.8.  The sound is a mixture of male and female voices, one of the test cases
used in [Cooke91] and [Brown92] and made available by the latter;  Brown’s
designation is v3n7 (the third continuously-voiced sample mixed with the
seventh interfering noise example).
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Figure 5.8:  The Voices example, a mixture of male and female speech.  The
upper pane shows the time-frequency intensity envelope, and the lower pane
shows the periodogram (summary autocorrelations displayed on a time-frequency
plane).

Looking at the intensity envelope, there is little evidence to suggest that two
voices are present, and indeed the pronounced harmonics in the lower
channels suggest a single voice.  In fact, the male-voice is rather louder than
the female in the lower spectrum, leading to visible features.  Looking at the
periodogram, however, reveals that there are indeed several signals present.
The well-defined period ridge starting at t = 0.1 s, f = 260 Hz, is clearly
distinct in origin from the longer ridge starting at t = 0.1 s, f = 120 Hz.
Interestingly, this is mainly apparent based on their different developments
– the higher ridge stops abruptly at t = 0.25 s, whereas the lower one
continues.  Indeed, both ridges start at almost the same time and are close to
an octave apart when they do, potentially a difficult separation task.
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Figure 5.9:  The system’s analysis of the Voices example as wefts, clicks and
background noise.

The system’s analysis is shown in figure 5.9.  The voices have been analyzed
into separate wefts;  the male voice was uttering a continuously-voiced
phrase (a deliberate choice by the creator of the example to avoid the issue of
reconnecting separately-extracted phonemes).  This is represented by the
long Weft1 whose fundamental frequency is mainly a little above 100 Hz.
The female voice, uttering more typical speech punctuated by gaps and
unvoiced portions, is represented at least over its periodic stretches by the
remaining Wefts2-5 with fundamental frequencies between 250 and 300 Hz.
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As in the previous example, the system has generated several additional
elements to account for the extra energy not explained by the wefts.  These
are shown in Click1 through Click4 and Noise1, which has managed to
construe the presence of a small amount of background noise even in this
short example without ‘gaps’ (in which the background would be most
visible).  Click1 and Click3 occur at syllable starts, plausibly attempting to
model the /d/ and /c/ of the female’s phrase “don’t ask me to carry...”.  Click2
would normally have been suppressed, since the impetus for its creation was
the disappearance of Weft3 as its periodogram track fades from view.
Normally, a sudden prediction deficit caused by the removal of an
explanatory element is ignored because there is too little support from the
onset map for the creation of a new element;  for this analysis, the threshold
for onset map support was made very small in an effort to permit something
like Click2 to be created in the hope that it would capture the sibilant energy
of the /s/ in “ask”, which otherwise leads to a large gap in the wefts
representing the female voice during t = 0.5 – 0.7 s.

Unfortunately, the element that was created fails to provide a very helpful
addition to a resynthesis of the female voice based on Wefts2-5.  Partly this
may be due to the same weaknesses that made the additional click elements
stream separately in resynthesis of the single-voice “bad dog” example.  But
for mixtures of voice, the situation is even more difficult.  While overlapping
periodic signals provide at least a hope of separation on the basis of their
distinct periodicity cues, there is no such bottom-up basis to separate
overlapping unvoiced signals.  (Weintraub’s state-labeling system was
capable of attributing this situation to its input, but was unable to do
anything more sophisticated than splitting observed energy equally between
the two voices [Wein85]).  In theory, it is a system capable of imposing top-
down constraints that will be able to handle such situations successfully.
However, the necessary constraints are phonetic and possibly semantic in
nature, and the current system did not contain any knowledge at this level of
sophistication.  One can imagine the behavior of a prediction-driven system
which did know enough about speech to recognize the hints to the /a/-/s/
transition such as the ones employed by human listeners to hear out the
female speaker.

Although the current system was unable to extract the unvoiced portions of
the speech with much success, its ability to separate both voices is worth
examining in more detail, particularly in view of the potential confounding of
pitch and onset cues mentioned above.  (Cooke and Brown only reported
separating the male voice that dominates in the lower frequencies and do not
mention any extraction of the female voice, which, being only intermittently
voiced, lay beyond the scopes they had established for their algorithms).  The
periodogram is shown on a larger scale in figure 5.10 with the period tracks of
the five extracted wefts drawn over the features they are tracking.  The lower
frequency period ridge starts a little earlier than the higher voice, and this
accounts for the initial creation of the lower weft.  But we might expect that
the arrival of the higher voice would cause the destruction of the lower weft,
which is now confounded with the subharmonics of the upper voice.
Fortunately, the somewhat linear properties of the summary autocorrelation,
where autocorrelations from channels dominated by the higher voice are
added to those containing the lower voice, permit the successful disentangling
of the alias of the higher weft’s period from the base ridge of the lower weft:
The alias-removal stage of the weft analysis, where shifted versions of
detected peaks are subtracted from the overall summary to suppress the
tracking of subharmonics, only removes part of the total summary
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autocorrelation peak at the period of the lower voice, leaving enough of a
peak behind to cause the system to recognize and extract the lower voice.
This is illustrated in the lower panel of figure 5.10, which shows the residual
periodogram after the removal of the features tracked by wefts 2-5 and their
aliases.  These wefts are tracked and removed first (at each time step)
because they have the shortest periods, and the analysis searches upwards in
period.  This modified periodogram is the basis upon which weft 1 is
extracted.  Note how a second octave collision around t = 1.0 s in the original
sound has been successfully removed, allowing the lower voice to follow its
declining pitch track, even though the low-frequency based periodicity
evidence is quite weak at this point.  This points to an interesting potential
for autocorrelation-based representations to be able to accommodate octave
collisions even on a bottom up basis, effectively exploiting local smoothness in
harmonic amplitudes, something that traditionally eludes narrowband
Fourier systems (e.g. [QuatD90]).  However, the situation of voices whose
pitch tracks actually cross (as distinct from colliding at octaves) can still only
be solved by the addition of top-down context constraints.
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Figure 5.10:  Upper panel: expanded view of the periodogram for the voices
example with the period tracks of the extracted wefts overlaid.  Lower panel:
residual periodogram after the features associated with Wefts2-5 have been
subtracted.  This residual permits the correct tracing of Weft1, without it being
pulled off course by a strong colliding alias such as at t = 1.0 s.
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5.1.4 Complex sound scenes: the “city-street ambience”

The final example in this section represents the class of dense sound scenes
that originally motivated the project;  more examples of this kind will be used
in the discussion of the subjective listening tests.  Figure 5.11 shows the
intensity envelope and periodogram of the city-street ambience sound, along
with the fifteen elements created by the system to account for it.  Although it
is rather difficult to see many features in the original sound, the most
prominent components to my ears are the honking of car horns, particularly
right at the beginning and close to the end, and a ‘crash’ sound as if of a large
metal door being slammed, all overlaid on a steady roar of traffic and
pedestrians.
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Figure 5.11:  Analysis of the city sound.  Note that the time scale for this ten-
second sound example is compressed in comparison to the shorter examples
considered so far.

The system has extracted these major components (not as positive as a result
as it might appear, since extracting these features was to quite a large extent
the driving force behind, and the test case used in the development of the
system!).  The first horn, whose various periodicities are just about visible in
the periodogram, has been modeled as a cluster of four wefts during the first
1.0 s of the sound.  (The grouping of these wefts into a single element was
done by hand, but ultimately would be accomplished at the level of source
hypotheses).  The original car horn clearly has at least two notes, so its
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representation as overlapping wefts with differing pitch is appropriate.
Similarly, the final horn sound, whose spectral energy is somewhat visible at
t = 8.6 s, f = 700–1500 Hz, has resulted in Wefts9-12.  The perceptual
similarity of these weft clusters to the sound mixture is addressed in the
subjective tests; here, we merely note the intended correspondence.

The ‘crash’ sound actually has a very slow decay in the original sound and
has been modeled by Noise2, a noise element;  the click element we might
expect hit the upper limit of its permissible decay times, and simply couldn’t
accommodate the sound.  The unfortunate result of using a noise element is
that the eventual decay of the crash is not handled very gracefully;  by about
t = 3.4 s, the energy of the crash has decayed sufficiently that the existing
background element, Noise1, provides an adequate explanation.  Since Noise2
will not decay of its own accord, it is constantly over-predicting, and being
caused to decay only by its allocation of negative prediction error from the
reconciliation process.  When the actual sound transient has decayed
sufficiently, the inconsistent-explanation events generated by this
overprediction cause the perfunctory termination of Noise2;  a better fit
might have been obtained by a click element with relaxed decay-time
constraints, which would presumably have avoided over-prediction, and
would have thus been left to decay more gracefully to zero even when its
contribution to the overall signal model was small enough to be eliminated
without impact.  This is the intended operation of the prediction-driven
architecture, where the absence of direct evidence for an element does not
prevent that element from forming part of the explanation, so long as the
explanation including that element is still consistent.

The analysis also generated a single click element, the briefest of bursts
shown just after Noise2.  I’m not exactly sure what this is meant to explain,
but it is a fairly harmless addition.  A more serious problem is the failure of
the system to separate the rather obvious narrowband high-frequency feature
visible in the intensity envelope at t = 6.8 s, f = 5000 Hz.  Instead, this has
been spuriously incorporated into the background Noise1.  This energy is
clearly audible as squealing brakes in the example;  the reasons for it being
overlooked by the system are considered below in the discussion of the
subjective responses to this sound.

5.2 Testing sound organization systems

A qualitative description of the system’s behavior helps to convey an
understanding of its intended operation, but fails to give any quantitative
references for its success at analyzing complex sound mixtures into their
components.  This is a difficult thing to supply, since we do not have a neat,
objective definition of the process being modeled.  However, some kind of
assessment scheme, by which success and progress can be measured, is very
important, both to satisfy the philosophical demands of scientific research,
and also for the more practical considerations of obtaining and sustaining
support.  Comparisons may be odious, but it is clear that the adoption of
common assessment standards is usually beneficial to the fundability of a
field – as shown by the focus of speech recognition community on well-defined
metrics and test sets during their rapid progress in the 1980s.  As a field,
computational auditory scene analysis has yet to reach a stage of consensus
concerning its goals that would permit agreement on a common set of tests
and metrics;  perhaps this should be a priority if we wish to see continued
development in this area.  In this section, I will make some observations on
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the difficulties in assessing models of sound organization, then describe the
subjective tests used with the current model.  The test results are presented
in section 5.3.

5.2.1 General considerations for assessment methods

Of the previous models of auditory scene analysis, none were assessed by
conducting any kinds of formal listening tests, i.e. tests to correspond the
systems’ analyses with those of actual listeners whose auditory systems were
supposedly being modeled.  The closest approach to this kind of assessment
may be found in hearing-aid research, where novel processing algorithms are
assessed for their ability to improve the intelligibility performance of hearing-
aid users.  This is not a particularly appropriate test for the systems we are
considering, since although perfect source reconstruction should enhance
intelligibility, scene organization is a task quite different from speech
understanding.  The technologies involved are very different too:  Even the
most sophisticated algorithms proposed for hearing-aid applications have
been limited to nonlinear spatial filters rather than modeling the kind of
feature-based organization being considered in this work ([KollK94], although
see [Woods95]).

In chapter 2 the various objective measures used by previous modelers of
auditory scene analysis were discussed.  While these metrics were useful in
illustrating the performance of the systems in question, they were very
specific to these projects, and, as noted in relation to [Brown92] (who suffers
for his generosity in making his sound examples available!), often gave scores
that failed to correspond to subjective impressions of the systems’
resyntheses.

The assessment problem comes down to this: A subject listens to a complex
mixture of sounds and has an internal experience of that sound as being
composed of a collection of distinct sound events.  I am trying to build a
computer model to reproduce this analysis, but the only way to measure the
original is to ask questions of the subject via some kind of psychoacoustic
task.  Rather little is known about this internal experience, indeed some
researchers might take issue with this characterization of the behavior of the
auditory system, arguing that there is no genuinely distinct representation of
components of a mixture, only various properties associated with the mixture
as a whole.  It would be interesting to have experimental results addressing
this question (such as discrimination tests for a complex sound in a particular
mixture context and alone) but that is beyond the scope of the current work.

Assume that we had a prototype computational auditory scene analyzer
producing isolated resyntheses of very high quality.  One way to test it would
be to construct artificial mixtures from recordings of ‘single’ sound events,
and then to compare the system’s output with the unmixed originals.
Expecting them to match would be to assume that the auditory process we
are trying to model is able to successfully and exactly undo the mixture
involved in creating the sound.  Our subjective experience is that perceptual
segregation of components in a sound mixture is usually successful (we are
rarely mistaken about the properties of any single source we can distinguish
in a mixture), but the assumption that we can exactly perform this separation
is more suspect.  A criteria of exactness that measures the root-mean square
error between pre-mixture and post-resynthesis signals is clearly nonsense,
since the listener cannot detect that level of exactitude under ideal, isolated
listening conditions, let alone in the context of a mixture.  Yet if we admit
that a certain amount of waveform distortion is tolerable, we are immediately
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obliged to involve a human in the assessment loop, since there do not exist
good objective measures of perceived similarity between sounds (although
such a measure would be very valuable, not least in the development of high-
quality audio compression schemes [Colom95]).

This subjective component could take the form of a listener comparing the
pre-mixture original sounds and the system’s output.  If the system were
performing extremely well, these two sounds might be difficult or impossible
to distinguish, or the listener might have no preference between the two.
Unfortunately it may be some time before we have separation systems
capable of performing at this level.  Even if this were feasible, it still might
not be an entirely fair test, since by comparing pre-mixture originals to post-
mixture reconstructions we are still making an assumption that the auditory
separation process can identify every aspect of a sound in a mixture.  While
we may be rarely mistaken in our perceptual sound analysis, there may still
be many inaccuracies in our impression which are simply of no consequence.
A more appropriate subjective test would be to play the mixture to the
listener (rather than the pre-mixture components), then play the resyntheses
extracted by the system to see if they matched perceived objects in the
mixture.  This would be testing our assumed internal representation in the
most direct fashion.  A way to construct this experiment along the lines of a
two-alternative forced-choice task would be to play the mixture, then both the
original component and the resynthesized component, and have the subject
choose which one sounded more as if it was present in the mixture.  The
weakness of this test is that there may be systematic differences between
originals and resyntheses whose effect on the preference scores overwhelm
the finer details being manipulated.  It also carries the underlying
assumption that the perfect analysis corresponds to the pre-mixture
originals, as do all these hypothetical tests based on synthetic mixtures.

Another way to get back towards a forced-choice paradigm would be to
construct pairs of mixtures, one from the original sounds, and the other with
one or more of the components replaced with their resynthesized
counterparts.  If the two mixtures were difficult to distinguish, that would be
a reasonable success criterion for the analysis model.  This might be a more
reasonable test, since details of the original that were simply not perceptible
in the mixture would be similarly masked for the resynthesis in the same
context, thereby making a task that was less likely to be overwhelmingly
skewed in favor of the originals.  However, we are again faced with being
some way away from even this level of performance, but wishing to assess our
current-day imperfect systems none-the-less.  In the following section, I will
present the subjective tests eventually devised to assess the current system
which are more appropriate for current, imperfect scene-analysis models.
This approach dispenses with pre-mixture ‘ideal’ isolated signals, so that any
recorded sound mixture may be used, and only the listener’s internal
experience of the separate objects in that mixture is being queried.

5.2.2 Design of the subjective listening tests

Consider the case where we wish to test a subject’s perception of a real-world
complex sound mixture for which we do not have access to ‘reference’ isolated
components that add together to make the mixture.  By dispensing with
artificial mixtures, we expand the scope of our stimuli to all kinds of real
sounds which may have characteristics significantly different from synthetic
mixtures (in terms of reverberation, coloration, density etc.).  Further, the
question of whether the auditory system achieves an ‘ideal’ separation is
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sidestepped, since no ideal pre-mixture components are involved.  But how
can we quantify what a subject actually hears in such mixtures?  The
experiments that were conducted sought to make some kind of direct
measurement of that experience, as well as evaluating how closely the
automatic analysis matched the listeners’ internal representation.

The experiment consisted of three main parts.  The first part involved only
the original sound-mixture, and was intended to gather information on the
listener’s perception of a dense sound mixture before being exposed to any of
the system’s efforts at separation.  The second part then asked the listeners
to identify and rate the resyntheses from the model, and the third part
involved ranking slightly different versions of the resyntheses to verify the
local optimality of the model’s outputs.  Each part is now described in detail.

Part A:  Labeling a real sound

The task was for the subject to listen to the sound example, and to supply
names for the  most prominent distinct events they could hear in the sound.
The subjects also indicated the approximate time support of each object they
named, more as an aid to disambiguation than as a direct test of perceived
event time.  The data was collected through a computer terminal with a
display, mouse and keyboard.  The screen display for this part of the
experiment is reproduced in figure 5.12.

The subjects can play the original sound mixture as often as they wish by
clicking the ‘Play Original’ button.  (In the experiment, the sound examples
were mostly about ten seconds in length, although one was shorter).  When a
particular sound event has been identified in the sound, a name for it is typed
into one of the boxes on the left of the screen.  The subjects also have a key,
and they are instructed to concentrate on the particular component in the
mixture, and hold down the key when they hear that event during the
playback of the sound.  While the sound is playing, an animated time cursor
moves across the display;  pressing the key leaves a ‘mark’ behind this cursor,
indicating the reported time support along a left-to-right time axis.  The
subjects are able to alter this mark (for instance, shifting it to remove a
reaction-time lag, or to eliminate spurious responses) by dragging it with the
mouse in the manner of a typical computer ‘draw’ program.  By adjusting the
marks and replaying the sound to check the correspondence of the auditory
event of the perceived object with the visual event of the animated cursor
passing over the existing marks, subjects have the opportunity to record time-
supports with a reasonable degree of accuracy (they were however instructed
not to spend more than a couple of minutes on this task).  This process is
performed successively for each perceived object or event, until the subject is
satisfied that all the ‘important’ components in the mixture have been
labeled, and the indicated timings are acceptable.

This test obtains some kind of ‘ground-truth’ for the objects that listeners
perceive in a dense mixture.  Despite inter-subject variation, the results
presented in the next section show a surprising amount of consensus
concerning the four or five most prominent components.  (This experimental
setup is somewhat related to  that in [Kaern92] [Kaern93], although his
repeated noise stimuli evoked highly variable responses).  The text labels for
the different events have two functions.  They can confirm the
correspondence, initially suggested by similarity in time-support, between the
events recorded by different subjects.  The labels are also used in the next
parts of the experiment to allow the subject to refer to their own experience of
the sound when assessing the model’s analysis.
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Figure 5.12:  Example response screen for part A of the experiment.  Subjects
type in names for the events they hear in the boxes on the left; clicking the “Play”
button replays the original sound at the same time as moving a cursor over the
boxes on the right (shown).  Pressing the space-bar when the event occurs leaves a
gray mark under the cursor which can be ‘trimmed’ or revised.

Part B: Rating individual resyntheses

The second part of the experiment attempts to link the events reported by the
subject with the events generated by the automatic scene analysis system
under test.  The subject is played a resynthesis extracted by the system from
the original sound mixture, and is asked to indicate which, if any, of the
previously-indicated events it most resembles.  This experiment can be
repeated for several objects extracted by the model.  Thus, provided the
resyntheses bear a resemblance to the events as perceived by the subject, this
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test provides evidence that the events detected by the model match the
listener’s internal experience.  An example of display for part B is reproduced
in figure 5.13.

Figure 5.13:  The response screen for part B of the experiment.  The labels on the
left-hand side are copied from the names typed in by the subject in part A of the
experiment.  Clicking the ‘Play Resynth’ button plays the resynthesis example
under assessment for this particular screen, which may be compared to the
original sound mixture by clicking the ‘Play Original’ button.

The subjects are presented with the list of events they named in the previous
part of the experiment, and they can click checkboxes next to each one to
indicate a perceived resemblance between the presented resynthesis and the
percept they have named.  There are additional checkboxes to indicate failure
to recognize the resynthesis as any part of the original sound, and also a
place to enter a new label, in case the subject finds themselves wishing to
indicate a correspondence to a percept which they did not name in part A,
either inadvertently or because they judged it too insignificant.  (Once they
have started listening to the resyntheses, the subject cannot go back and
change their responses to part A).
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Assuming correspondence can be successfully established, the subject then
rates the perceived quality of the resynthesis with the slider on the right of
the display.  It is quite possible that a resynthesis will be identifiable as an
imitation of a particular part of the original sound while still differing from it
considerably in detail.  (Indeed, this is generally the case with current
models!).  The subjective scale ranges from ‘identical’ to ‘unrecognizable’,
although it is unlikely that either of these extremes would be used – only the
most distracted of listeners could consider the resyntheses used in this
experiment as ‘identical’, and a genuinely unrecognizable resynthesis would,
arguably, be unratable since it is not known to what it should be compared.
(The default, initial position of the slider is at the bottom, i.e.
“unrecognizable”).  Clearly, the results of such a subjective rating scale will
vary according to the interpretations and standards of individual listeners.
Aggregate responses can still present some kind of consensus, and useful
comparative results can be obtained by normalizing the results of each
subject through rank ordering or some other ensemble scaling.  Subjective
quality ratings are usefully employed in the assessment of hearing aids
[KollPH93].

Part C: Ranking of resynthesis versions

The third part of the experiment is intended to assess how well the system
extracts events from the sound mixture within the space of objects that it can
possibly represent, as determined by its parameterizations and resynthesis
procedures.  The idea is to produce a set of different versions of a particular
resynthesized event, including the ‘best effort’ of the system along with
several ‘distorted’ versions whose parameters have been altered in some
systematic way.  The subject is asked to sort these different versions
according to how closely they resemble the perceived object to which they
apparently correspond.  Notionally, a given system output occupies a point in
a high-dimensional space of model object parameters;  by sampling a few
nearby locations, it might be possible to show that this point is a ‘local
minimum’ in terms of its perceptual distance from the original.  The difficulty
with constructing this part of the test lies in choosing the size and ‘direction’
of the step to the neighbors i.e. coming up with distortion methods that are
just discriminable, and that can provide a useful indication of relative
resynthesis quality.  If a certain ‘distorted’ version is preferred systematically
over the ‘best’ version, this can provide useful guidance for improving the
system.  If there is a random spread of preferences over the different
versions, the space spanned by the versions does not exhibit much variation
in perceptual similarity, possibly because the steps are too small, more
probably because the resemblance is so poor.

The response screen for part C is illustrated in figure 5.14.  Subjects can
listen to each different version of the resynthesis by clicking one of the
buttons in the central panel, and can repeat the original mixture with the
‘Play Original’ button at the bottom.  The buttons for the individual versions
are movable with the mouse, and the subject can arrange them from best to
worst as indicated on the display.
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Figure 5.14:  Example display for part C of the experiment.  The central panel
contains five moveable buttons; clicking the ‘play’ label plays the particular
resynthesis version associated with that button;  clicking on the name portion
allows the subject to move the button around the screen.  The subject’s task is to
arrange the buttons so the ‘best’ version (in terms of resembling a part of the
original mixture) is at the top of the panel, with successively worse versions below
it.  The initial ordering of the buttons is randomized.

The particular form of the distortions used in the current experiment are
described in section 5.3.6 along with the presentation of the results.

Other experimental procedure

The three parts to the experiment were arranged with part A first, to collect
the subjects’ labeling for the original sound mixture, followed by a series of
part B responses for several resyntheses derived from the sound mixture,
then a series of part C trials presenting versions of the resyntheses that had
been rated in the part Bs.  Separating the B and C parts for a given
resynthesis made it less likely that the subject would recognize the ‘ideal’
version in part C as matching the one presented in part B.  The entire
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sequence (A, Bs and Cs) was conducted for one sound mixture before moving
on to the next test set of original sound and resyntheses.

The subjects were given a sheet of written instructions before starting which
explained the general form and goals of the experiment.  In addition, the test
started with a training trial, consisting of a single instance of each part of the
experiment, which the subject completed under the guidance of the
investigator.  After the training, the investigator withdrew, and the subject
completed the remaining four sound examples.  Three of these were ten-
second dense sound mixtures, and the fourth was a brief mixture of two
voices; each is described in detail in the next section.

The test took on average half an hour to complete, with the fastest subject
completing in twenty minutes, and some subjects taking closer to an hour.

General comments

The great advantage of these tests compared to objective measures is that
they provide information that genuinely relates model behavior to listeners’
subjective experience of real sound mixtures.  There is a considerable
temptation to work with artificial mixtures where the ideal, pre-mixture
separate sounds may be used in assessment, but this ducks the consideration
of real perceptual organization by assuming that it is ‘perfect’.  By contrast,
the experimental procedure described here does not involve any ‘ideal’
separations;  the listener only hears the full original sound mixture and the
resyntheses created by the model.

I offer that these experiments are useful beyond the scope of the current
project.  The results of part A do not even involve a particular model, but
provide a practical, if rather obvious, way to obtain base data on the auditory
organization of complex scenes against which different computer models may
be compared.  The ratings and rankings of parts B and C may be applied to
any model whose output is a resynthesis of the components it has identified.
The importance of resynthesis is a matter of some contention:  Certainly,
under these tests a model can only be as good as its resynthesis path, and
good resynthesis requires a great deal of care.  (The results below indicate
that the current system could be improved in this regard).  Human listeners
do not, in general, resynthesize sound, so why should we include this in
models of the auditory system?  The problem is that without  resynthesis and
the kinds of listening tests presented here that it enables, it is extremely
difficult to interpret whatever other output the model might provide.
Typically, one is reduced to tenuously-grounded interpretations of graphical
displays or other non-acoustic media.  By contrast, systems that provide
resyntheses may actually be compared against each other, directly and
quantitatively, using the ratings collected in part B.  A proof-of-concept
illustration of this was provided by the final, double-voice example used in
the current test, where the resyntheses of the current model were compared
with the output of [Brown92], from whom the mixture was originally
obtained.  The results of this comparison are presented in section 5.3.6.
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5.3 Results of the listening tests

The experiments described above were conducted for ten subjects (volunteers
from among friends and colleagues) for a series of sound examples.  This
section presents the results of these tests of both the subjective experience of
these sound examples and the ability of the current model to duplicate the
auditory scene analysis performed by the listeners.

5.3.1 The training trial

By way of introduction to the presentation of the experimental results, let us
look briefly at the training trial, in which the subjects completed examples of
each part of the experiment under the supervision of the investigator in order
to become familiar with the various tasks and modes of interaction.  The
sound example for this trial was an artificial mixture constructed to have a
reasonably unambiguous interpretation.  To ten seconds of generic ‘crowd
babble’ were added a single toll of a bell, and, a couple of seconds later, the
sound of an aluminum can being dropped onto a concrete floor;  both sounds
were clearly audible above the crowd and had well-defined beginnings to
make the indication of time support as easy as possible, at least for onset.

The responses to part A of this trial are illustrated in figure 5.15, which
shows every one of the 25 events recorded by the ten subjects.  The responses
have been grouped (manually) into sets judged to correspond to the same
source, something that was not difficult owing to the considerable consensus
in labels and agreement in time supports.  The two major groups, ‘Bell’ and
‘Can’, include one response from every subject;  these groups are summarized
in a line at the top of each group by bars connecting the average onset and
offset times, with shaded extensions to the bar connecting the maximum time
limits indicated by any subject for that event.  These summaries of the
subject responses are constructed in the subsequent examples for any event
named by three or more of the subjects, and are repeated on the figures
illustrating the system’s output to allow direct comparison between the
system’s and the subjects’ analyses of a given example.

A few points to note:  The instructions given to the subjects were not explicit
concerning whether they should indicate offset times (i.e. the full extent of
the objects they perceived);  some subjects evidently ‘tapped’ the response key
at the start of the sound rather than trying to indicate the length of the
sound.  There is a spread of several hundred milliseconds in the reported
onset times, even for the very well-defined events in the trial example (whose
actual energy onsets are clearly visible in the time-frequency display).  Part
of this may have arisen from differences in interpreting the experimental
instructions;  while subjects had the opportunity to ‘trim’ the marks that they
had made in order to remove reaction-time delays, they were not explicitly
told to do so, and some subjects may not have felt this was required.  Finally,
two subjects indicated the separate bounces of the can sound, again clearly
visible in the energy display, whereas the others indicated just the overall
duration or the first onset.  These multiple responses are incorporated into
the summary bars only by their outer time limits; the  inner structure, while
valuable and interesting, was discarded from the summary.

The training trial included a single resynthesis for one example each of
experiment parts B and C.  However, this resynthesis was not in fact
generated by the current model (it was derived from an earlier, unrelated
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model, and from the isolated can sound rather than the noisy mixture) and
thus those results are not relevant here.
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Figure 5.15:  Responses to part A of the training trial.  The time-frequency
intensity envelope for the example is displayed in the top panel.  Each individual
subject’s response line is presented underneath as a time line overlaid with a
thick bar showing the marks recorded by the subjects in part A of the experiment.
The responses have been sorted into groups on the basis of their similar time-
supports and labels.  The aggregate properties of each group are summarized in
the bar at the top of the group, whose onset and offset times are the mean
averages of those in the group, with shaded extensions to the maximum extents
reported by any subject.  At the left of each response line is the actual label typed
by the subject, prepended with the subject number.  The labels for the summary
lines were chosen somewhat arbitrarily to capture the consensus concerning the
event’s identity.  The figures after these labels indicate the number of subjects
reporting that event (i.e. the number of response lines in that group).
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5.3.2 The city-sound

The first real sound example was the city-street-ambience, introduced in
chapter 1 as part of the inspiration for this project, whose analysis by the
system was already discussed in section 5.1.  The complete set of subjects’
responses from part A of the experiment is illustrated in figure 5.16.

The responses show a surprising amount of consensus concerning the events
present in this sound.  Prior to the experiment, I was a little anxious that the
task would be too difficult;  this was based on the informal experience of
playing such sound examples to colleagues and visitors by way of illustration
for some technical point, only to be met with blank stares;  what I had heard
in the sound, having listened to it over and over again, was quite different
from the impression of someone hearing it for the first time.  However, it
seems that the experimental conditions, in which the subject could attend to
the sound without distraction, and was able to replay the example as often as
desired, led quickly to a situation where the subjects all experienced very
similar impressions of the content of the sound.

Three events, which I have labeled “Horn1”, “Crash” and “Horn5”, were
reported by all ten subjects;  happily, these were the events whose
resyntheses were chosen for assessment in parts B and C.  These events had
the smallest spread of onset times, with the separation between earliest and
average onset times (i.e. the gray lead-in to the summary bar) a little over
200 ms for the “Crash” event.  Of the remaining events, (“Horn2”, “Truck”,
“Horn3”, “Squeal” and “Horn4”), all were reported by at least half of the
subjects, and for the most part onset times agreed to within a few hundred
milliseconds.  This would seem to be a plausibly reliably picture of the
subjective content of this sound example.

In figure 5.17, this subjective description is compared to the objects produced
by the system’s analysis which we saw previously in section 5.1.  On the
whole, the system has been rather successful at producing elements that
correspond to the separate events recorded by the subjects, without
generating extra elements without subjective correspondence.  The weft
elements all line up with the various subjective “Horn” events, with the
possible exception of weft 6.  Note that the grouping of separate wefts into
aggregate objects (such as wefts 1-4, matching Horn1) was done by hand
(before gathering the experimental results) to construct resynthesized events
of greater coherence.  This manual grouping was performed in lieu of
automatic organization of these elements into ‘source’ objects;  the
presumption is that such automatic grouping would be relatively simple to
create, at least for this example, on the basis of similar onset, time support
and modulation period (for the sequential grouping of wefts 3 and 4, and
wefts 6 and 7).  The subjective “Crash” event corresponds well to the Noise2
element, although it is questionable whether the Click1 element truly forms a
part of this, or if it is in fact a spurious artifact of the analysis.



134 5: Results

S1−honk honk

S2−squeek

S2−final horn

S2−horn during Squeek

S3−crash (not car)

S3−closeup car

S3−1st horn

S3−2nd horn

S3−2nd horn

S3−3rd horn

S3−squeal

S1−slam

S4−horn1

S4−crash

S4−squeal

S4−horn2

S5−Honk

S5−Trash can

S5−Honk 2

S5−Beep−Beep

S5−Acceleration

S6−double horn

S1−honk, honk

S6−slam

S6−doppler horn

S6−acceleration

S6−horn3

S6−airbrake

S6−end double horn

S7−gunshot

S7−horn

S7−horn2

S7−horn3

S1−squeal

S7−horn4

S7−horn5

S7−horn6

S8−car horns

S8−car horns

S8−car horns

S8−car horns

S8−car horns

S8−large object crash

S8−truck engine

S8−break Squeaks

S9−horn 1

S1−rev up/passing

S9−horn 2

S9−horn 3

S9−horn 4

S9−door Slam?

S9−horn 5

S10−car horn

S10−car horn

S10−car horn

S10−car horn

S10−door slamming

S10−wheels on road

S2−first double horn

S2−crash

S2−horn during crash

S2−truck accelerating

200

400

1000

2000

4000

f/Hz
City

0 1 2 3 4 5 6 7 8 9

Horn1 (10/10)

Crash (10/10)

Horn2 (5/10)

Truck (7/10)

Horn3 (5/10)

Squeal (6/10)

Horn4 (8/10)

Horn5 (10/10)

0 1 2 3 4 5 6 7 8 9
time/s

Figure 5.16:  Perceived sound events for the city street ambience sound example,
as recorded by listeners.  The top panel shows the time-frequency energy envelope
of the signal.  The remaining lines are the individual response bars from  part A
of the experiment, manually arranged into eight groups and summarized in the
bars at the top of each group.  Lines related to several groups are repeated.
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Figure 5.17:  Comparison of system’s and subjects’ responses to the city-sound.
Every object in the figure is rendered on a single time-scale labeled at the base.
The intensity envelope and the periodogram of the original sound mixture are at
the top.  Each of the fifteen elements returned by the system is illustrated by its
time-frequency envelope; wefts also show their pitch tracks.  The summary
response bars from figure 5.16 are displayed below the most similar element.
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This example contains two glaring failures:  Neither the “Truck” nor the
“Squeal” subjective events were extracted as separate objects by the system;
rather, their energy was merged into the background-noise element, Noise1,
along with the residual traffic and street noise.  These failures provide
interesting insights into the system’s behavior, and suggest possible
solutions.  The energy leading to the “Squeal” response is quite visible in the
time-frequency envelope as a narrow streak at around 5 kHz starting a little
before t=7 seconds.  This feature was large enough and sufficiently sustained
to be incorporated quite visibly into the Noise1 element, even though that
element was by this time very stable and reacting only sluggishly to changes
in the observed signal.  Why did this rather obvious addition of energy not
lead to the creation of a new element?  The problem lies in the way that the
‘positive-deviation norm’, the parameter used to monitor the excess observed
energy, is calculated as the norm of a vector of normalized energy increases in
each frequency channel.  Because the squeal energy is mostly concentrated in
a single frequency channel, the energy increase in this channel was diluted
by the absence of an increase in all the other channels to result in a norm
that did not exceed the threshold for the creation of new elements.  In the
light of this mistake, I tried a modified positive-deviation norm which
magnified the norm by a factor related to the total number of channels in
which positive energy was recorded, emphasizing narrowband energy
contributions over broader energy increases.  Dividing by the root of the
number of channels showing a positive deviation made the system recognize
the squeal onset;  unfortunately, this modification came too late to be
included in these experimental results.  (Despite the temptation of ‘tweaking’
the system to match the test results, all the analyses shown here are the ones
created as part of the preparation for the experiments i.e. before the subjects’
labeling had been collected.  Every element from these analyses is illustrated;
the only post-hoc interpretation has been the manual grouping of some
elements to correspond to single subjective events).

A second problem highlighted by the squeal is the lack of a narrowband,
sinusoidal representational element – ironic, since such elements were the
representational staple of previous systems including [Ellis94] (which in fact
extracted the squeal sound as one of the few things it could make sense of in
this example).  In the current system, periodic energy which in other systems
might have been represented as sinusoids is supposed to be captured by weft
elements.  However, the frequency of the squeal sound at about 5 kHz was
outside the ‘perceptible pitch range’ of 40-1280 Hz implicit in the delays
sampled by the periodogram, so there was no way for this squeal to lead to a
weft.  Indeed, the current envelope smoothing prior to autocorrelation would
hide this periodicity even if the periodogram axis were extended.  (After
modifying the positive deviation norm, the system created a noise element
with energy in this single channel to explain the energy – a reasonable, but
perceptually unsatisfactory, compromise).  Clearly some kind of high-
frequency narrowband element, differentiated from noise on the basis of its
unfluctuating energy profile, is necessary to account for this and similar
sounds, something to be considered for future system enhancements.

The second perceptual event not separated by the system is the “Truck”
sound, a low-frequency rumble appearing to be the acceleration of a large
automotive engine.  This not obvious in the time-frequency intensity display,
probably because the majority of its energy is below the 100 Hz lower limit of
the frequency axis.  Unlike the limited spectral view afforded the system by
its initial filterbank, the sound played to the subjects had no low-frequency
cutoff.  Recall the 100 Hz limit was employed to avoid numerical problems
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with very narrow, low-frequency filters, justified by the argument that there
would be few situations where energy below this limit would be critical for
the recognition of separate objects;  unfortunately, the city-sound appears to
contain such a situation!  Extending the frequency axis down to 50 Hz or
beyond might reveal enough excess energy to trigger the creation of an
element for the truck sound.  The correct element for such a sound is not
immediately obvious.  It should probably be a weft, since the periodicity of the
rumble is an important part of its character.  (Vague suggestions of a rising
periodicity are discernible at the lower edge of the periodogram display
around t = 5 s).  However, wefts have not been tested with noisy, low-
frequency signals of this kind.  The combination of a low-frequency weft and a
noise cloud in the higher frequencies might give the best perceptual match.

The results of parts B and C of the experiment, concerning subjective ratings
of resyntheses for the “Horn1”, “Crash” and “Horn5” events, are discussed
along with the resyntheses from the other examples in section 5.3.6 below.

5.3.3 “Construction” sound example

The second sound example was a similar dense, ambient sound, taken from
the same professional sound-effects collection [Aware93].  The sound is
described as ‘construction site ambience’, and contains a diverse mixture of
machinery, knocking, hammering and voices.  The subjective responses to
this example are illustrated below its intensity envelope in figure 5.18.

Again, the level of consensus between the subjects’ responses is good.  The
first group, “Saw”, corresponds to the rather prominent noise of a motorized
saw cutting through a plank (or so it sounds).  This energy is visible covering
a wide frequency band in the upper half of the intensity envelope.  The
remaining events correspond mainly to transients;  interestingly, both “Wood
hit” and “Metal hit” have been reported with multiple onset times by the
majority of subjects who noted them.  In the spectrogram, successive onsets
are visible; evidently the resemblance between the nearby onsets led the
subjects to report them in groups rather than as separate events.

The one remaining non-transient event is the “Voice” object, visible as
smudges of energy at around f = 800 Hz at times t = 8.1 s and 8.5 s.  This is a
clear percept, although the voice sounds a little “weird”, to use the description
given by one subject.  Interestingly, the pitch of the voice is perceived as
much lower than the 800 Hz band in which its visible energy is concentrated.

The perceptual event summary bars are repeated on figure 5.19 alongside the
elements extracted by the system for this example.  The analysis is largely as
expected:  Noise1 models the background machine ambience, with a second
sustained noise element, Noise2, providing the extra energy from the “Saw”
event, whose time support it nicely matches.  Of the eight click events
extracted by the system, there is an almost perfect correspondence with the
subjective responses – unexpected, since the example contains a large
number of audible transients of varying prominence that required the
subjects to make a somewhat arbitrary choice of the ones to report.  The most
suspect element is Click6, which probably wasn’t being indicated by the
“Clink1” response.  Note also that the “Metal hit” subjective event, which was
indicated as two distinct onsets in five of its eight component responses,
corresponds to a pair of elements, Clicks2,3, which align credibly with the
distinct onsets reported.  However, the subsidiary subjective onsets indicated
for “Wood hit” have not been extracted; the entire event corresponds to the
single Click1 element.
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Figure 5.18:  Responses from part A of the experiment for the “Construction”
sound.  The six response lines at the top, which appear to refer to background
noise, have not been formed into a specific group.
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Figure 5.19:  The system’s analysis of the “Construction” example along with the
summary subjective events.  The time-frequency intensity envelope and
periodogram of the original sound are illustrated at the top of the figure.  The
remaining objects are the elements generated by the system and the summary
response lines, all drawn on a common left-to-right time scale given by the scale
at the bottom.
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Figure 5.20:  Responses from experiment part A to the “Station” sound example.
The four responses at the top indicating almost the entire sound have been
excluded from a summary group.



5: Results 141

−60

−50

−40

−30

dB

200
400

1000
2000
4000
f/Hz

Noise1

200
400

1000
2000
4000
f/Hz

Clicks1−3 Click4 Clicks5,6 Clicks7,8 Click9

200
400

1000
2000
4000
f/Hz

Station

0 1 2 3 4 5 6 7 8 9

50
100
200
400

1000

Baby1 (10/10)
Baby2 (10/10)

Jiggle (3/10)

Man (6/10)

Thump (8/10)

Talk (4/10)

Oh (5/10)
Hey (10/10)

0 1 2 3 4 5 6 7 8 9
time/s

200
400

1000
2000
4000
f/Hz

Wefts1−6

50
100
200
400

1000

200
400

1000
2000
4000
f/Hz

Weft3

50
100
200
400

1000

Weft7 Weft29

Wefts8−12

Weft13

Wefts14−28

Weft24

Figure 5.21:  System’s analysis of the “Station” sound example compared to the
summary subjective events from 5.20.
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The system created quite a number of weft elements in the region after the
initial saw noise had ceased.  Of these, Wefts8,10 align well with the “Voice”
event, which was indeed indicated as having two parts by some subjects (and
appears in two pieces in our inspection of the time-frequency intensity
envelope).  The remaining wefts do not have any subject-reported
correspondence, although it is likely that they are intermittently detecting
the periodic components of the machine indicated by some subjects in their
description of the background noise.  It should be noted that there is temporal
overlap, as well as pitch-track proximity, between the ‘background’ Wefts7,9,
and Wefts8,10 which were picked out as “Voice” event.  This piece of manual
selection is one of the hardest to defend;  presumably, a more robust weft
extraction might have distinguished between them by making Wefts7,9 part
of an ongoing background tonal structure that excludes Wefts8,10

The system’s resyntheses tested for this example were from Noise2
(corresponding to the subjective event “Saw”), Click4 (corresponding to “Wood
drop”) and Wefts8,10 (corresponding to “Voice”).  The first two of these match
events reported by all subjects;  “Voice” was reported by just six of the ten
subjects, although in part B of the experiment it was rejected as
unrecognizable by only one subject; the other three rated it as “something I
recognize but did not previously note”.  These are discussed in section 5.3.6.

5.3.4 “Station” sound example

The third sound example was another fragment from the sound-effects
collection.  It is nominally “train station ambience”, consisting of babble,
footsteps etc. in a highly reverberant environment.  The most prominent
events in the ten-second excerpt are a few loud vocal exclamations and one or
two transient ‘thumps’, as of door slams or dropped bags.  The intensity
envelope is shown in figure 5.20 along with the subject responses.

There is perhaps a little more variation in the pattern of responses to this
example, again reflecting the choice each subject had to make between
reported events and events that were perceived but not adequately salient to
report.  Three events, “Baby1”, “Baby2” and “Hey”, were noted by all subjects.
The remainder were noted by at least half of the subjects, except for “Talk”,
for which the subjects’ labels suggests that it is an aggregation of
individually-indistinct events whose combination was deemed notable, and
“Jiggle”, whose identity is not clear, although it probably results from the
energy visible above 4 kHz at around t = 4.6 s.

The elements generated by the system are illustrated in figure 5.21 in
comparison to the summary subjective events.  As with the previous two
ambient examples, Noise1 has been created to represent the steady
background noise with a fairly static noise envelope.  Of the nine click
elements extracted, Clicks5,6 align well with the “Thump” event, and Click4
appears to have picked up at least a part of the mysterious “Jiggle” event.
The remainder of clicks have no subjective event correspondents.

The example gave rise to 29 weft elements, presumably picking up on brief
fragments of periodic modulation from the background babble of mixed
voices.  Of the wefts, the most energetic correspond well to the distinct voice-
events reported by the subjects, “Baby1”, “Baby2”, “Man”, “Oh” and “Hey”, as
shown.  Of the remaining wefts, there is a considerable concentration starting
at around t = 6.2 s, which lines up well with the composite “Talk” subjective
event.  The other wefts have no correspondence to the subjective responses,
other than forming part of the background crowd noted by some subjects.
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The resyntheses used in experiment parts B and C for this example were
based on Weft7 (“Baby2”), Weft29 (“Hey”) and Click6 (“Thump”) and are
discussed in section 5.3.6 along with the subjective evaluation of the
resyntheses from the other examples.

5.3.5 The double-voice example

The final sound example was quite different from the others:  It was a short
fragment of a mixture of male and female speech, taken from the sound
examples made available by [Brown92] (who refers to it as v3n7), and
originally constructed for [Cooke91].  The purpose of including this example
was to provide an illustration of how this kind of experiment can be used to
compare between different models of auditory scene analysis, as long as they
produce resyntheses.  This example was chosen from among the sound
examples Guy Brown made available for his thesis, meaning that I could run
the current system on his mixture and then gather subjective ratings of the
separations generated by both systems.  Thus the main point of using this
example was to obtain quality ratings for resyntheses derived from it;  there
was not much room for perceptual ambiguity in the labeling of the sound (at
least in terms of the sources present – figuring out what they were saying is
harder!), so the results of experiment part A are not particularly interesting.
It was important to conduct a part A for this example, however, in order to
familiarize the subjects with the sound, and to maintain the protocol with
which the subjects had become familiar and which would lead subsequently
to rating judgments.  For completeness, the results of part A are presented in
figure 5.22;  however, there is no need to compare these to the system’s
analysis (previously shown in figure 5.9) since the correspondence is self-
evident.
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Figure 5.22:  Subject responses for the “Voices” sound example as gathered
through experiment part A.
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5.3.6 Experiment part B: Rating of resyntheses

So far we have only considered the subjective labeling of the different sounds
perceived in the mixtures in comparison to the objects extracted by the model
in terms of their visual, abstract representations.  But parts B and C of the
experiment made direct tests of the listeners’ judgments of the system’s
output.  These results are now summarized.

For each of the three ambient sound examples (“City”, “Construction” and
“Station”), three of the objects derived by the system were chosen for
presentation to the listeners.  (In a couple of cases, several weft objects were
combined into a single resynthesis example as a manual simulation of higher-
level grouping by proximity or similarity, as noted above).  These resyntheses
were presented to the listeners in part B of the experiment for each original
sound.  In addition, a further trial of part B consisted of a combined
resynthesis of every object separated by the system.  Getting the subjects’
ratings of this ‘complete resynthesis’ obtained a kind of upper-bound on the
resynthesis ratings, since mutual masking, contextual cues to object identity,
and the neutralization of errors in dividing or merging object energy, should
make the perceived quality of a resynthesis improve as more and more
elements are added.

The subjective ratings assigned to the resynthesized objects are presented in
the table 5.1, which shows the complete summary results for the part B
trials.  There were altogether five different original sounds in the experiment,
comprising a training trial, the three ambient examples and the final “Voices”
example.  Each trial of part B presented a single resynthesis;  the subjects
made a labeling for the resynthesis in terms of the events they had previously
reported in part A, and gave a subjective rating of the resynthesis quality.  In
the table, the first column is the name of the base sound example.  The
second column specifies the particular resynthesis, either as the name of the
analysis object(s) involved (taken from the labels in figures 5.17, 5.19, and
5.21), or as “(all)” to indicate the complete resynthesis composed of all
analysis objects.  (The training resynthesis, which came from an unrelated
system, is called “can2”.  The “Voices” example includes the “brnfi”
resynthesis from the system of [Brown92], as discussed below).

The third column gives the summary subjective event label best matching the
resynthesis object, according to the correspondences drawn in figures 5.17,
5.19, and 5.21.  The next two columns give the counts of ‘right’ and ‘wrong’
responses out of the total number of valid responses collected (some trials
were lost through errors).  These data come from the check-boxes to the left of
the part B response screen shown in figure 5.13.  A response is counted as
“right” if the subject indicated that the resynthesis contained their
contribution to the group of subjective event responses named in column
three.  If the subject named a new event (indicating that they recognized the
resynthesis but had not labeled it in part A), the response counted as “right”
if the name supplied suggested the intended correspondence (the analysis of
these scores thus include some subjective judgments on the part of the
investigator).  A response is “wrong” if the subject described the resynthesis
as failing to contain the intended sound, or if the sound was indicated to
contain sounds other than the intended sound.  Thus a single trial could
contribute both “right” and “wrong” scores if the subject heard both the
intended and unintended events in the resynthesis.  For the complete
resynthesis “(all)” examples, the trial contributed to “right” if the subject
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indicated that it contained most events, but also to “wrong” if certain labeled
events were pointedly left out of the set judged to be present.

The remaining columns concern the subjective rating scores.  Recall that in
experiment part B, the subjects had a slider labeled with “unrecognizable”,
“distorted”, “similar” and “identical” which they adjusted to indicate their
assessment of the resynthesis quality.  The rating was actually recorded as a
integer between 0 and 100, where the labels aligned with 5, 35, 65 and 95
respectively.  The default position of the slider was at zero, and thus if the
subject refused (or forgot) to rate the resynthesis, a zero was recorded.  The
“#rat.” column shows the number of nonzero responses obtained for each
example;  responses of zero were excluded from the analysis, but these
formed less than 5% of the dataset.

Example Resynth. Event Right Wrong #rat. Rating Norm. rat.

Training can2 “Can” 10/10 0/10 10 75.2 (17.4) 1.43 (0.91)

City Noise2 “Crash” 9/10 1/10 9 40.1 (12.7) –0.58 (0.81)
Wefts1-4 “Horn1” 9/10 2/10 10 50.5 (22.6) 0.11 (0.97)
Wefts9-12 “Horn5” 10/10 0/10 9 46.0 (18.4) –0.12 (0.63)
(all) 10/10 4/10 9 56.2 (18.0) 0.51 (0.95)

Construct. Noise2 “Saw” 9/10 1/10 9 44.7 (14.5) –0.20 (0.92)
Click4 “Wood drop” 10/10 0/10 10 60.5 (8.9) 0.60 (0.45)
Wefts8,10 “Voice” 8/10 3/10 9 42.3 (18.1) –0.32 (0.90)
(all) 9/9 2/9 9 59.3 (8.0) 0.63 (0.43)

Station Weft7 “Baby2” 9/10 1/10 10 42.4 (13.9) –0.31 (0.79)
Click6 “Thump” 9/10 1/10 9 48.8 (15.6) 0.08 (0.80)
Weft29 “Hey” 7/10 3/10 8 32.0 (9.7) –0.90 (0.56)
(all) 10/10 4/10 10 48.6 (14.6) –0.08 (0.71)

Voices Weft1 “Male” 9/9 1/9 9 43.9 (15.5) –0.16 (0.76)
Wefts2-4 “Female” 9/9 1/9 9 29.8 (14.9) –0.95 (0.68)
brnfi “Male” 9/9 1/9 9 36.9 (17.9) –0.65 (0.79)
(all) 9/9 0/9 9 60.9 (23.9) 0.63 (1.10)

Totals 155/165 25/165 157 48.5 (19.7) 0.00 (1.00)

Table 5.1:  Summary results for subjective ratings of resyntheses from part B of
the experiment: right/wrong counts, average rating scores and average
normalized ratings.

The numbers in the “Rating” column are the average rating score; the
standard deviation for each set is shown in parentheses.  The results are
rather bunched around the middle of the scale, but biased towards the lower
end, with only the fake training example exceeding “similar” (75.2 compared
to 65), and a couple of the ropier weft examples falling below “distorted” (29.8
and 32.0 compared to 35).  The final column, “Norm. rat.”, gives the means
and standard deviations of the ratings after normalization for individual
subjects, to provide a more precise comparative score between examples:
Since ratings generated by a single subject presumably are more internally
consistent than the ratings reported by different subjects, all the ratings
reported by a single subject were pooled to find the mean and variance of that
subject’s rating responses.  The normalized ratings are obtained from the raw
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ratings for a particular example by subtracting the mean rating for that
subject and dividing by the subject’s overall rating standard deviation.  These
numbers are thus distributed around zero, with a normalized rating of 1.0
indicating that subjects rated this example one standard deviation better
than their average responses; negative normalized ratings indicate examples
judged to be worse than average.  The unnormalized average ratings address
the overall absolute subjective rating of the example, whereas the normalized
ratings give a more precise aggregation of each subject’s relative judgment of
the quality of a particular example compared to the others presented in the
experiment.

Right/Wrong results for ambient examples

Looking first at the “Right” scores, we see that on the whole the subjects were
able to identify the resyntheses as corresponding to the intended portion of
the original sound.  Of the nine isolated-event resyntheses from the ambient
examples (i.e. the first three rows for City, Construction and Station), only
two were unidentified by more than one subject – the “Voice” event in the
Construction example, and the Station’s final “Hey” event.  Both of these weft
elements suffered spectral distortion owing to their low level relative to the
background noise;  listening to the “Hey” resynthesis reveals that it has been
extended in comparison to what I perceive in the mixture, apparently because
the weft analysis has tracked the voice into its reverberant tail.  (The Station
example was highly reverberant, something that listeners accommodate very
effectively;  the system made no particular provision for such situations).

The pattern of “wrong” responses is similar, with “Voice” and “Hey” doing the
worst (one subject labeled “Hey” as part of their all-encompassing background
noise label, which was counted as both “right” and “wrong”).  The “(all)”
resyntheses for the ambient examples also pick up a number of “wrong”
scores, mainly from labeled events that the subject judged absent from the
resynthesis.  These omissions tended to be for smaller, less prominent objects.

Rating score results for ambient examples

As noted above, the rating scores are bunched fairly closely around the
middle of the scale.  As anticipated, the ratings of the full resyntheses are on
the higher side, although no better than the best individual element for the
Construction and Station examples.  The “Hey” resynthesis, with its
reverberation-related problems, stands out as the lowest-rated among the
ambient examples, undercut only by the Voices’ “Female” discussed below.
The best-rated resynthesis is the “Wood drop” from the Construction
example;  for some reason, this achieved a notably better match to the
perceived transient sound than the Station’s “Thump” event, also modeled by
a click element with energy concentrated in the mid-to-low frequencies.  The
“Crash” event from the City example has some perceptual similarity to these
transients, but, as discussed, its relatively slow decay caused it to be modeled
as a noise element rather than a click; the unfortunate consequence of this
was that the resynthesis had an abrupt termination, visible in figure 5.11,
rather than dying away smoothly to silence which would have been more
perceptually agreeable.  Also, both the “Crash” and “Thump” resyntheses
appear to have provided too little low-frequency energy since their shifted-
down (in frequency) versions were preferred in part C, discussed below.

The Voices example

The final Voices example was included mainly to demonstrate the way in
which different analysis systems may be compared  with this kind of
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experiment.  The original mixture of male and female voices was used in the
system of [Brown92], and his separation of the male voice was one of the
resyntheses presented to the listeners, “brnfi”.  The current system’s analysis,
illustrated in figure 5.9, produced resyntheses for both the male and female
voices;  however, the difficulties in extracting non-vowel energy discussed in
section 5.1.3 meant that the “Female” resynthesis was interrupted by gaps
where the sibilants and consonants should have been, leading to a highly
distorted resynthesis which was accordingly rated with the lowest overall
score.   The real interest in this example comes from comparing the two
versions of the “Male” source – Weft1 from the current system, and “brnfi”
from Brown’s system.  In the event, the difference is quite small, with the
normalized ratings showing Weft1 managing about 0.5 sd’s better than
“brnfi”.  No meaningful conclusions can be drawn from a comparison based on
a single example; the real significance of this result is that the comparison
can be made at all.  Here are two different models with utterly unrelated
resynthesis approaches being subjected to a quantitative comparison,
something that the system-specific assessment methods of previous projects
could not provide, yet a class of measurement that must become increasingly
significant in the field.

Ratings pooled by element type

Since the resyntheses fall into several distinct classes according to the types
of element from which they are derived, it is of interest to pool ratings across
resyntheses in the same class.  These results are presented in table 5.2,
which arrange the data of table 5.1 by resynthesis class rather than by base
example.

Resynthesis class #rat. Rating Norm. rat.

Noise elements (“Crash”, “Saw”) 18 42.4 (13.8) –0.39 (0.89)
Click elements (“Wood drop”, “Thump”) 19 54.9 (13.8) 0.35 (0.69)
Weft elements (7 examples) 64 41.3 (18.1) –0.36 (0.86)

Total for individual elements 101 44.1 (17.5) –0.23 (0.88)

Full resyntheses (4 examples) 37 56.1 (17.7) 0.41 (0.89)

Total for all system resyntheses 138 47.3 (18.3) –0.06 (0.93)

Table 5.2:  Rating results pooled by resynthesis type.  Only the resyntheses
produced by the current system are included (i.e. excluding “can2” and “brnfi”).

Although this pooling appears to show that the click elements achieve the
best resynthesis ratings, with noise and weft elements roughly on a par,
these results cannot be given too much authority since there are only two
examples each of the noise and click elements.  What is more clearly shown is
that the pooled results of the eleven isolated resyntheses (three for each
ambient example plus two from Voices) rate noticeably worse than the
aggregate rating for the full resyntheses (of which they are a part).  This
could be interpreted as confirmation that presenting the resynthesized
elements in a dense context rather than in complete isolation hides their
flaws.  This is to be expected;  the full resyntheses include the background
noise element, which effectively provides a broadband masking noise
typically only a few dB below the other resynthesized elements.  In the full
resyntheses, the experiment can take advantage of the prediction and
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inference mechanisms at work in the listener to improve the perceived
quality of the elements!

5.3.7 Experiment part C: Ranking of resynthesis versions

Each of the nine isolated-event resyntheses from the ambient examples (but
not the complete resyntheses) was subjected to four systematic distortions,
making a total of five ‘versions’ to be ranked in experiment part C.  The
intention of this part of the experiment was to provide evidence that the
resyntheses generated by the system were better than other, similar sounds,
or, failing that, to give pointers towards how the resyntheses might be
improved.  The subjects were presented all five versions as movable ‘buttons’
on screen which they had to arrange in declining order of similarity to an
event perceived in the original sound; the data were recorded as rank orders
from zero to four by sorting the final y-ordinates of the buttons on the screen.
(In a couple of trials, subjects managed to move two buttons to exactly the
same height, presumably indicating no preference between them;  this was
recorded as the average of the two rank scores e.g. if two lowest objects were
at the same height, they were both ranked as 3.5).  Subjects were not able to
skip this screen, meaning that in the small number of trials where a subject
had failed to identify the correspondence of a resynthesis in part B, they were
left to rank the versions according to more abstract preferences.  The initial
order of the buttons was randomized, so failing to exclude trials that might
have been ignored by the subject does not present a systematic bias.  In
retrospect, it would have been better to provide a button that allowed the
subject to indicate “I don’t know what this sound is and I can’t rank its
versions.”

Generation of distorted versions

In order to conduct part C of the experiment it was necessary to define
several ‘distortion operators’ to apply to the objects.  The specific goal of this
experiment was to investigate if the system’s resyntheses lay in a local
quality optimum in the parameter space constituted by each sound element
model.  Consequently, the distortions were defined to operate upon the
parameters of an element prior to resynthesis, and the versions were
generated by feeding the distorted parameters to the same resynthesis
procedures used for the ‘best’ examples.

The parameter space is unthinkably large, and the choice of distortion
operators similarly huge;  for want of better alternatives, four distortions
were defined representing one step either side of the undistorted
parameterization on two dimensions, nominally ‘frequency’ and ‘smoothness’.
The precise definition of these distortions varied somewhat depending on the
element type to which they were being applied, but in general applied to the
time-frequency energy envelope that the element was intended to reproduce:

• A ‘smoothed’ version applied raised-cosine smoothing windows along both
axes of time-frequency envelope generated by the element.  The time-
window had a width of 11 timesteps (approximately 50 ms) and five
frequency bins (meaning that each channel was mixed with its spectral
neighbors to two bins on each side).  As with all the distortion operations,
these windows were chosen to provide small perceptual modifications
that were none-the-less reliably distinguishable from the original.

• The complement of the smoothed version (stepping the other way on the
notional smoothness axis) was a ‘sharpened’ version:  The smoothing
window was normalized to have unit gain for a constant signal, so
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subtracting the smoothed time-frequency envelope from the undistorted
original separated an ‘unsmooth’ component (in the sense of the
‘unsmooth masking’ operation of image processing).  This component was
increased by 50% and added back to the smoothed envelope to generate a
new envelope with the same local-average properties as the original
profile, but with exaggerated deviations about the local average.

• The frequency dimension was more simply defined: A ‘shifted-up’ version
simply displaced the entire time-frequency envelope up by one frequency
channel; the ‘shifted-down’ complement was displaced down one bin from
the original.

• Weft elements include the additional parameter of their period contour,
used to construct a variable-period pulse train to excite their spectral
envelope.  This contour was similarly smoothed and sharpened (to reduce
or enhance deviations about the locally-average pitch), and shifted up and
down in frequency.  For the frequency shifts, a factor of 3% (half a
semitone) was used; although the one-channel shift of the envelope
corresponded to a 12% frequency (i.e. six channel per octave, where the
sixth root of two is approximately 1.12), a pitch shift of this magnitude
was very obvious, so a smaller factor was used to make the distorted
versions less obviously different from the original.

Figure 5.23 shows examples of an element envelope (in this case a weft) and
its four distorted derivative versions.
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Figure 5.23:  Illustration of ‘distorted’ time-frequency envelopes and period
tracks.  From left to right, the versions are: ‘smoothed’, ‘shifted-up’, original,
‘shifted-down’ and ‘sharpened’.

Ranking of distorted versions

The results of ranking the distorted versions of the nine resynthesized objects
used for part C are summarized in table 5.3:  for each example, the versions
are listed from left to right in declining order along with their average rank
(where the ‘best’ version has a rank of zero, and the bottom version scored 4).
Each ranking score is the average over ten results, one from each subject.
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Example Resynth. Event Version preference (avg. rank)

City Noise2 “Crash” sd (1.0) sh (1.2) or (1.6) sm (2.5) su (3.7)
Wefts1-4 “Horn1” or (0.6) sh (0.8) sm (2.1) su (3.1) sd (3.4)
Wefts9-12 “Horn5” sh (1.0) or (1.2) sm (1.8) sd (2.8) su (3.2)

Construct. Noise2 “Saw” or (1.0) sh (1.1) sm (2.1) su (2.2) sd (3.6)
Click4 “Wood drop” sh (0.8) or (1.6) sd (2.0) sm (2.1) su (3.5)
Wefts8,10 “Voice” or (1.0) sh (1.6) sm (1.8) su (2.6) sd (2.8)

Station Weft7 “Baby2” or (0.5) sh (1.9) sh (1.9) su (2.5) sd (3.2)
Click6 “Thump” sd (1.1) sh (1.3) or (1.5) sm (2.6) su (3.5)
Weft29 “Hey” sh (0.6) or (0.7) sm (1.8) sd (3.1) su (3.7)

Table 5.3:  Ranking of resynthesis versions for the nine isolated-event
resyntheses from the ambient examples.  Each row shows the average ranking of
the five versions, sorted in descending order; thus, the first version column
contains the most preferred, and the last column has the version judged least
similar.  Versions are indicated by two-letter codes; ‘or’ = original (system’s
parameters, shown in bold), “sm” = smoothed time-frequency envelope, “sh” =
‘sharpened’ envelope, “su” = shifted up in frequency, “sd” = shifted down.

The first thing to note is that the versions have been ranked with some
consistency; if subjects had ordered them at random, we would expect the
average ranks to be about the same for all versions; instead, the ordering is
sometimes quite pronounced.  The second thing to note is that, unfortunately,
the initial hypothesis that the system’s original versions would be the ‘most
similar’, is not supported.  The “or” version only comes out on top in four out
of nine trials.  In three cases it is in second place, and in each of the
remaining two resyntheses there are two versions whose average rank is
better than that of the original.  When the original is beaten out of first place,
it is always ranked below the ‘sharpened’ version (“sh”), but in the two cases
where the original is third, the ‘shifted-down’ version has been ranked first,
ahead of both “or” and “sh”.  These two resyntheses, “Crash” from the City
sound, and “Thump” from the Station example, both correspond to transients
in the original sound that might be expected to contain significant low-
frequency energy.  The inference from the success of the ‘shift-down’ version
in these two cases is that the system failed to assign enough low-frequency
energy to these resyntheses, possibly because the energy was hidden in a
wide-variance background noise element, or perhaps because of the slower
onsets in the narrower, low channels preventing the element creation logic
assigning enough energy to the new element in this region.  In any case, this
part of the experiment has succeeded in its secondary goal, to indicate specific
areas for system improvement.

Rankings pooled by element type

As with the ratings, it is informative to look at the average ranking scores for
the different versions averaged across each element type (noise, clicks or
wefts), especially since the distortion operator varied according to the
element upon which it was operating.  These results are presented in table
5.4;  rather than sorting the versions by rank, the average ranking of each
version is shown in a separate column:
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Resynthesis class # resyn. Avg. rank: or sh sm sd su

Noise elements 2 1.3 1.1 2.3 2.3 3.0
Click elements 2 1.6 1.1 2.4 1.6 3.5
Weft elements 5 0.8 1.2 1.9 3.1 3.0

Total 9 1.1 1.1 2.1 2.6 3.1

Table 5.4:  Ranking of resynthesis versions pooled by the type of the element
upon which the original resynthesis is based.  Of the nine resyntheses for which
rankings were gathered, there were two each of noise and click elements, and the
remaining five were wefts.  Each resynthesis contributes ten ranking scores to
each version.

Pooling the pairs of noise and click element resyntheses leaves the
‘sharpened’ element ranked ahead of the original in both cases;  for the click
elements, even the ‘shifted-down’ version matches the ranking of the original.
One explanation of the comparative success of ‘sharpened’ versions of
transient elements is that the sharpening distortion will presumably have
emphasized the initial onset, which may have been blurred by the analysis,
again indicating a specific direction for system improvement.

In all cases, the ‘shifted-up’ version has been ranked very low, although, by
contrast with the click elements, ‘shifted-down’ is ranked even worse for weft
elements.  The additional effect on the pitch contour has presumably added to
the disinclination towards frequency-shifted versions for the weft elements.
Smoothed versions are rated approximately in the middle in all cases.  When
all elements are pooled together, the original is at least ranked first, although
it has to share that position with the sharpened version, emphasizing the
salutary results of this part of the experiment, that there is clearly room for
improvement in parameter extraction and resynthesis of the elements.

5.4 Summary of results

In this chapter we have seen how the system handles real sounds, and used
the subjective responses of listeners to assess its output.  The listening tests
turned out to be very successful, insofar as they satisfied several different
objectives.  From the most general perspective, the tests gathered some
‘ground truth’ regarding the perception of distinct events in dense ambient
sound mixtures; while these results were hardly startling, it was interesting
to see the level of agreement reached between the subjects in the number and
identity of objects in what were rather contextless and ambiguous sound
fragments.  The perception of complex, real sound scenes of this type is
necessarily a difficult thing to measure, yet audition in these circumstances is
sufficiently different from the reductionist scenarios of conventional
psychoacoustics to warrant separate investigation.

For the ambient sound examples the system’s thresholds were manually
tuned to produce a reasonable output according to my judgments.  Even so,
the extent to which the objects generated by the system corresponded to the
subjective events reported by the listeners was very encouraging, with rather
few cases in which the system identified spurious events or the subjects
named events not recorded by the system.  Where discrepancies did occur,
they often pointed to specific remedies through system enhancements.
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Resynthesized objects were correctly identified with their corresponding
event in over 90% of trials;  however, the listener’s responses to resyntheses
of particular system-identified objects showed quite emphatically that the
overall quality of analysis and resynthesis has much room for improvement.
The overall average rating (including the forgiving ‘complete’ resyntheses) of
47.3 lay closer to ‘distorted’ than to ‘similar’.  The experiments themselves
were a success in terms of generating a reasonably consistent pattern of
responses to lend some confidence to the overall ratings and the judgments
pertaining to the different types of resynthesis.

A similar picture emerges from the investigation of ‘distorted’ versions of
particular resyntheses;  the experiments succeeded in collecting subjective
responses that gave consistent and quite strong results.  These results were
that resyntheses in various classes had definite and specific weaknesses, but,
armed with these results, the more egregious weaknesses can hopefully be
cured in future developments of this work.
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Chapter 6 Summary and conclusions

6.1 Summary

The previous three chapters formed the complete presentation of the
prediction-driven architecture and its preliminary implementation.  In this
final chapter I will take a slightly broader perspective to look at the things I
might have added to the system (in an ideal world without time constraints),
and some of the aspects of audition I still don’t know how to incorporate into
this approach.  The whole question of how well this may be considered a
model of human hearing will be reconsidered, and finally I will present my
vision of the development of the field of computational auditory scene
analysis.

6.1.1 What has been presented

Before drawing conclusions, let us briefly review what this thesis has
contained.  I started by presenting a view of the phenomenon of auditory
scene analysis and a perspective on the important problems facing computer
modelers.  The review of previous and related work characterized most of the
larger projects in the area as ‘data-driven’ – forming abstract descriptions of
observed sound based purely on the detected low-level features, without
allowing for the influence of expectations or other context.  In motivating a
hypothesis-led, prediction-driven approach, I highlighted various ubiquitous
auditory phenomena, such as robust interpretation of masked signals and
resolution of ambiguity, which cannot be accomplished without a top-down
component to the architecture.  I then proposed a solution to this
shortcoming, a system consisting of an internal world model, comprising
hierarchic explanations of generic sound elements, which is continuously
reconciled to the observed sound cues.

The implementation did not manage to encompass all aspects of the proposed
approach, and in particular the relative paucity of explanatory abstractions
meant that some of the more interesting possibilities of reconstruction of
corrupt sound could not be pursued.  The foundation of the system that was
built consisted of a vocabulary of three types of generic sound elements,
suitable for the representation of noisy, transient and tonal sounds.  These
were generated by a blackboard-based incremental reconciliation engine
whose goal was to account for the ‘indispensable’ features extracted from the
observed sound by the front-end.  These features were overall time-frequency
intensity envelope, indicating the presence and spectral location of acoustic
energy, and the periodogram, a summary of the short-time autocorrelation of
the envelope in each frequency channel, which reveals the presence of signal
periodicity generally experienced as pitch.

This system exhibited a number of interesting behaviors, including the ability
to model overlapping sounds and pursue alternative hypotheses in the face of
ambiguity, and proved successful in the analysis of examples of the complex
‘ambient’ sound scenes that originally motivated this project.  The success
was confirmed in the most direct manner possible, by comparison with the
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analyses of real listeners, as revealed by psychoacoustic testing.  While
listeners’ ratings of the quality of the system’s resyntheses indicated that
there is much room for improvement, the underlying successful
correspondence between objects identified by the listeners and objects
extracted by the system presents strong evidence for the soundness of the
approach, at least within this domain of dense, noisy sound mixtures.

Some care was taken to ensure that the subjective testing protocol developed
for this project would be applicable to other automatic sound organization
systems, since it relies neither on special properties of the system (other than
its ability to generate resyntheses, arguably a necessary feature of such
systems) nor on specially-prepared sound examples.  As a demonstration, one
part of the experiment made a direct comparison between the current model
and the resynthesis from a previous computational auditory scene analysis
system, as a proof-of-concept for how such comparisons could be made.

6.1.2 Future developments of the model

It goes without saying that when starting the project I expected to construct a
rather more complete system.  Indeed some of the aspects that were not
constructed were abandoned only quite recently.  Although these omissions
have mostly been noted already, the following list consists of the system
features that I would most like to add in the future:

• Higher-level explanations:  Much of the theoretical attraction of the
prediction-driven approach stems from its capacity to incorporate high-
level abstractions for observed signals, conferring the ability to predict
and hence ‘perceive’ complex sound patterns even when they are masked
or only ambiguously present.  Several of the more involved aspects of the
implementation, such as the RESUN blackboard engine, appear over-
engineered as they stand since they are there to permit a deeper
explanation hierarchy that is not currently used.  Adding a wider range of
hypotheses at the ‘source’ level, and layering higher levels of explanation
above these sources, is for me the most exciting (as well as the most
challenging) open issue for the system that has been presented.

• Improvements in cues, elements and resynthesis:  The relatively
desultory ratings awarded to the system’s resyntheses in the listening
tests reflect the difficulties arising from trying to spread finite
development resources between the many aspects of the system.  More
care in the resynthesis algorithms would probably pay considerable
dividends in eliminating damaging but avoidable artifacts.  However,
some problems are more profound;  the signal models underlying the
generic sound elements should probably be more sophisticated (such as
permitting shifts in frequency for noise objects), and the analysis
procedures used to recover signal parameters are certainly far from
optimal.  The detection and extraction of weft elements is a particularly
glaring example of this, where the current algorithm for recovering the
intensity of periodic components mixed with noise or other interference is
based on a rather heuristic, and inadequately verified, analysis.
Hopefully, a more careful derivation of this relationship would greatly
reduce the spectral distortion apparent in the current weft resyntheses.

It should be acknowledged also that the system is intrinsically
monophonic;  an obvious avenue to pursue would be the inclusion of the
binaural spatialization cues that are known to help real listeners.
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However, little consideration has been given to how such information
might be incorporated (as discussed below).

• Interpolation of corrupt data:  One of the unexplored benefits of a
prediction-based system with high-level signal data is the ability to ‘infer’
the presence of signal continuations despite temporary masking by louder
sounds.  Although this is primarily an aspect of the higher-level
explanations mentioned already, such reconstruction could probably be
implemented quite successfully even at the level of the bottom-level
elements.  The missing piece here is an algorithm to go back and
interpolate best-guesses over the missing data if and when the target
signal reappears.  A preliminary algorithm of this kind was presented in
[Ellis95c], but never made it into the current system.

• Revision of previous analyses:  As touched upon in the theoretical
motivation of the prediction-driven architecture in chapter 3, there are
certain situations in which the correct interpretation of a sound cannot be
made until some time into the future, when the subsequently-revealed
context dictates the correct analysis.  Where ambiguity is detected in
advance, the system as presented can incorporate such retroactive
context via the preference between multiple hypotheses.  However, in
some cases, even the ambiguity does not emerge until later (such as the
case of the alternating noise stimuli starting with a wide band of noise,
illustrated in fig. 3.2 (b));  to handle such situations, a system must be
able to go back in time and revise its representation for information that
has already been ‘finished’.  Although the architectural complications are
considerable, there is no intrinsic reason why the current system could
not include a mechanism of this kind, that ‘backed up’ the evolution of
hypotheses to revise or divide them at an earlier time-step.  The analysis
system described was strictly incremental, making decisions only at each
hypotheses’ idea of the current time ; however, the underlying blackboard
engine places no restrictions on switching between current and past
hypotheses.

These are the aspects of the system that appear most worthy of development
in terms of the original intentions of the project and my hopes for the model’s
ability to reproduce human auditory behavior.  However, the real motivation
for developments may depend on particular goals, for instance, speech
enhancement, towards which such a system might be aimed.  Goals create
their own agenda of development priorities to handle the immediate
obstacles;  it seems unlikely that the special case illustrated in figure 3.2 (b)
will soon be one of them.

6.2 Conclusions

Any presentation of a new computational system will inevitably consist of a
mass of details, but what are the broader lessons to be drawn from this work?
In the introduction I mentioned various specific questions and assumptions
that the project would address; we can now revisit these points.  There are
also a number of unanticipated issues that arose during the project that
deserve mentioning here.  The ultimate goal of this work, to create a
functional model of human audition can now be re-evaluated in terms of the
kinds of perceptual phenomena that this approach at least begins to explain;
other aspects of real hearing whose emulation still presents theoretical
challenges will also be considered.
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6.2.1 Reviewing the initial design choices

The project embodied a somewhat specific point of view on the mechanisms of
auditory perception.  Despite the indifferent quality ratings resulting from
the subjective tests, the mere fact that such tests could be conducted, that the
system could identify and extract sufficient structure from complex real-
world sounds to permit a comparison with the impressions of real listeners,
serves as strong support for the assumptions upon which the model was
based.  Specifically, although the following ideas cannot be said to have been
proven in this work, my original commitment to them has certainly been
reinforced by the experiences of the project:

• Full explanation:  Deeper than the technical distinctions between this
work and its predecessors lies the philosophical difference between
seeking to extract a target sound from unwanted interference, and the
approach espoused here to find an explanation for everything in a sound.
That this forms an essentially correct interpretation of human audition
does not seem controversial, however, this work has helped to uncover the
more particular implications of complete explanation in accommodating
the difficulties that arise from the interaction between different sounds in
a mixture.

• Models for aperiodic sound:  The goal of modeling a broad range of
sounds, rather than focusing on a specific target class such as voiced
speech, required a comprehensive representational basis.  While
identification of a background ‘noise floor’ has been attempted in several
speech processing systems, the dynamic modification of these elements,
and the addition of explicitly transient click elements were particular to
this approach.

• A new representational vocabulary:  Although the basis set of noise
clouds, transient clicks and tonal wefts was highlighted as one of the
more speculative parts of the system, they turned out to be an adequate
foundation for the analysis and resynthesis of the sound ambiences
addressed in the experiments.  Moreover, these elements were able to
represent a given sound on a much coarser scale, i.e. with many fewer
elements, than the representational primitives such as sinusoids or
contiguous time-frequency patches used in previous systems.  To achieve
a coarser-grained representation without inappropriately grouping
energy from distinct sources is of great benefit in simplifying and
reducing subsequent processing.

• The world model:  The specific domain of dense ambient sound
mixtures addressed made intermittent masking of sound sources by one
another an inevitable feature of the environment.  Consequently, the
analysis needed to have an abstract internal representation capable of
maintaining the existence of inferred sound-producing processes even
when the evidence of their presence was temporarily obscured.  The
approach of a top-down internal world model, reconciled with the
observed input, rather than a bottom-up analysis derived directly from
the input, made persistence in spite of hidden evidence the default
behavior of the system, as appears to be the case in the auditory system.

• Multiple hypotheses:  Top-down explanation, which essentially tries to
guess and then confirm an abstract explanation, can raise specific
problems of ambiguity in identifying correct solutions.  By taking the
approach of developing multiple hypotheses until the best alternative
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emerged, many such ambiguities could be resolved without complicated
backtracking and revision.

• Blackboard engine:  The blackboard architecture was a natural choice
for a sensor-interpretation problem involving both bottom-up and top-
down reasoning in which the precise sequence of processing steps could
not be specified in advance.  While certain features of blackboard
systems, such as their ability to apportion effort between processing at
widely differing levels of abstraction, were not exploited in the current
implementation, the basic capacity of the blackboard engine to manage
multiple hypothesis hierarchies proved to be a very effective framework
for the system.

6.2.2 Insights gained during the project

One of the strongest arguments in favor of building computer simulations as
a way to investigate phenomena of perception and cognition is that we have a
unfortunate tendency to overlook many of the most critical issues in the
brain’s operation, perhaps arising from the recursive nature of considering
our own minds’ function.  An attempt at a concrete implementation of the
principles and processes deduced from physiological and psychological
evidence has the benefit of making any gaps in the original reasoning
painfully obvious, and I think it is fair to say that the difficulties encountered
by modelers of auditory organization have contributed to the theoretical
understanding of the phenomenon.  Although the idea of a prediction-
reconciliation model for auditory organization seemed reasonably
straightforward, some of the pieces required for the current implementation
were not anticipated but turned out to be very interesting none-the-less.  The
particular problem of allocating prediction error between overlapping objects,
and its solution through the concept of decaying ‘error weights’ reflecting the
stability of each element, are an example of a practical solution that could
have more general implications for the structure of real audition.  While the
minimum-description length principle is mainly an aid to the developer which
placed a specific interpretation on the otherwise vague concept of a
hypothesis quality rating, the associated questions of the parameters to use
in assessing the quality of hypotheses, answered as a combination of
prediction accuracy and prediction specificity, should form an important part
of any auditory scene analysis system.

The system as presented is incremental, in that it observes its input in
strictly advancing small time steps; most previous systems (with the
exception of [Mell91]) were not.  Rather, those system would consider a chunk
of sound on the order of a second in length before deciding, as a whole, what
it contained.  The distinction between an incremental system whose ‘current
beliefs’ can be meaningfully described for every instant of the input, and
systems whose analysis is updated only on a coarser timescale, turned out to
be more significant that I had anticipated.  The human auditory system
operates incrementally, in that it must provide a provisional analysis of
current sounds whether or not they have evolved to full characterization
(although the exact delay between exposure to a complex sound and its
correct organization is difficult to define).  Compared to a batch system, many
of the issues of multiple hypotheses and handling ambiguity take on much
greater significance under the incremental constraint, presumably reflecting
their importance in real audition too.

Resynthesis is an obvious goal for certain kinds of applications, such as the
restoration of degraded recordings, but it is not immediately clear that the
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pure intellectual goal of understanding and reproducing the organization of
sound in the brain need be concerned with resynthesis.  However, in
considering the assessment of this work, it became clear that, because there
is no reference for the task we are trying to model other than human
listeners, the only option currently available for the validation of
computational auditory scene analysis systems is through listening tests.
Administering such tests necessitates the realization of system’s output in
sonic form.  Resynthesis does involve rather stern requirements compared to
a system whose output might be left in more abstract and undetailed terms,
but probably these are requirements not to be avoided if we are serious in our
goal of modeling real audition.

The final lesson of this work comes from what wasn’t accomplished.  It is easy
to agree with the statement that more sophisticated models of hearing need
to address more abstract levels of auditory processing and knowledge;  the
fact that this project never really reached the heights of abstraction to which
it initially aspired attests to the difficulty of building such models.  Partly
this is a question of scale, in that it is very difficult to experiment with
models of abstract function unless you have a suitable infrastructure to
ground those models in real sound examples.  If the infrastructure needs to
be built, it must take precedence over, and may eventually entirely eclipse,
the original abstract goal.  Also, the increasing separation between the
inferred processing of abstract representations occurring in the brain and the
measurable phenomena of psychoacoustics make it that much harder to think
clearly about what should be happening at these levels.  One of my hopes, to
achieve some clarification concerning the practical details of managing and
dealing in abstract representations of sound as a byproduct of constructing
computational models, must wait still longer for realization.

6.2.3 A final comparison to real audition

This work was introduced unambiguously as an effort towards the
understanding of auditory function; a particular sound processing system has
been presented and examined, but there are still many legitimate questions
over the relevance of this model to the sound organization performed in the
brain.  What aspects of the system are most significant to its goal of providing
insight into real audition, and what are the phenomena of hearing that the
model does not address?  How should we regard the very obvious differences
between this system and its putative prototype, most significantly that one is
implemented on a microprocessor and one with neurons?

The strength of this system’s claim to be an interesting model of hearing stem
from its potential to reproduce and explain various hearing phenomena that
gave difficulties to preceding systems.  These were presented in chapter
three:  Essentially, there are a wide range of circumstances in which the ear
must find it difficult or impossible to gather information from a particular
sound source (owing to the corrupting effect of other sources), yet for the most
part we are unaware of these temporary processing obstacles because of
preconscious inference and restoration in the auditory path.  Such processes
are highlighted by psychoacoustic demonstrations such as phonemic
restoration and the continuity illusion, but we may speculate that they are
constantly at work in day-to-day acoustic scenarios.  A prediction driven
model naturally incorporates the ability to exhibit these phenomena, since
rather than relying on direct evidence for every sound-source believed to be
present, the default mode of operation is to assume the continuity of the
internally-represented sounds until there is a specific reason (either from
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external data or internal knowledge) to change them.  It is a weak argument,
but the fact that an architecture based on multiple competing hypotheses
strikes me as a very promising model for real audition must say something
about its compatibility with the introspective experience of hearing, which,
while obviously unreliable, is still some of the most detailed evidence we have
to apply to the problem.

At the other extreme, the results of the experiments do provide some very
concrete support for the relevance of the model to real audition, albeit not
without equivocation.  Although there is a natural tendency to focus on the
specific flaws in the system’s organizations and resyntheses, I would prefer to
emphasize the unprecedented success of the model in producing anything
resembling the complete analysis of a dense scene by a human listener.  This
success is tempered by the fact that, to my knowledge, no-one has previously
attempted to model this particular aspect of perception (i.e. the complete
explanation of dense ambient scenes), but I believe that these are appropriate
issues to be addressing given the current state of the field.

There are of course a great many aspects of audition for which the system
and the approach it embodies do not offer any obvious solution.  Some of the
more intriguing of these include:

• The integration of different cues:  Although this has long been
identified as an important aspect of auditory processing (for instance, in
Bregman’s ‘trading’ experiments [Breg90]), and despite the fact that
abstract representations offer a suitable integrated location at which to
combine information from different sources, it turned out that the system
built for this project never really had to address the general problems of
arbitrating between alternative interpretations mediated by orthogonal
cues such as harmonicity and spatial location.  (Perhaps using binaural
inputs to the model and the listening tests would have made it
unavoidable to address this issue, although it is possible that serious
conflicts between cues, the only times that the manner of their
integration takes on significance, are rather rare in practice).  There are
some very interesting but difficult questions here arising from the
paradox of needing an identified object before its parameters can be
reliably calculated at the same time as needing the information from
those parameters to construct the object robustly; regrettably, the current
work has made little contribution to this question.

• Duplex perception:  This is another favorite example of the complexity
of hearing, in which a simple sound element such as a modulated sinusoid
is seen to contribute to more than one perceived sound source, perhaps
being heard both as a whistle and contributing to the quality of a
simultaneous vowel.  Constructing such demonstrations is relatively
difficult, and I would prefer to be able to discount such oddities as
irrelevant to real, everyday hearing.  Certainly, if they could be explained
in terms of the masking properties of the whistle permitting the
reconciliation without contradiction of input components to the a-priori
likely interpretation of a vowel, then the prediction-driven approach
would fit right in.  However, no direct effort was made to consider this
general question in the current work.

• The perception of modulation:  The detection of patterns of energy
fluctuation spread across different peripheral frequency channels, as in
comodulation masking release (CMR, [HallG90]) has been the subject of
some very suggestive recent psychoacoustic experimentation.  The model
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as presented does not have the capability to represent and compare
details of aperiodic modulation between frequency channels that such
phenomena appear to imply.  That said, the detection of periodicity in the
correlogram/weft analysis consists primarily of the recognition of common
modulation across frequency bands;  it may be that some modification of
this approach would be able to encompass not only pitched sounds but
noisier comodulated examples too, perhaps via the addition of extra
layers or dimensions to the periodogram output.

• Abstract sound explanations:  At the opposite extreme to the low-level
mechanisms of modulation detection, the structure of the higher levels of
abstraction were also not a part of the current system, as has already
been discussed.  There are many questions concerning such abstractions
that need to be addressed;  if sound events are to be organized as
instances of known patterns, what is the correct balance between the
number and generality of such patterns, and how do specific abstract
entities (such as “a clarinet note”) inherit properties from the more
general classes in which they presumably reside (“wind instruments”,
“musical sounds”, “sounds with a pitch” as well as perhaps “instruments
used in jazz music” or other overlapping classifications).

• Developmental and learning issues:  Even establishing a suitable
hierarchy of abstractions does not solve this question completely, since
real listeners evidently acquire their own interpretative predispositions
through some combination of innate tendency and learning from their
environment;  it may be that learning over a range of timescales is an
important prerequisite to the ability to organize the full range of sounds
we can handle.  We have yet to reach a stage of sophistication in our
systems where such questions can be effectively investigated.

Some would consider the fact that the current system is based upon the
‘traditional AI’ framework of rules, representation and symbolic processing as
a significant obstacle to its consideration as a plausible model of what goes on
in people.  The points raised in relation to artificial neural network models in
chapter two still seem valid:  While there are without doubt numerous
extremely interesting discoveries to be made about how the auditory system
implements its processing using the structures of the brain, these are
ultimately issues only of implementation.  In the same way that looking at
highly-optimized procedures or the output of a compiler may disguise aspects
of the underlying algorithm being employed, it might be convenient or even
important to attempt to understand the function of audition independently of
how it is actually achieved by neurons.  At the same time, it may be that the
algorithms employed are so overwhelmingly influenced by the capabilities of
their implementational substrate that they will only be comprehensible from
that perspective;  certainly, both approaches are warranted at this stage.
However, I do not consider it a disadvantage that the serial control
scheduling of the blackboard core of this system is on its face an extremely
unbiological form of computation.  From just a slightly broader perspective,
its structures of parallel development of competing hypotheses may turn out
to be a very serviceable parallel to the behavior of the brain viewed in similar
terms.  That their lowest levels of implementation are almost unrelated is no
more important than the difference between solving an integral on paper or
using an automated tool like MACSYMA.

As we have already observed, work in this field is complicated considerably
by the impracticality of direct comparison between model and original except
at the very highest and lowest levels, though psychoacoustic tests and
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physiological examination respectively.  Spanning this gap requires many
pieces, and there is a problem of apportioning the blame for weaknesses in
any particular model, even at the coarsest level, between front end,
intermediate representation, resynthesis procedure or any of the other major
components.  This makes progress towards a successful model a slow and
confused path, never knowing if the compromises in a particular aspect of the
system are truly unimportant, or the one crucial flaw obstructing some
interesting behavior.  Given these multiple possible points of failure, it is
sometimes surprising that the models we do have work as well as they do.
Such a realization is the comfortless truth facing those of us who persevere
with such modeling.

6.3 The future of Computational Auditory Scene Analysis

The initial goals of this project were too ambitious, and while it’s fun to think
in grandiose terms about the ‘whole’ of audition, it is symptomatic of the
nascent state of the discipline that I consider my area of study to be
computational auditory scene analysis without being able specify an obvious
specialization within it.  Like Newell & Simon’s “General Problem Solver”
[NewS72], and even Marr’s “Vision” [Marr82], today’s most sophisticated
theories will appear naive and almost willfully simplistic in the quite near
future.  This is inevitable;  the challenge is to make the discoveries that will
permit a more realistically complex model of auditory perception.

Progress will be made when individual researchers are able to focus their
attention on individual parts of the problem, rather than being distracted by
the simultaneous and interdependent development of disparate model
components.  This is becoming easier with a trend for modelers to package
their work and make it available as a substrate for other researchers – for
instance, the cochlea model of [Slaney93] used here, and the integrated
modular physiological models made available by the group at Loughborough
[OMaHM93].  These pieces reflect some kind of consensus concerning
acceptable models of the auditory periphery and low-level processing, but
before we can see the same kinds of tools becoming available for, say,
intermediate auditory representations, we will need much better evidence for
what the appropriate representations should be.  Before we can really attack
this problem in depth, we need to find a common framework for the whole of
audition to act as a unifying focus for this work.  Such a framework could
emerge from a model that was peculiarly successful at accounting for a range
of phenomena, or a breakthrough in physiological results.  It’s hard to
anticipate, but in all likelihood we are some time away from being in such a
position.

In the meantime, progress will continue in the areas already identified as the
main components of models of auditory organization.  Increased physiological
knowledge needs to be matched by improved interpretations of the
significance and purpose of the inferred operations.  There is a tantalizing
parallel between the autocorrelation structures that account so well for pitch
detection [MeddH91] and cross-correlation models of interaural cue detection
[Gaik93].  Perhaps we will be able to identify a class of delay-and-combine
networks as the general building-blocks at least for the lower levels of
auditory signal processing.

However, the really exciting advances from my perspective lie in the
application of higher-level knowledge.  Automatic speech recognition presents
an interesting parallel:  Many recent improvements in the performance of
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speech recognizers arise from the incorporation of increasingly sophisticated
language models which simplify the identification problems of the front-end
by imposing powerful constraints on the word-sequences that are permitted
to exist.  An ability to express and manipulate these kinds of constraints in
the domain of auditory scene analysis would produce similar gains, and in the
same way that language models approximate principles at work in people
listening to speech, powerful high-level constraints probably constitute the
largest portion of the difference between computational and human auditory
scene analysis.  Unfortunately, the concept of a ‘grammar’ of real-world
sounds, a way to describe the kinds of limits on what we will believe or notice
that we hear, is still a baffling idea.

The comparison of machine vision and machine listening is sobering.  There
are similarities between our field and the computer models of vision of ten or
fifteen years ago, and vision is still very far from being a ‘solved problem’.
However, there are reasons to be optimistic:  Firstly, many of the lessons
gained rather painfully in vision research (the illusion of ‘direct perception’;
the importance of representations and abstractions; the plurality of cues)
have been incorporated directly into theories of hearing rather than having to
be rediscovered.  Secondly, hearing is simpler than vision, in terms of sensory
bandwidth or brain real-estate, and at the same time the inexorable advance
of computational power makes possible models that would previously have
been unthinkable.  Perhaps hearing embodies a balance between sensory
richness and processing complexity at the right level to permit our current
theoretical and practical capabilities to uncover basic principles of perception.
Finally, there some specific differences between the two domains that might
at least help auditory modelers avoid some degenerate traps.  Dynamic
features are central to our perceptual experience, yet there is a temptation in
visual research to ‘simplify’ problems to the analysis of static images.  To the
extent that ‘static sounds’ can be defined at all, they constitute a wholly
uninteresting class of stimuli, thus all researchers who deal in sound must
treat time as a ‘first class’ dimension.  Perhaps we can ultimately repay our
conceptual debt to the machine vision community with general principles of
dynamic perception of benefit to both modalities.

Perception is the right biological mystery to be studying at the moment, given
our experimental and computational tools.  Its solution will lead naturally
into the deeper cognitive secrets of the brain.  I look forward to the advances
of the coming years with excitement and impatience .
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Appendix A Derivation of the weft update equation

The weft element was introduced in chapter 4 as a way of representing, in a
single object, energy exhibiting a particular rate of periodic modulation across
the whole spectrum.  A weft is defined in two parts: its period track,
indicating the common modulation rate as it varies in time, and its ‘smooth
spectrum’, describing the amount of energy that shows the modulation rate at
each time-frequency cell involved.  Sound is resynthesized from weft elements
by a simple source-filter algorithm, with the period track generating an
impulse train which is shaped to match the ‘smooth spectrum’ by slowly-
varying gains applied to each channel of a filterbank.

The more difficult problem is to extract the weft parameters from a real
sound.  The period track is derived from the periodogram, a summary of the
short-time autocorrelation in every frequency channel, as described in
chapter 4.  If the sound consists only of energy modulated at a particular rate,
then measuring the spectrum is simply a question of recording the energy in
each frequency channel of the original sound.  However, in the majority of
interesting cases, the periodically-modulated energy is mixed with other
energy, either unmodulated or showing a different periodicity.  This appendix
presents an analysis of such a situation, leading to the equation which is used
to estimate the energy properly belonging to a given modulation period from
the autocorrelation function of sound mixture.

The periodicity analysis performed by the front end first breaks the sound up
into frequency channels with the cochlea-model filterbank, then rectifies and
smoothes this band-pass signal to get an envelope, and finally forms the
short-time autocorrelation of this envelope signal by passing it through a
tapped delay line, multiplying each tap by the undelayed envelope signal and
smoothing the product.  This procedure generates the correlogram volume
(time versus frequency versus autocorrelation lag) and is illustrated in figure
4.9.  Consider first a purely periodic sound such as an impulse train with
period τ subjected to this analysis.  Assuming the pulse train period is long
compared to the impulse response of the filter channel being examined (for
instance, the upper spectrum of male voiced speech), the bandpass signal will
consist of repetitions of the filter’s impulse response spaced τ apart, one for
each pulse in the pulse-train.  The smoothed envelope of this signal will
follow the general shape of the impulse response, subject to a constant gain
factor in peak amplitude resulting from the rectification and smoothing.
Examples of these signals are shown in figure A.1.

As expected, the short-time autocorrelation of this signal shows a peak at the
signal period, τ (9 milliseconds in the figure).  Since the signal is exactly
periodic, multiplying it by itself delayed by τ is the same as multiplying it by
itself with no delay, and thus the short-time autocorrelations at zero lag and
at a lag of τ are the same, both equaling the average power of the envelope
signal (since the smoothing of the product has calculated the average).  The
envelope level is proportional to the excitation level in this band, and thus
after factoring out the fixed effects of the filter impulse-response length and
the envelope extraction process, the intensity of energy in that frequency
channel which is periodic at τ is obtained directly from the level of the
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autocorrelation peak at that period.  This is the basic argument given in
subsection 4.3.3.
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Figure A.1:  Periodicity analysis of a purely periodic signal.  Panel (a) shows the
excitation, a pulse train.  (b) shows the output of a filter channel far above the
fundamental frequency of the pulse train, which is approximately the impulse
response of the filter repeated for each pulse in the excitation.  The envelope of
this signal is shown in (c), obtained by rectification and smoothing.  (d) shows the
short-time autocorrelation of this signal, obtained by multiplying the envelope
with versions of itself delayed by each lag value.  The peak at 0.009 s corresponds
to the period of the original excitation.

If, however, the signal contains additional energy not modulated at τ, this
relationship no longer holds.  Consider the case where the excitation consists
of the purely-periodic pulse train plus some stationary noise.  The bandpass
signal will be the linear sum of the filter response to the pulse-train alone
and to the noise .  In the spaces between the pulses of fig A.1(b), the sum will
be dominated by the noise energy, and the envelope will vary around the
average level of the rectified noise.  Where the impulse excitation has made a
significant contribution to the filter output, the two components will have a
random phase alignment, and the smoothed envelope will record the average
level of their incoherent addition – such that the expected value of the square
of the envelope equals the square of the noise-free envelope plus the expected
value of the square of the noise signal’s envelope.  This situation is illustrated
for real instances in figure A.2.

The problem we would like to solve is to extract the energy of the periodic
excitation from the autocorrelation of the signal to which noise has been
added.  Comparing figure A.1(d) with A.2(d), the peak at the periodic lag has
been boosted by the additional noise;  however, the amount of periodic energy
present in the excitation is essentially the  same since only aperiodic noise
has been added, and we would like to be able to use additional measurements
from the autocorrelation to factor-out this overestimation of periodic energy
level resulting from the noise.
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Figure A.2:  Excitation, band-pass signal, envelope and short-time
autocorrelation for the impulse train of fig. A.1 after the addition of some
Gaussian white noise.  Note that compared to fig. A.1(d), the autocorrelation has
slightly raised peaks and considerably raised troughs.

Consider the following approximation to this situation.  In figure A.1, the
envelope of the impulse-train-excited filter output is a series of disjoint
bumps associated with each pulse, since the filter impulse response has most
of its energy concentrated over a time which is shorter than the excitation
period.  Let us approximate this envelope as rectangular pulses of a certain
duration, separated by stretches of zero amplitude.  If we then add stationary
noise to the excitation, the expected level of the envelope will be that of the
noise alone in these gaps;  during the rectangular bursts, we assume that the
noise and pulse-response signals add incoherently.  Thus if the envelope of
the noiseless tone-burst signal is:

    

eT t( ) =
T r ⋅ τ < t − t0 < r + δ( ) ⋅ τ r = 0,±1,±2...

0 otherwise





(A.1)

where T is proportional to the impulse train energy in the filter channel, τ is
the impulse train period, δ·τ is the duration of our rectangular approximation
to the filter impulse response envelope, and t0 is an arbitrary phase offset,

then the expected value for the envelope resulting from excitation by a pulse
train with added noise is:

    

E eM t( )[ ] =
U r ⋅ τ < t − t0 < r + δ( ) ⋅ τ r = 0,±1,±2...

N otherwise





(A.2)

where N is proportional to the noise energy in the filter channel, and the level
of the envelope during the bursts,

    U = N 2 + T 2 (A.3)

This situation is illustrated in figure A.3.
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Figure A.3:  Simplified approximation to the expected value of the envelope of
the filter output excited by the noise+pulse excitation of A.2.  Panel (b) shows its
theoretical autocorrelation.

In considering the short-time autocorrelation of this signal, we can drop the
expected-value operator, since the autocorrelation involves averaging over
some time window.  Thus the theoretical form of the autocorrelation of this
approximation to the bandpass envelope is Ree(t), as illustrated in figure
A.3(b), for the case where δ, the proportion of the excitation period occupied
by the impulse response, is less than 1/2.  In this case, the peak
autocorrelation at the lag equal to the excitation period τ  is simply the
average level of the envelope multiplied by its image at a distance τ  away,
i.e.:

    
P = Ree τ( ) = δ ⋅U 2 + γ ⋅ N 2 (A.4)

where δ is the proportion of the time that the envelope is at U, and γ is the
proportion of the time it is at N, i.e.:

  γ + δ = 1 (A.5)

The autocorrelation at lag zero is somewhat larger (shown as P0 in the figure)

since this is the average squared value of the signal, and we can no longer
treat the bandpass envelope as its expected value, but must consider the
actual variations arising from the noise excitation whose amplitude depends
on the amount of smoothing used to extract the envelope.  However, it turns
out that the value of P0 is not relevant to this analysis.

Recall that our goal is to find a way of estimating the contribution of periodic
excitation from the autocorrelation of the envelope of a channel excited both
by the periodic energy and additional corruption.  What we would like to do is
find some parameters, measurable from the real autocorrelation functions
calculated in the implementation, that will lead to T, the parameter in our
approximation which is proportional to the amplitude of the periodic
excitation.  In the noise-free case, we were able to use the square-root of the
autocorrelation peak at the appropriate period which would indicate the
amplitude of the periodic excitation; in order to solve simultaneously for the
noise level, we need to define a second measurement from the autocorrelation
function.  Looking at figure A.3, one possibility would be the minimum value
of the autocorrelation, labeled as F in the figure.  F is the average product of
two shifted versions of the envelope approximation where the pulses do not
overlap, and hence:

    
F = 2δ ⋅U ⋅ N + (1− 2δ ) ⋅ N 2 δ < 1

2
(A.6)

However, this turns out to be a noisy parameter, since the influence of the
noise excitation on the autocorrelation can form  narrow notches, distorting
the intention of the minimum-value measurement.  A second problem is that
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the flat minima of figure A.3(b) only occur when δ < 1/2, i.e. when the filter
impulse response support is less than half of the excitation period, which
usually only holds at a few channels at the very top of the spectrum.

A more reliable measure is the average value of the autocorrelation, taken
over the width of the period in question to capture the true average of the
periodic autocorrelation resulting from the modulated envelope.  In order to
avoid the boost from the correlated noise at lag zero (i.e. the difference
between P and P0), the average is calculated over the autocorrelation from

lag=τ  to 2·τ .  By considering this average as the expected value of two points
chosen at random from the signal envelope, we can see that the average
value,

    
A = δ ⋅U + γ ⋅ N( )2

(A.7)

i.e. the square of the average value of the envelope.  This is confirmed by
solving geometrically for the area under the autocorrelation function of figure
A.3(b) using the value of F given in eqn. (A.6).

Both P, the level of the autocorrelation peak at the excitation period, and A,
the average level of the autocorrelation over one excitation period’s worth of
lag, are easily extracted from the system’s front-end.  If we know the value of
δ  (and hence γ), we can solve (A.4) and (A.5) for N and U; this gives a
quadratic whose two roots correspond to the symmetric solutions when N<U
and N>U; we consider only the first root, since U must be greater than N:

    

N =
2γ A − 4γ 2 A − 4 γ 2 + γδ( ) A − δ ⋅ P( )

2 γ 2 + γδ( ) (A.8)

    
U = P − γ ⋅ N 2

δ
(A.9)

We can get back to our periodic-excitation-amplitude parameter T as:

    T = U 2 − N 2 (A.10)

More particularly, the periodic excitation energy in that frequency channel is
given by the energy of the signal whose envelope was approximated as the
sequence of rectangular bursts of height T and ‘duty cycle’ δ.  Hence the
actual periodic excitation energy (the value for one time-frequency cell of the
weft’s smooth-spectrum) is:

    
Ep = δ ⋅ T

k







2

(A.11)

where k is a scaling parameter to account for the envelope extraction
operation.  For simple smoothing of a half-wave rectified sinusoid, the ratio of

smoothed level to the rms level of the original sinusoid is 
  

2
π ≈ 0.45 , which

is the value used here for k.

The analysis has relied on an approximate model of the signal envelope and a
simple noise assumption.  However, the final equations provide an estimate
of the periodic excitation energy that depends on robust parameters from the
autocorrelation – the peak and average values.  The further assumption used
in extracting wefts is that this relationship holds, to a greater or lesser
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extent, for other situations (i.e. when δ > 1/2) and for other forms of
interference (such as periodic excitation with a different period).  The only
obstacle that remains to using the results of this analysis is to determine the
value of δ  for a given frequency channel and a given excitation period τ.
Indeed, we would like to be able to use this relationship even for low-
frequency channels where the filter impulse responses may be longer than
the excitation period, and hence the signal envelope will show the results of
specific phase cancellation between successive instances of the impulse
response, making peak and average autocorrelation values depend on the
excitation period in a complicated fashion.

This problem was handled by constructing a table of δ’s value for every
possible combination of frequency channel and target period.  Both these
parameters were quantized, so the total table size was only 40·240=9600
values.  We previously defined δ in terms of the approximation to the filter
impulse response envelope, which leaves it undefined for combinations of
channel and period for which that approximation cannot be applied.
Consider, however, the last term of the numerator of the solution for the
quadratic in N of eqn. (A.8):

(A–δ·P) (A.12)

If this goes negative, the result of the square-root is larger than the first term
in the numerator, giving a negative value for N, and an illegal solution to the
problem.  When this occurs algorithmically, we assume that the average
value A was smaller than expected for the peak value P, thus the noise
interference (which contributes to the level over the whole autocorrelation)
must be small compared to the periodic excitation (which contributes mainly
to the peak at the corresponding lag).  Hence, we assume that the noise is
effectively zero, and T = U = √P.

More importantly, however, considering this situation also gives us the
answer to our problem of choosing a suitable value for δ in situations where
the original assumptions may not hold.  If the noise level is actually zero, eqn.
(A.8) will solve to zero implying that the term in (A.12) will evaluate to zero.
Thus an equivalent definition for δ is as the ratio of average-to-peak
autocorrelation for a noiseless periodic excitation,

    

δ = A

P purely periodic excitation

(A.13)

By measuring the peak and average autocorrelation levels for the analysis
filterbank excited by pulse trains of each different period, the entire table of
δ(freq. channel, modulation period) was empirically constructed.  This was
the last piece needed to permit the extraction of weft spectral energy levels
using equations (A.8) to (A.11).



B: Sound examples 169

Appendix B Sound examples

Another possible explanation for the relatively advanced state of computer
vision in comparison to computer hearing is that paper, historically the
medium of choice for academic communication, is far more amenable to
carrying representations of visual signals than of acoustic ones.  Moreover, an
additional argument to support my contention that the time is ripe for
research in computational auditory scene analysis is the rapid growth in
networked multimedia communications, making it increasingly common to
find research results presented via sound examples universally available on
the Internet.  While the substance of this thesis might be most successfully
experienced in its venerable, printed form, one unexpected benefit of finishing
it now, rather than, say, three years ago, is that I can make the sound
examples immediately available to a wide community through the World-
Wide Web.

The web site for this thesis can be found (at the time of writing) at:

http://sound.media.mit.edu/~dpwe/pdcasa/

where ‘pdcasa’ stands for prediction-driven computational auditory scene
analysis.  The rest of this appendix duplicates the description of the sound
examples available at the web site.

The site is structured as a set of pages each describing a particular sound
example, following the examples in chapter 5.

Example 1: Alternating noise (from section 5.1.1)

This sound is the artificial alternation of low-band and broad-band noise used
as an example of the ‘old-plus-new’ organizing principle.  The sound examples
illustrating the system’s organization into a continuous low-band of noise
with additional high-frequency bursts, are:

1.1 The original sound (2.2 seconds)
1.2 The noise cloud comprising the continuous low-frequency noise
1.3 The remaining noise clouds for the higher-frequency energy, merged

into a single soundfile
1.4 All the system-generated noise clouds summed together to reproduce

the input.

Example 2: Single speaker (from section 5.1.2)

The second sound example is a male speaker saying “bad dog” against a quiet
but audible background of fan noise.  The sound examples, illustrated in
figure 5.7, are:

2.1 The original sound (1.8 seconds)
2.2 The background noise cloud (“Noise1” in the figure)
2.3 The two wefts comprising the voiced speech (“Wefts1,2”)
2.4 The three click elements (“Click1”, “Click2” and “Click3”)
2.5 The wefts and clicks added together, attempting to reproduce the

speech without the noise.  The clicks (corresponding to stop releases
in the original sound) do not stream well with the voiced speech.

2.6 All the elements to reconstruct the original.
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Example 3: Mixture of voices (from section 5.1.3)

This is the mixture of male and female voices used as an example in Brown’s
thesis.  The analysis objects are illustrated in figure 5.9.  The sound examples
are:

3.1 The original voice mixture (Brown’s “v3n7”, 1.6 seconds)
3.2 Background noise cloud (“Noise1”)
3.3 Weft corresponding to continuously-voiced male speech (‘Weft1”)
3.4 Four wefts comprising the voiced female speech (“Wefts2-5”)
3.5 Four click elements attached to the speech onsets (“Click1”-”Click4”)
3.6 Attempted reconstruction of female voice with both vowels and

consonants (“Wefts2-5”, “Click1”-”Click4”, “Noise1”).
3.7 Reconstruction with all elements.
3.8 Brown’s example resynthesis of the male voice, for comparison.

Example 4: City-street ambience (from section 5.1.4 & 5.3.2)

The sound example that motivated the entire thesis, as illustrated in figure
5.11.  The sound examples are as follows, where the subjective event name is
used when appropriate:

4.1 The original sound (10 seconds)
4.2 Background noise cloud (“Noise1”)
4.3 Crash (“Noise2, Click1”)
4.4 Horn1, Horn2, Horn3, Horn4, Horn5 (“Wefts1-4”, “Weft5”, “Wefts6,7”,

“Weft8”, “Wefts9-12”)
4.5 Complete reconstruction with all elements

Example 5: Construction site ambience (from section 5.3.3)

This was the second ambient example used in the subjective listening tests.
The elements and the subjective groups are illustrated in figure 5.19.

5.1 Original sound (10 seconds)
5.2 Background (“Noise1”)
5.3 Saw (“Noise2”)
5.4 Wood hit, Metal hit, Wood drop, Clink1, Clink2 (“Click1”, “Clicks2,3”,

“Click4”, “Clicks5,6”, “Clicks7,8”)
5.5 Voice (“Wefts8,10”)
5.6 Extra tonal background (“Wefts1-6”, “Wefts7,9”)
5.7 Complete resynthesis with all elements

Example 6: Station ambience (from section 5.3.4)

The final ambient example used in the listening tests was this reverberant
recording of voices etc.  The subjective events and analyzed elements are
illustrated in figure 5.21.

6.1 Original sound (10 seconds)
6.2 Background (“Noise1”)
6.3 Jiggle, Thump & other click objects (“Click1-3”, “Click4”, “Clicks5,6”,

“Clicks7,8”, “Click9”)
6.4 Baby1, Baby2, Man, Oh, Hey (“Weft3”, ”Weft7”, “Weft13”, “Weft24”,

“Weft29”)
6.5 Talk & other background voices (“Wefts1-6”, “Wefts8-12”,

“Wefts14-28”)
6.6 Complete resynthesis of all elements.
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Appendix C Computational environment

Chapter 4 presented the design and overview of the system implementation,
but certain readers might be curious about the nuts and bolts of the
constructed system.  This section provides the barest sketch of the tools used
for the implementation.  I would be happy to provide any further details;  you
can contact me via email as dpwe@media.mit.edu or dpwe@icsi.berkeley.edu.

Hardware

All the computation was performed on the machines of the Media Lab
Machine Listening group, primarily Silicon Graphics Indigo and Indigo^2s.

Software tools

The fixed signal processing of the front-end was performed with Matlab
scripts.  I had to write an interface for a special file format to deal with the
three-dimensional data of the correlogram (with the ‘DAT’ file format used
elsewhere at MIT), but apart from that it was relatively straightforward.

Programming environment

At the core of the blackboard system that comprised the prediction-
reconciliation engine was the IPUS C++ Platform (ICP) by Joe Winograd
[WinN95].  A complete blackboard system is constructed on this platform by
implementing hypotheses, actions, etc. in C++ that use special macros
defined by the main code.  I used SGI’s Delta C++ compiler and their
debugger, occasionally dropping back into Gnu g++ when I needed better
single stepping.

Having a good user interface for the system was important for debugging,
since the amount and complexity of the data in the blackboard system would
make the use of conventional debuggers very arduous.  John Ousterhout’s
Tcl/Tk provided a wonderful environment for rapid prototyping and trivial
user-interface construction.  An interface between the C++ analysis program
and the Tk user-interface was semi-automatically constructed with a highly-
customized version of the ObjectTcl extensions written by Dean Sheenan.  I
also used Mike McLennan’s [incr Tcl] object-oriented extensions for Tk-like
mega-widgets.

Listening tests

Tcl/T k also provided an ideal environment for the listening tests, allowing
the rapid construction of a sophisticated graphical front-end, and even
managing to do most of the data analysis.  A couple of small extensions
provided sound output control from Tcl to play the sound examples.

Document preparation

This thesis was written on a Macintosh Powerbook Duo 270c in Microsoft
Word 5.1, the same software I’ve been using since I started my Ph.D!  Block
diagrams were drawn on the Mac with Canvas;  some of the earlier plots
come straight from Matlab, but the later ones are postscript generated by
Tk’s Canvas object.  In a very short time, I was able to put together a kind of
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special-purpose drawing environment and a hierarchy of graphic objects that
made the figures of chapter 5 relatively simple to produce.  It’s frightening to
imagine how much of this work would have been impossible for me without
the Tcl language and its community of contributing authors.

Figure C.1:  Screenshot of the Tcl user interface to the C++ blackboard analysis
system.



References 173

References

[AllenN92] Allen, J. B., Neely, S. T. (1992). “Micromechanical models of the cochlea,”
Physics Today 45(7), 40-47.

[AssmS89] Assmann, P. F., Summerfield, Q. (1989). “Modeling the perception of concurrent
vowels: Vowels with different fundamental frequencies,” J. Acous. Soc. Am.
85(2), 680-697.

[AssmS94] Assmann, P. F., Summerfield, Q. (1994). “The contribution of waveform
interactions to the perception of concurrent vowels,” J. Acous. Soc. Am. 95(1),
471-484.

[Aware93] Aware, Inc. (1993). “Speed of Sound Megadisk CD-ROM #1: Sound Effects,”
Computer CD-ROM.

[Baum92] Baumann, U. (1992).  “Pitch and onset as cues for segregation of musical
voices,” presented to the 2nd Int’l Conf. on Music Perception and Cognition, Los
Angeles.

[BeauvM91] Beauvois, M. W., Meddis, R. (1991). “A computer model of auditory stream
segregation,” Q. J. Exp. Psych. 43A(3), 517-541.

[Beran92] Beranek, L. L. (1992). “Concert hall acoustics,” J. Acous. Soc. Am., 92(1), 1-39.

[BerthL95] Berthommier, F., Lorenzi, C. (1995). “Implications of physiological mechanisms
of amplitude modulation processing for modelling complex sounds analysis and
separation,” in working notes of the workshop on Comp. Aud. Scene Analysis at
the Intl. Joint Conf. on Artif. Intel., Montréal, 26-31.

[Bilmes93] Bilmes, J. A. (1993). “Timing is of the essence:  Perceptual and computational
techniques for representing, learning, and reproducing expressive timing in
percussive rhythm,” M.S. thesis, Media Laboratory, Massachusetts Institute of
Technology.
<ftp://ftp.media.mit.edu/pub/bilmes-thesis/index.html>

[Bodden93] Bodden, M. (1993). “Modeling human sound-source localization and the
cocktail-party effect,” Acta Acustica 1, 43-55.

[Breg90] Bregman, A. S. (1990). Auditory Scene Analysis, MIT Press

[Breg95] Bregman, A. S. (1995). “Psychological Data and Computational ASA,” in
working notes for the workshop on Comp. Aud. Scene Analysis at the Intl. Joint
Conf. on Artif. Intel., Montréal, 4-8.

[BregP78] Bregman, A. S., Pinker, S. (1978). “Auditory streaming and the building of
timbre,” Can. J. Psych. 32, 19-31 (described in [Breg90]).

[Brooks91] Brooks, R. A. (1991). “Intelligence without reason,” MIT AI Lab memo 1293,
presented at the Intl. Joint Conf. on Artif. Intel.
<ftp://publications.ai.mit.edu/ai-publications/1000-1499/AIM-1293.ps.Z>

[Brown92] Brown, G. J. (1992).  “Computational auditory scene analysis: A
representational approach,” Ph.D. thesis CS-92-22, CS dept., Univ. of Sheffield.

[BrownC95] Brown, G. J., Cooke, M. (1995). “Temporal synchronisation in a neural
oscillator model of primitive auditory stream segregation,” in working notes of
the workshop on Comp. Aud. Scene Analysis at the Intl. Joint Conf. on Artif.
Intel., Montréal, 41-47.



174 References

[Carly91] Carlyon, R. P. (1991). “Discriminating between coherent and incoherent
frequency modulation of complex tones,” J. Acous. Soc. Am 89(1), 329-340.

[CarvL91] Carver, N., Lesser, V. (1991). “A new framework for sensor interpretation:
Planning to resolve sources of uncertainty,” Proc. Nat. Conf. on Artif. Intel.,
724-731.
<ftp://ftp.cs.umass.edu/pub/lesser/carver-aaai91-resun.ps>

[CarvL92a] Carver, N., Lesser, V. (1992). “Blackboard systems for knowledge-based signal
understanding,” in Symbolic and Knowledge-Based Signal Processing, eds. A.
Oppenheim and S. Nawab, New York: Prentice Hall.

[CarvL92b] Carver, N., Lesser, V. (1992). “The evolution of blackboard control
architectures,” U. Mass. Amherst CMPSCI tech. report #92-71.
<ftp://ftp.cs.umass.edu/pub/lesser/carver-92-71.ps>

[ChurRS94] Churchland, P., Ramachandran, V. S., Sejnowski, T. J.  (1994). “A critique of
pure vision,” in Large-scale neuronal theories of the brain, ed. C. Koch and J. L.
Davis, Bradford Books MIT Press.

[Colb77] Colburn, H. S. (1977). “Theory of binaural interaction based on auditory-nerve
data.  II. Detection of tones in noise,” J. Acous. Soc. Am. 61(2), 525-533.

[ColbD78] Colburn, H. S., Durlach, N. I. (1978). “Models of binaural interaction,” in
Handbook of Perception, vol. IV: Hearing, ed. E. C. Carterette, M. P. Friedman,
Academic, New York.

[Colom95] Colomes, C., Lever, M., Rault, J. B., Dehery, Y. F., Faucon, G. (1995). “A
perceptual model applied to audio bit-rate reduction,” J. Audio Eng. Soc. 43(4),
233-239.

[CookCG94] Cooke, M., Crawford, M., Green, P. (1994). “Learning to recognize speech from
partial descriptions,” Proc. Intl. Conf. on Spoken Lang. Proc., Yokohama.

[Cooke91] Cooke, M. P. (1991). “Modeling auditory processing and organisation,” Ph.D.
thesis, CS dept., Univ. of Sheffield

[CullD94] Culling, J. F., Darwin, C. J. (1994). “Perceptual and computational separation
of simultaneous vowels: Cues arising from low-frequency beating,” J. Acous.
Soc. Am. 95(3), 1559-1569.

[DarwC92] Darwin, C. J., Ciocca, V. (1992). “Grouping in pitch perception: effects of onset
asynchrony and ear of presentation of a mistuned component,” J. Acous. Soc.
Am. 91(6), 3381-90.

[deChev93] de Cheveigné, A.  (1993). “Separation of concurrent harmonic sounds:
Fundamental frequency estimation and a time-domain cancellation model of
auditory processing,” J. Acous. Soc. Am. 93(6), 3271-3290.

[DenbZ92] Denbigh, P. N., Zhao, J. (1992).  “Pitch extraction and the separation of
overlapping speech,” Speech Communication 11, 119-125.

[DudaLS90] Duda, R. O., Lyon, R. F., Slaney, M. (1990). “Correlograms and the separation
of sounds,” Proc. IEEE Asilomar conf. on sigs., sys. & computers.

[Ellis92] Ellis, D. P. W. (1992).  “A perceptual representation of audio,”  MS thesis,
EECS dept, Massachusetts Institute of Technology..
<ftp://sound.media.mit.edu/pub/Papers/dpwe-ms-thesis.ps.gz>

[Ellis93a] Ellis, D. P. W. (1993). “A simulation of vowel segregation based on across-
channel glottal-pulse synchrony,” MIT Media Lab Perceptual Computing
Technical Report #252.
<ftp://sound.media.mit.edu/pub/Papers/dpwe-asa93dnv.ps.gz>

[Ellis93b] Ellis, D. P. W. (1993). “Hierarchic Models of Hearing for Sound Separation and
Reconstruction,” Proc. IEEE Workshop on Apps. of Sig. Proc. to Acous. and
Audio, Mohonk.



References 175

<ftp://sound.media.mit.edu/pub/Papers/dpwe-waspaa93.ps.gz>
[Ellis94] Ellis, D. P. W. (1994). “A computer implementation of psychoacoustic grouping

rules,” Proc. 12th Intl. Conf. on Pattern Recognition, Jerusalem.
<ftp://sound.media.mit.edu/pub/Papers/dpwe-ICPR94.ps.gz>

[Ellis95a] Ellis, D. P. W. (1995).  “Hard problems in computational auditory scene
analysis,” posted to the AUDITORY email list.
<http://sound.media.mit.edu/AUDITORY/postings/1995>

[Ellis95b] Ellis, D. P. W. (1995). “Underconstrained noisy representations for top-down
models of auditory scene analysis,” Proc. IEEE Workshop on Apps. of Sig. Proc.
to Audio and Acous., Mohonk.
<ftp://sound.media.mit.edu/pub/Papers/dpwe-waspaa95.ps.gz>

[Ellis95c] Ellis, D. P. W. (1995). “Modeling auditory organization to detect and remove
interfering sounds,” presented at Inst. of Acous. Speech Group meeting on
Links between Speech Technology, Speech Science and Hearing, Sheffield.
<http://sound.media.mit.edu/~dpwe/research/pres/shefpres-1995jan/>

[EllisR95] Ellis, D. P. W., Rosenthal, D. F.  (1995). “Mid-Level Representations for
Computational Auditory Scene Analysis,” in working notes of the workshop on
Comp. Aud. Scene Analysis at the Intl. Joint Conf. on Artif. Intel., Montréal,
111-117.
<ftp://sound.media.mit.edu/pub/Papers/dpwe-ijcai95.ps.gz>

[EllisVQ91] Ellis, D. P. W., Vercoe, B. L., Quatieri, T. F. (1991).  “A perceptual
representation of audio for co-channel source separation,” Proc. IEEE
Workshop on Apps. of Sig. Proc. to Audio and Acous., Mohonk.

[FlanG66] Flanagan, J. L., Golden, R. M. (1966). “Phase vocoder,” The Bell System
Technical Journal, 1493-1509.

[Gaik93] Gaik, W. (1993). “Combined evaluation of interaural time and intensity
differences: Psychoacoustic results and computer modeling,” J. Acous. Soc. Am.
94(1), 98-110.

[Ghitza88] Ghitza, O. (1988). “Auditory neural feedback as a basis for speech processing,”
IEEE Intl. Conf. on Acous., Speech & Sig. Proc., 91-94.

[Ghitza93] Ghitza, O. (1993). “Adequacy of auditory models to predict human internal
representation of speech sounds,” J. Acous. Soc. Am 93(4), 2160-2171.

[Gibson79] Gibson, J. J. (1979). The ecological approach to visual perception.  Houghton-
Mifflin.

[GigW94] Giguere, C., Woodland, P. C. (1994).  “A computational model of the auditory
periphery for speech and hearing research. II. Descending paths,” J. Acous. Soc.
Am. 95(1), 343-349.

[Gjerd92] Gjerdingen, R. O. (1992). “A model of apparent motion in music,” Program of
the 2nd Intl. Conf. on Music Percep. and Cog., UCLA.

[GodsB95] Godsmark, D. J., Brown, G. J. (1995). “Context-sensitive selection of competing
auditory organisations: a blackboard model,” in working notes of the workshop
on Comp. Aud. Scene Analysis at the Intl. Joint Conf. on Artif. Intel., Montréal,
60-67.

[Goldh92] Goldhor, R. S. (1992). “Environmental Sound Recognition,” proposal by
Audiofile, Inc., to the National Institutes of Health.

[GrabB95] Grabke, J. W., Blauert, J. (1995). “Cocktail-party processors based on binaural
models,” in working notes of the workshop on Comp. Aud. Scene Analysis at the
Intl. Joint Conf. on Artif. Intel., Montréal, 105-110.

[HallG90] Hall, J. W. 3rd, Grose, J. H. (1990) “Comodulation Masking Release and
auditory grouping,” J. Acous. Soc. Am. 88(1), 119-125.



176 References

[HansW84] Hanson, B. A., Wong, D. Y. (1984).  “The harmonic magnitude suppression
(HMS) technique for intelligibility enhancement in the presence of interfering
speech,” Proc. ICASSP-84, 195-199.

[Hart88] Hartmann, W. M. (1988). “Pitch perception and the segregation and integration
of auditory entities,” in Auditory function ed. G. M. Edelman, W. E. Gall, W. M.
Cowan, chap. 21, 623-645.

[Hawley93] Hawley, M. (1993). “Structure out of sound,” Ph.D. thesis, Media Laboratory,
Massachusetts Institute of Technology.

[Helm77] Helmholtz, H. von (1877). On the sensation of tone, trans. A. J. Ellis, Dover
1954.

[Hein88] Heinbach, W. (1988).  “Aurally adequate signal representation: The part-tone-
time pattern,” Acustica 67, 113-121.

[HewM91] Hewitt, M. J., Meddis, R. (1991).  “An evaluation of eight computer models of
mammalian inner hair-cell function,” J. Acous. Soc. Am.  90(2), 904-917.

[HewM93] Hewitt, M. J., Meddis, R. (1993).  “Regularity of cochlear nucleus stellate cells:
A computational modeling study,” J. Acous. Soc. Am. 93(6), 3390-3399.

[Irino95] Irino, T. (1995).  “An optimal auditory filter,” Proc. IEEE Workshop on Apps. of
Sig. Proc. to Audio and Acous., Mohonk.

[Jeli76] Jelinek, F. (1976). “Continuous speech recognition by statistical methods,” Proc.
IEEE 64(4), 532-555.

[Kaern92] Kaernbach, C. (1992). “On the consistency of tapping to repeated noise,” J.
Acous. Soc. Am. 92(2), 788-793.

[Kaern93] Kaernbach, C. (1993). “Temporal and spectral basis for features perceived in
repeated noise,” J. Acous. Soc. Am. 94(1), 91-97.

[Kash95] Kashino, K., Nakadai, K., Kinoshita, T., Tanaka, H. (1995). “Organization of
hierarchical perceptual sounds: Music scene analysis with autonomous
processing modules and a quantitative information integration mechanism,”
Proc. Intl. Joint Conf. on Artif. Intel., Montréal.
<http://www.mtl.t.u-tokyo.ac.jp/Research/paper/E95conferencekashino1.ps>

[KataI89] Katayose, H., Inokuchi, S. (1989). “The Kansei Music System,” Computer Music
Journal 13(4), 72-77.

[Keis96] Keislar, D., Blum, T., Wheaton, J., Wold, E. (1996). “Audio analysis for content-
based retrieval,” Muscle Fish LLC tech. report.
<http://www.musclefish.com/cbr.html>

[Klatt83] Klatt, D. H. (1983). “Synthesis by rule of consonant-vowel syllables,” Speech
Communication Group Working Papers III, Research Lab of Electronics, M.I.T.

[KollK94] Kollmeier, B., Koch, R. (1994). “Speech enhancement based on physiological
and psychoacoustical models of modulation perception and binaural
interaction,” J. Acous. Soc. Am. 95(3), 1593-1602.

[KollPH93] Kollmeier, B., Peissig, J., Hohmann, V. (1993). “Real-time multiband dynamic
compression and noise reduction for binaural hearing aids,” J. Rehab. Res. &
Dev. 30(1), 82-94.

[Lang92] Langner, G. (1992). “Periodicity coding in the auditory system,” Hearing
Research 60, 115-142.

[LazzW95] Lazzaro, J. P., Wawrzynek, J. (1995). “Silicon models for auditory scene
analysis,” Proc. NIPS*95 (Neural Info. Proc. Sys.).
<http://www.pcmp.caltech.edu/anaprose/lazzaro/aud-scene.ps.Z>

[LazzW96] Lazzaro, J. P., Wawrzynek, J. (1996). “Speech recognition experiments with
silicon auditory models,” Analog Integ. Circ. & Sig. Proc., in review.



References 177

<http://www.pcmp.caltech.edu/anaprose/lazzaro/recog.ps.Z>
[LessE77] Lesser, V. R., Erman, L. D. (1977). “The retrospective view of the HEARSAY-II

architecture,” Proc. 5th Intl. Joint Conf. on Artif. Intel., Los Altos, 790-800.

[LessNK95] Lesser, V. R., Nawab, S. H., Klassner, F. I. (1995). "IPUS: An architecture for
the integrated processing and understanding of signals," AI Journal 77(1).
<ftp://ftp.cs.umass.edu/pub/lesser/lesser-aij-ipus.ps>

[Lettv59] Lettvin, J. Y., Maturana, R. R., McCulloch, W. S., Pitts, W. H. (1959). “What
the frog’s eye tells the frog’s brain,” Proc. Inst. Rad. Eng. 47, 1940-1951.

[Lick51] Licklider, J. C. R. (1951). “A duplex theory of pitch perception,” Experentia 7,
128-133, reprinted in Physiological Acoustics, ed. D. Schubert, Dowden,
Hutchinson and Ross, Inc., 1979.

[Maher89] Maher, R. C., (1989).  “An approach for the separation of voices in composite
music signals” Ph.D. thesis, U Illinois Urbana-Champaign.

[Marr82] Marr, D. (1982). Vision, Freeman.

[McAd84] McAdams, S. (1984). “Spectral fusion, spectral parsing and the formation of
auditory images,” Ph.D. thesis, CCRMA, Stanford Univ.

[McAuQ86] McAulay, R. J., Quatieri, T. F.  (1986). “Speech analysis/synthesis based on a
sinusoidal representation,”  IEEE Tr. ASSP-34.

[MeddH91] Meddis, R., Hewitt, M. J. (1991). “Virtual pitch and phase sensitivity of a
computer model of the auditory periphery.  I: Pitch identification,” J. Acous.
Soc. Am. 89(6), 2866-2882.

[MeddH92] Meddis, R., Hewitt, M. J. (1992). “Modeling the identification of concurrent
vowels with different fundamental frequencies,” J. Acous. Soc. Am. 91(1), 233-
245.

[Mell91] Mellinger, D. K., (1991).  “Event formation and separation in musical sound,”
Ph.D. thesis, CCRMA, Stanford Univ.

[Minsky86] Minsky, M. (1986). The Society of Mind, Simon and Schuster.

[Moore89] Moore, B. C. J. (1989). An Introduction to the Psychology of Hearing, Academic
Press.

[MooreG83] Moore, B. C. J., Glasberg, B. R. (1983). “Suggested formulae for calculating
auditory-filter bandwidths and excitation patterns,” J. Acous. Soc. Am. 74(3),
750-753.

[Moorer75] Moorer, J. A. (1975). “On the segmentation and analysis of continuous musical
sound by digital computer,” Ph.D. thesis, Dept. of Music, Stanford University.

[NakOK94] Nakatani, T., Okuno, H. G., Kawabata, T. (1994). “Auditory stream segregation
in auditory scene analysis with a multi-agent system,” Proc. Am. Assoc. Artif.
Intel. Conf., Seattle, 100-107.
<ftp://sail.stanford.edu/okuno/papers/aaai94.ps.Z>

[NakOK95] Nakatani, T., Okuno, H. G., Kawabata, T. (1995). “Residue-driven architecture
for computational auditory scene analysis,” Proc. Intl. Joint Conf. on Artif.
Intel., Montréal.
<ftp://sail.stanford.edu/okuno/papers/ijcai95.ps.gz>

[NawabL92] Nawab, S. H., Lesser, V. (1992). “Integrated processing and understanding of
signals,” in Symbolic and Knowledge-Based Signal Processing, eds. A.
Oppenheim and S. Nawab, New York: Prentice Hall.

[NewS72] Newell, A., Simon, H. A. (1972). Human Problem Solving.  Prentice-Hall.

[Nii86] Nii, H. P. (1986). “Blackboard systems part two: Blackboard application
systems from a knowledge engineering perspective,” The AI Magazine 7(3), 82-
106.



178 References

[OMaHM93] O’Mard, L. P., Hewitt, M. J., Meddis, R. (1993). LUTEar: Core Routines Library
manual, part of the LUTEar software distribution.
<ftp://suna.lut.ac.uk/public/hulpo/lutear/www/linklutear1.html>

[Palmer88] Palmer, C. (1988). “Timing in skilled music performance,” Ph.D. thesis,  Cornell
University.

[Pars76] Parsons, T. W. (1976). “Separation of speech from interfering speech by means
of harmonic selection,” J. Acous. Soc. Am. 60(4), 911-918.

[Patt87] Patterson, R. D. (1987). “A pulse ribbon model of monaural phase perception,”
J. Acous. Soc. Am. 82(5), 1560-1586.

[Patt94] Patterson, R. D. (1994). “The sound of a sinusoid: Time-interval models,” J.
Acous. Soc. Am. 96, 1419-1428.

[PattAG95] Patterson, R. D., Allerhand, M. H., Giguère, C. (1995). “Time-domain modeling
of peripheral auditory processing: A modular architecture and a software
platform,” J. Acous. Soc. Am. 98(4), 1890-1894.

[PattH90] Patterson, R. D., Holdsworth, J. (1990).  “A functional model of neural activity
patterns and auditory images,” in Advances in speech, hearing and language
processing vol. 3, ed. W. A. Ainsworth, JAI Press, London.

[PattM86] Patterson, R. D., Moore, B. C. J. (1986). “Auditory filters and excitation
patterns as representations of frequency resolution,” in Frequency Selectivity in
Hearing, edited by B. C. J. Moore (Academic, London).

[Pierce83] Pierce, J. R. (1983). The science of musical sound, Scientific American Library.

[Pick88] Pickles, J. O. (1988). An Introduction to the Physiology of Hearing. Academic
Press.

[Port81] Portnoff, M. R. (1981). “Time-scale modification of speech based on short-time
Fourier  analysis,” IEEE Tr. ASSP 29(3), 374-390.

[QuatD90] Quatieri, T. F., Danisewicz, R. G., (1990).  “An approach to co-channel talker
interference suppression using a sinusoidal model for speech,” IEEE Tr. ASSP
38(1).

[QuinR89] Quinlan, J. R., Rivest, R. L. (1989).  “Inferring Decision Trees using the
Minimum Description Length Principle,” Information and Computation 80(3),
227-248.

[RabinS78] Rabiner, L. R., Schafer, R. W. (1978). Digital Processing of Speech Signals,
Prentice-Hall.

[Riley87] Riley, M. D. (1987).  “Time-frequency representations for speech signals,” Ph.D.
thesis, AI Laboratory, Massachusetts Institute of Technology..

[Riss89] Rissanen, J.  (1989).  Stochastic complexity in statistical inquiry, World
Scientific.

[Rosen92] Rosenthal, D. F. (1992) . "Machine rhythm:  computer emulation of human
rhythm perception,"  Ph.D. thesis, Media Laboratory, Massachusetts Institute
of Technology.

[Ross82] Ross, S. (1982). “A model of the hair cell-primary fiber complex,” J. Acous. Soc.
Am. 71(4), 926-941.

[Rutt91] Ruttenberg, A. (1991). “Optical reading of typeset music,” MS thesis, Media
Laboratory, Massachusetts Institute of Technology.

[SchaeR75] Schaefer, R., Rabiner, L. (1975). “Digital representations of speech signals,”
Proc. IEEE 63(4), 662-667.

[Scharf94] Scharf, B. (1994). “Human hearing without efferent input to the cochlea,” J.
Acous. Soc. Am. 95(5) pt. 2, 2813 (127th meeting, M.I.T.).



References 179

[Scheir95] Scheirer, E. D. (1995). “Extracting expressive performance information from
recorded music,” M.S. thesis, Media Laboratory, Massachusetts Institute of
Technology.

[Schlo85] Schloss, W. A. (1985). “On the automatic transcription of percussive music -
from acoustic signal to high-level analysis,” Ph.D. thesis, Dept. of Music report
STAN-M-27.

[Serra89] Serra, X. (1989). "A system for sound analysis/transformation/synthesis based
on a deterministic plus stochastic decomposition," Ph.D. thesis, Stanford Univ.

[ShahD94] Shahwan, T., Duda, R. O. (1994). “Adjacent-channel inhibition in acoustic onset
detection,” Proc. 28th Asilomar Conf. on Sig., Sys. and Comp.

[Sham89] Shamma, S., (1989).  “Spatial and temporal processing in central auditory
networks” in Methods in neuronal modelling, MIT Press

[Shiel83] Sheil, B. (1983). “Power tools for programmers,” Datamation 131-144
(referenced in [Nii86]).

[Sieb68] Siebert, W. M. (1968).  “Stimulus transformation in the peripheral auditory
system,” in Recognizing Patterns, ed. P. A. Kolers and M. Eden, MIT Press, 104-
133.

[Slaney88] Slaney, M. (1988).  “Lyon’s cochlea model,” Technical Report  #13, Apple
Computer Co.

[Slaney93] Slaney, M. (1993).  “An efficient implementation of the Patterson-Holdsworth
auditory filter bank,” Technical Report  #35, Apple Computer Co.

[Slaney95] Slaney, M. (1995).  “A critique of pure audition,” in working notes of the
workshop on Comp. Aud. Scene Analysis at the Intl. Joint Conf. on Artif. Intel.,
Montréal, 13-18.

[SlanL92] Slaney, M., Lyon, R. F. (1992).  “On the importance of time -- A temporal
representation of sound,” in Visual Representations of Speech Signals, ed. M.
Cooke, S. Beet & M. Crawford, John Wiley.

[SlanNL94] Slaney, M., Naar, D., Lyon, R. F. (1994). “Auditory model inversion for sound
separation,” Proc. of IEEE Intl. Conf. on Acous., Speech and Sig. Proc., Sydney,
vol. II, 77-80.

[Smith93] Smith, L. S. (1993). “Sound segmentation using onsets and offsets,” Interface
Journal of New Music Research.

[SoedBB93] Soede, W., Berkhout, A. J., Bilsen, F. A. (1993). “Development of a directional
hearing instrument based on array technology,” J. Acous. Soc. Am. 94(2), 785-
798.

[StadR93] Stadler, R. W., Rabinowitz, W. M. (1993). “On the potential of fixed arrays for
hearing aids," J. Acous. Soc. Am. 94(3), 1332-1342.

[Staut83] Stautner, J. P. (1983). “Analysis and synthesis of music using the auditory
transform,” S.M. thesis, Dept. of EECS, Massachusetts Institute of Technology..

[SteigB82] Steiger, H., Bregman, A. S. (1982). “Competition among auditory streaming,
dichotic fusion and diotic fusion,” Perception & Psychophysics 32, 153-162.

[StubS91] Stubbs, R. J., Summerfield, Q. (1991). “Effects of signal-to-noise ratio, signal
periodicity, and degree of hearing impairment on the performance of voice-
separation algorithms,” J. Acous. Soc. Am. 89(3), 1383-93.

[Suga90] Suga, N. (1990). “Cortical computational maps for auditory imaging,” Neural
Networks 3, 3-21.



180 References

[SummA91] Summerfield, Q., Assmann, P. F. (1991). “Perception of concurrent vowels:
Effects of harmonic misalignment and pitch-period asynchrony,” J. Acous. Soc.
Am. 89(3), 1364-1377.

[Ther92] Therrien, C. W. (1992). Decision Estimation and Classification.  John Wiley &
Sons.

[vBek60] von Békésy, G. (1960). Experiments in hearing  McGraw-Hill, reprint by the
Acous. Soc. Am.

[vdMalS86] von der Malsburg, Ch., Schneider, W.  (1986).  “A neural cocktail-party
processor,”  Biol. Cybern. (54) 29-40.

[Wang95] Wang, D. (1995). “Primitive auditory segregation based on oscillatory
correlation,” Cognitive Science, to appear.
<ftp://ftp.cis.ohio-state.edu/pub/leon/Wang95>

[Warren70] Warren, R. M. (1970) “Perceptual restoration of missing speech sounds,”
Science 167.

[Warren84] Warren, R. M. (1984) “Perceptual restoration of obliterated sounds,”
Psychological Bulletin 96, 371-383.

[Wein85] Weintraub, M. (1985).  “A theory and computational model of auditory
monaural sound separation,” Ph.D. thesis, Dept. of EE, Stanford University.

[WinN95] Winograd, J. M., Nawab, S. H. (1995).  “A C++ software environment for the
development of embedded signal processing systems,” Proc. ICASSP, Detroit.
<ftp://eng.bu.edu/pub/kbsp/ICP/icp-icassp95.ps.gz>

[Woods95] Woods, W. S., Hansen, M., Wittkop, T., Kollmeier, B. (1995).  “Using multiple
cues for sound source separation,” in Psychoacoustics, Speech and Hearing
Aids, ed. B. Kollmeier, World Scientific (in press).

[Woodf92] Woodfill, J. I. (1992). “Motion vision and tracking for robots in dynamic,
unstructured environments,” Ph.D. thesis, Dept. of Comp. Sci., report # STAN-
CS-92-1440.

[YoungS79] Young, E. D., Sachs, M. B. (1979). “Representation of steady-state vowels in the
temporal aspects of the discharge patterns of populations of auditory-nerve
fibers,” J. Acous. Soc. Am. 66, 1381-1403.

[Zurek87] Zurek, P. M. (1987). “The precedence effect,” in Directional Hearing, ed. W. A.
Yost, G. Gourevitch, Springer-Verlag.

[Zwis80] Zwislocki, J. J. (1980). “Five decades of research on cochlear mechanics,” J.
Acous. Soc. Am. 67(5), 1679-1685.


