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Abstract

Background: QSAR is an established and powerful method for cheap in silico assessment of physicochemical
properties and biological activities of chemical compounds. However, QSAR models are rather complex
mathematical constructs that cannot easily be interpreted. Medicinal chemists would benefit from practical
guidance regarding which molecules to synthesize.
Another possible approach is analysis of pairs of very similar molecules, so-called matched molecular pairs (MMPs).
Such an approach allows identification of molecular transformations that affect particular activities (e.g. toxicity).
In contrast to QSAR, chemical interpretation of these transformations is straightforward. Furthermore, such transformations
can give medicinal chemists useful hints for the hit-to-lead optimization process.

Results: The current study suggests a combination of QSAR and MMP approaches by finding MMP transformations
based on QSAR predictions for large chemical datasets. The study shows that such an approach, referred to as
prediction-driven MMP analysis, is a useful tool for medicinal chemists, allowing identification of large numbers of
“interesting” transformations that can be used to drive the molecular optimization process. All the methodological
developments have been implemented as software products available online as part of OCHEM (http://ochem.eu/).

Conclusions: The prediction-driven MMPs methodology was exemplified by two use cases: modelling of aquatic
toxicity and CYP3A4 inhibition. This approach helped us to interpret QSAR models and allowed identification of a
number of “significant” molecular transformations that affect the desired properties. This can facilitate drug design as a
part of molecular optimization process.

Keywords: MMP, Matched molecular pairs, QSAR, Interpretation, Molecule optimization, Medicinal chemistry, Inverse
QSAR, OCHEM, Online chemical modelling environment

Background
Quantitative Structure Activity Relationships (QSAR)

have proven to be a powerful technique for prediction of

biological activities and physicochemical properties.

QSAR models can be helpful in drug design, ecological

hazard assessment and in the chemical industry. The

properties predicted by QSARs vary from solubility and

melting point to toxicity, biological potency and possible

side effects [1-3].

One of the issues with QSAR models is their poor in-

terpretability. While interpretation of simple linear re-

gressions can be straightforward, the most powerful

algorithms like neural networks are similar to “black

boxes”, which provide predictions that cannot be easily

interpreted. This undermines trust in such predictions

and prevents the creation of an “action plan” by a deci-

sion maker, for example a medicinal chemist. If a com-

pound is predicted to be toxic, what are the causal

factors for its toxicity? How can it be made non-toxic?

Such “black-box” model types are poorly suited to address

these crucial practical questions.

The QSAR interpretation problem has not escaped

the notice of regulatory bodies. Thus, “mechanistic
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interpretation” is one of the principles of the OECD

for acceptable QSAR predictive models for regulatory

purposes [4].

A recently suggested approach for the analysis of

chemical datasets uses pairs of compounds that differ by

a small single point change only. Such pairs are referred

to as matched molecular pairs or MMPs [5,6]. An ana-

lytical approach that deals with MMPs is matched mo-

lecular pairs analysis (MMPA). A number of MMPs are

given as examples in Figure 1.

Analysis of pairs of molecules with only minor local-

ized differences can be very useful for understanding the

mechanism of action. A significant change of activity fol-

lowing only a minor structural modification (known as an

“activity cliff”) can give additional insight (see Figure 2).

Furthermore, using simple statistical analysis molecular

pairs can be grouped by transformations, allowing the

identification of transformations that affect properties of

interest.

In the scientific literature [7], MMP analysis has fo-

cused mostly on analysis of experimental data and on

trying to identify rules that affect activities of interest.

Such analyses are not directly related to QSAR model-

ling, representing rather a complementary approach.

The current study aims to merge the worlds of QSAR-

and MMP-based analysis by introducing the concept of

prediction-driven MMPs.

MMP analysis has a practical goal: molecular transfor-

mations can help medicinal chemists to drive the mo-

lecular optimization process. This task is not directly

achievable through plain QSAR analysis. A QSAR model

provides predictions but does not explicitly identify how

a structure should be changed in order to achieve

the desired improvements (such as reducing toxicity,

enhancing activity or improving the ADME profile). This

problem is sometimes referred as inverse QSAR. This

study investigates how prediction-driven MMP rules can

guide the molecular optimization process.

The study is not limited to theoretical developments.

We also provide software implementation of all the analyt-

ical utilities – including identification of MMPs, statistical

analysis, visualization and interpretation utilities – and

tight integration with the database of experimental data

and a QSAR modelling framework. This study represents

the “tip of an iceberg”: a molecule optimizer utility that

can be used by medicinal chemists to optimize molecules

with regard to endpoints such as mutagenicity, CYP inhib-

ition, environmental toxicity, solubility and lipophilicity.

All utilities have been integrated into the Online Chemical

Modelling Environment and are freely available to the

academic community online at http://ochem.eu/.

Results and Discussion
In this section, we apply the prediction-driven matched

molecular pairs analysis for the QSAR models to the two

endpoints mentioned earlier: aquatic toxicity and

CYP3A4 inhibition. For each endpoint, we demonstrate

the additional knowledge gained from the prediction-

driven transformations and the practical value of such

knowledge for the molecular optimization procedure.

Significant transformations were defined as those with

a statistical significance of at least p <0.05. We used the

Holm-Bonferroni method [8] to reduce false positives

caused by the multiple comparisons problem. The statis-

tical significance (p-value) was calculated according to

formulae (1) and (2) described in the methodology

section. To avoid highly dissimilar matched pairs, we

considered only pairs of molecules with a Tanimoto

similarity of at least 50% calculated using ECFP finger-

prints [9] for the analysis.

Figure 1 Four typical examples of matched molecular pairs (MMPs).
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A summary of the significant transformations identi-

fied using experimental data as well as the prediction-

driven analysis is given in Table 1. After applying the

Holm-Bonferroni method, approximately half of the

transformations were discarded. Below, we provide a

detailed analysis of all endpoints and their respective

models.

The target molecules used as examples of transformation-

driven optimization are shown in Figure 3. These com-

prise several representative molecules from the DrugBank

database [10,11]. Some are marketed drugs, while others

are experimental molecules.

The results of the transformation-driven optimization

for each endpoint are described below.

Aquatic toxicity model

In the optimization process, only significant transforma-

tions applicable to a particular molecule are used. It is

also often the case that a particular transformation can

be applied to a molecule in several different ways, result-

ing in multiple transformed molecules for each individ-

ual transformation.

Table 2 shows statistics for the aquatic toxicity

optimization using matched pairs.

The “generated” column gives the full number of prod-

uct molecules generated using the significant transfor-

mations. The “kept” column shows the number of those

molecules that passed the minimal similarity filter (50%

Tanimoto similarity to the original molecule). The “hits”

column gives the number of molecules for which the

transformation resulted (according to the model) in a

desired change of property, i.e. a reduction in aquatic

toxicity. The “effectiveness” column shows the hits-to-

kept ratio.

Each cell of the table contains two counts – the first

represents the number of molecules obtained from both

prediction-based and experiment-based transformations,

while the figure in brackets gives the count for

experimental-based transformations only.

It is apparent that prediction-driven transformations

provide significantly more hits than experimentally-

based ones. For example, prediction-based transforma-

tions provided more than 1,000 hits for the Permethrin

molecule, whereas experiment-based transformations

provided only 25. It is interesting that the effectiveness

of predicted transformations (percentage of hits among

all generated structures) is about the same as that of ex-

perimental ones.

Figure 4 shows several exemplary modifications of the

Permethrin molecule, obtained by applying significant

transformations.

It should be clearly stated that, although the suggested

structure modifications can be less toxic (as predicted by

a QSAR model), they can be unsatisfactory in other re-

spects: they can lose their primary effect (e.g. potency)

or become chemically infeasible or unstable. One poten-

tially unstable modification is highlighted in Figure 4.

It is also worth noting that reducing the toxicity of

Permethrin, an insecticide, may not be a desired effect

Figure 2 Activity cliff example. A molecule inactive according to the Ames test becomes active after a minor structural change. Activity cliffs
represent interesting cases for activity interpretation.

Table 1 The number of significant transformations

identified using experimental and predicted datasets

Endpoint Significant transformations

Experimental-
based

Prediction-based

EINECS ChemDiv

Aquatic toxicity 119 1552 5301

Ames test 132 442 4397

Clearly, prediction-based analysis provides significantly more transformations.
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after all. This molecule was chosen merely to demon-

strate the concept because of its high aquatic toxicity.

Figure 5 provides a visual representation of transfor-

mations applied to the Permethrin molecule. The trans-

formations identified as reducing toxicity in Permethrin

are replacements of several simple fragments or atoms

to a variety of other fragments. For example, the figure

highlights the replacement of an ether group by a dozen

other substituents.

Transformation amplification

As mentioned before, these transformations are derived

using predicted values. Some of the transformations were

among those identified using experimental data. However,

there were too few pairs to draw conclusions about the

statistical significance of a toxicity-reducing effect. For ex-

ample, Figure 6 shows the replacement of a hydrogen

atom by a carboxyl group that has been identified as being

toxicity-reducing and which has been successfully used to

find non-toxic variants of Permethrin (left side of the

figure). This transformation had only four experimentally

measured pairs of molecules but has been “amplified”

using 362 predicted pairs of molecules (p-value <10−6).

Figure 7 gives a larger view of the “amplified” transfor-

mations. The blue dashed area shows the practically sig-

nificant transformations that are both:

� effective (resulting in a toxicity change of at least 1

log unit) and

� statistically significant (p-value <0.01 or less,

corresponding to a significance level of at least 2)

The black circles are the transformations based on

measured data. Only a few of such transformations are

Figure 3 Molecules transformed within the scope of this study. All eight molecules were selected from the DrugBank database.

Table 2 The number of transformed molecules generated during aquatic toxicity optimization

Molecule Generated Kept Hits Effectiveness

Permethrin 1217 (27) 891 (26) 854 (24) 96% (92%)

Hexestrol 813 (10) 165 (8) 163 (8) 99% (100%)

alpha-Naphthoflavone 583 (19) 136 (13) 132 (13) 97% (100%)

Propidium 1812 (44) 1325 (37) 1316 (37) 99% (100%)

Bithionol 224 (9) 91 (8) 91 (8) 100% (100%)

Dequalinium 2095 (87) 1645 (87) 1635 (87) 99% (100%)

Oxiconazole 1211 (25) 826 (24) 798 (22) 97% (92%)

Lercanidipine 2059 (39) 1940 (39) 1928 (39) 99% (100%)

For comparison, the number of molecules generated using only the transformations based on experimental data is given in brackets.
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“interesting”, meaning that they fall within the blue re-

gion of practical significance. The red circles show the

same transformations, which have been complemented

with the predicted data. The solid red circles show the

“amplified” transformations that were not significant but

became so after adding the predicted data.

Thus, prediction-driven MMP allows not only the dis-

covery of new transformations, but also the amplification

of existing ones by providing more evidence of the

observed effect. The same phenomenon is confirmed for

a classification property, CYP3A4 inhibition, in the ana-

lysis below.

CYP3A4 inhibition model

All of the selected molecules are CYP3A4 inhibitors of

different potencies. Therefore, we can use the MMP

optimization process to remove the CYP inhibition ac-

tivity from these molecules. Table 3 shows the results of

the optimization process.

We can see that the experimentally based transforma-

tions yielded very few hits, with effectiveness ranging

between 0% (no improvements found) and 73%. The

prediction-based transformations produced significantly

more hits and in most cases increased the effectiveness

compared to the experiment-based transformations.

The transformations graph shown in Figure 8 gives an

insight into the transformations applied to Hexestrol,

which was used as an example.

We can see two clusters of transformations, which re-

duce the CYP3A4 inhibition activity in two different

approaches.

The cluster on the left represents replacement of one

of the benzene rings by a non-aromatic group, and the

cluster on the right mainly represents addition of a func-

tional group instead of a hydrogen or carbon. Figure 9

shows some of the molecules produced by the MMP

optimization process using these two approaches.

Clearly, the first approach is useless in most scenarios,

since it destroys the characteristic scaffold of the mol-

ecule. The resulting molecules may lose the main activ-

ity of the original molecule, which is inhibition of

microtubule polymerization [12].

The second approach produces more viable molecules

and in most cases tends to increase their solubility. As

we can see, addition of hydroxyl groups, acetic and

sulphonic acid groups and amine groups all reduce the

probability of a molecule being a CYP3A4 inhibitor.

Transformation amplification

Similar to the toxicity optimization example (Figure 6),

Figure 10 shows that an exemplary transformation that

was “inconclusive” according to the experimental data

(p-value 0.18 according to 22 sample pairs) was none-

theless found to reduce CYP inhibition in a statistically

significant sense according to the predicted data (p-value

0.01 according to 250 sample pairs). Thus, predictive-

Figure 4 Permethrin optimization examples. Six exemplary modifications of Permethrin that significantly decrease its predicted aquatic
toxicity (growth inhibition concentration). A decrease of 1–2 log units can be achieved by making only minor structural changes.
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Figure 5 Transformation graph for Permethrin optimization. Graph of the transformations that affect the aquatic toxicity of the Permethrin
molecule. The graph includes 393 transformations that provide replacements of several structural groups by less toxic variants. A cluster with
replacements of ether groups is shown in detail together with a few examples of optimized molecules.
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Figure 6 Experimental and predicted evidence supporting the toxicity-reducing effect of a selected transformation.

Figure 7 Toxicity optimization: statistically and practically significant transformations. The chart shows interesting transformations that
are both statistically significant (significance level >2, p-value <0.01) and effective (mean toxicity change at least one log unit). A number of
transformations that did not have sufficient measured pairs became significant when combined with predicted pairs (were “amplified”, shown as
solid red circles).
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driven MMP analysis allows not only identification of

new (predicted) transformations but also confirmation

of experimentally measured ones.

Figure 10 shows that predicted pairs allow us to draw

much stronger conclusions. In this example, 24 out of

25 inhibitors were “deactivated” and become non-

inhibitors after applying the analysed transformation.

None of the non-inhibitors became active. This shows

an effect that is significant both in a statistical and a

practical sense.

Similar to the toxicity use case, there are a number of

“amplified” transformations that were identified as both

statistically and practically significant after consideration

of predicted pairs. Such transformations are shown as

solid red circles in Figure 11.

The “amplified” transformations are not identified using

exclusively the predicted data. Besides the predicted pairs,

there are “real”, experimentally measured pairs associated

with such transformations, which makes them more cred-

ible for a medicinal chemist.

The two use cases described above show that

prediction-driven MMP analysis allows the identifica-

tion of transformations that affect particular molecular

properties, so-called significant transformations. More-

over, such analyses identify more transformations than

classic experiment-based MMP analysis. This allows

the molecule optimization process to be improved –

more transformations result in more optimized struc-

tural suggestions.

The transformation graphs appeared to be a useful

tool for visualization of hundreds of transformations

and facilitating their interpretation. Thus, the graphs in

Figure 4 and Figure 8 allowed identifying the fragments

that tend to induce a particular activity (CYP inhibition,

aquatic toxicity or mutagenicity).

The detected MMP transformations can be also exported

and used in external applications, such as Molpher [13], to

optimize new chemical structures. They can be also used

as a part of discovery tools, such as the Self Organizing

Hypothesis Network (SOHN) [14], by enhancing the tool

with clearly interpretable knowledge units.

Several important points should be noted regarding

the limitations of transformation-driven molecular

optimization. We discuss these limitations and suggest

possible solutions below.

Table 3 The number of product molecules generated

during CYP3A4 inhibition optimization

Molecule Generated Kept Hits Effectiveness

Permethrin 769 (101) 521 (86) 141 (9) 27% (10%)

Hexestrol 446 (39) 109 (11) 57 (8) 52% (73%)

alpha-Naphthoflavone 375 (64) 107 (23) 46 (7) 43% (30%)

Propidium 756 (110) 615 (96) 146 (1) 24% (1%)

Bithionol 103 (18) 39 (2) 19 (1) 49% (50%)

Dequalinium 519 (74) 487 (72) 96 (0) 20% (0%)

Oxiconazole 552 (73) 397 (47) 62 (0) 16% (0%)

Lercanidipine 1073 (148) 1037 (148) 175 (0) 17% (0%)

Figure 8 Transformations graph of CYP3A4 optimization of Hexestrol.
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Chemical context of transformations

The effect of a particular molecular transformation can

depend significantly on the context of the change. For

example, as illustrated in Figure 12, replacement of a

hydrogen atom by chlorine could have different effects

depending on whether it is connected to an aromatic

ring or part of a reactive group.

The current implementation of MMP analysis ignores

the surrounding of the point of change and “averages” the

effects of a transformation for all possible contexts.

Figure 9 Sample modified molecules obtained from Hexestrol after CYP3A4 inhibition optimization. Overdestructive changes can be
avoided by additional filtering by structure similarity (e.g. Tanimoto similarity).

Figure 10 Experimental and predicted evidence supporting the CYP inhibition-reducing effect of a selected transformation.
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Although we have shown that such an approach gives

satisfactory results, it is suboptimal and, generally speak-

ing, it makes sense to distinguish transformations in dif-

ferent contexts. One approach is to prohibit the storing of

“small” transformations (e.g. by restricting the minimum

atom count in the fragment) and to accept only the larger

ones, which include more context information. Further-

more, expert knowledge in the form of a rule set can be

employed. Such sets of rules can, for instance, prevent

indexing of transformations that would destroy chemical

groups or aromatic ring systems.

Finally, the context problem can be addressed by using

chemistry-aware fragmentation algorithms, such as RECAP

[15]. Such fragmentation takes into account functional

groups; this makes it possible for example to distinguish an -

OH group (alcohol) and -OH as a part of a carboxylic acid.

Thus, the carboxyl group would be treated as a whole dur-

ing the MMP identification process.

In summary, the aforementioned approaches require

an elaborate definition of “acceptable” transformations

and improved fragmentation techniques. Such enhanced

indexing of molecular pairs could be a future improve-

ment of the methodology suggested here.

False positives

Not all “significant” transformations affect the molecule

in a desired way. For example, transformations can de-

crease toxicity for most molecules but increase it for

Figure 11 CYP inhibition optimization: statistically and practically significant transformations. The chart shows interesting transformations
that are both statistically significant (significance level >2, p-value <0.01) and effective (ratio of deactivated molecules at least 55%). A number of
transformations that did not have sufficient measured pairs became significant when combined with predicted pairs (were “amplified”, shown as
solid red circles).

Figure 12 Importance of chemical context for transformations. The same transformation can have significantly different effects in different contexts.
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some fraction of the data. This is the reason why the

“transformation effectiveness” (as specified in Tables 3

and 4) can be significantly less than 100%. Furthermore,

false positives may result from the multiple comparisons

problem, which is partially corrected by the Holm-

Bonferroni method. In either case, the problem of false

positives is not crucial, since the molecules without pre-

dicted improvements are explicitly filtered out.

Predictions

We use QSAR models both to identify transformations

and to evaluate whether they have the desired effect on

new chemicals. The predictions given by QSAR models

can be inaccurate, even considering the applicability do-

main estimates. This issue applies mostly to the purely

prediction-driven transformations that do not have suffi-

cient experimental evidence to confirm the predicted

effect (so-called “amplified” transformations). This issue

can be addressed either by gathering more experimental

data to confirm/discard the transformation effect or by

alerting users to the fact that the transformation is based

on predicted data. While implementation of the first

approach is open-ended, the latter approach is already

integrated into OCHEM. Namely, each transformation

has a profile page, where users can see whether the

transformation is based on experimental data, predicted

data or both.

Importantly, OCHEM comes with integrated applic-

ability domain assessment and can estimate the accuracy

of each prediction individually. Thus, the user is warned

of the risks and can choose to ignore potentially unreli-

able predictions.

Lost potency

The optimized structures may not possess useful proper-

ties of the original molecule. Thus, we may make a com-

pound less toxic but decrease its bioavailability or lose its

potency (e.g. binding affinity) altogether. This problem

can be addressed by multi-criterial optimization (e.g. using

the transformations that reduce toxicity but do not affect

lipophilicity) or, more universally, by post-filtering the op-

timized molecules by running QSAR models or estimating

their binding affinity using docking-derived techniques.

Chemical feasibility and stability

The suggested modifications can be unstable or difficult

(or infeasible) to synthesize. Assessment of feasibility and

stability can be incorporated as an additional filter to elim-

inate such structures. There are already many programs,

such as SYLVIA (http://www.molecular-networks.com/

products/sylvia) by Molecular Networks or REACTOR

(http://www.chemaxon.com/products/reactor/) by ChemAxon

that can be used for such purposes.

The assessment of feasibility is a different topic. In

general, chemical modifications and therefore reactions

can be described as feasible if they occur spontaneously

without an external source of energy. Such reactions are

therefore thermodynamically favourable. Hence, it is

common practice to filter such reactions using a set of

fixed rules that are meaningful from the synthesis point

of view [16]. There are a handful of computational tools

that identify these chemical sensible rules in a Retro-

synthetic analysis [17,18].

OCHEM was developed with flexibility and modularity

in mind. This is reflected in the ease of integration of

third-party utilities. Therefore, the tools for filtering out

unstable or infeasible compounds can be added as one

of the independent steps of the structure-optimization

process.

Complementing approaches

MMP analysis can be complemented by other interpret-

ation techniques. First, similarity maps [19] can visualize

differences between molecular structures. Such

visualization is not restricted to single-point changes as

with MMPs. Second, feature networks [20] can be used

to interpret individual predictions by identifying the acti-

vating and deactivating structural features. Finally, ap-

proaches that estimate the contributions of individual

fragments to the activity of interest [21] can be helpful

in confirming “significant” transformations. Integrating

such utilities into OCHEM could allow users to obtain a

comprehensive interpretation of predictions.

To summarize, if complemented by additional filtering

steps, prediction-driven MMPs and transformations are

useful for hit-to-lead optimization. Their public availabil-

ity will contribute to the widespread use of the computa-

tional chemistry [22] tools on the Web [23].

Conclusions
In this study, we investigated pairs of molecules that have

only minor localized differences in their structures – so-

called matched molecular pairs (MMPs). We suggested a

new concept of prediction-driven MMPs, utilizing predic-

tions given by QSARs for large chemical libraries to gener-

ate simple transformation rules that affect the activity of

interest (so-called “significant” transformations).

We saw clearly that such an approach generates add-

itional knowledge compared to classical MMP analysis.

We showed that, compared to traditional MMPs, which

are derived from experimental data only, predicted-driven

Table 4 Summary of the models used for prediction-

driven MMP analysis

Endpoint/Property Training set size Web-link

Aquatic toxicity 1 093 http://ochem.eu/model/3

CYP3A4 inhibition 15 316 http://ochem.eu/model/163
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MMPs provide added value and could be used to guide

the molecular optimization process by generating many

more suggestions for medicinal chemists.

Prediction accuracy and reliability were addressed by

incorporating the applicability domain of QSAR models

and the estimated prediction accuracy for each analysed

molecule.

The usefulness of the described methodology was ex-

emplified by two practical use cases. Two endpoints

were analysed: aquatic toxicity and CYP inhibition po-

tential. For both endpoints and their respective datasets,

we identified all MMPs and their respective molecular

transformations. A particular focus was on the identifi-

cation of “significant” transformations that reduced tox-

icity or CYP inhibition potential. These transformations

were identified using both experimental data and pre-

dicted data obtained using QSAR models applied to two

large chemical datasets with more than 400,000 com-

pounds. We showed that predicted data enabled identifi-

cation of a large number of significant transformations

and amplified the otherwise insignificant transforma-

tions useful in the molecule optimization process.

The approach developed here has limitations and

potential for improvement. To convert the suggested

methodology into a tool that could be used by medicinal

chemists, a number of questions still need to be an-

swered. These include: “How can we ensure that the

modified compounds are chemically feasible and stable?

How can we take the chemical context of the transfor-

mations into account? And how can we ensure that the

suggested structures do not lose the desired properties

of the original compounds (e.g. potency or drug-

likeness)?” The article included a discussion on the re-

quired improvements.

Importantly, all the methodological developments pre-

sented in this article have been implemented as a soft-

ware platform, which includes identification of MMPs,

extraction of rules (significant transformations), and in-

tegration with an online QSAR framework and chemical

database (OCHEM). The “tip of the iceberg” is the mo-

lecular optimization utility “MolOptimiser” which, with

a couple of mouse clicks, allows medicinal chemists to

optimize their molecules online using the knowledge

extracted from predictions of half a million compounds

by a dozen models.

The current implementation comes with a transforma-

tions database for a number of endpoints, such as muta-

genicity, aquatic toxicity, lipophilicity, solubility, melting

point and CYP inhibition. However, the database of rules

is expandable: users can upload their own datasets, build

QSAR models, identify significant transformations and

save them for further use.

Prediction-driven MMP analysis will help to open

the “black boxes” of QSARs, to interpret the models

and to facilitate their practical application in in silico

drug design.

Methods
Basic definitions

Matched molecular pair

In a broad sense, an MMP is defined as a pair of mole-

cules that differ by a minor single point change only.

The “minor single point” must be defined in specific

technical terms. In this study, we will consider a pair of

molecules a matched pair if the differing fragment is less

than 10 atoms in size and has fewer atoms than the un-

affected part of either molecule.

Molecular transformation

Each molecular pair is associated with a particular trans-

formation. An example transformation is the replacement

of one functional group by another. More specifically, we

define a transformation as a replacement of a molecular

fragment having one, two or three attachment points by

another fragment. Figure 13 shows two examples of mo-

lecular transformations with four corresponding molecu-

lar pairs each.

“Significant” transformations

One of the main ideas of MMP analysis is that some

molecular transformations tend to systematically affect

particular molecular properties. For example, a transform-

ation may systematically decrease toxicity or increase

lipophilicity of chemical compounds. We will label trans-

formations that affect a particular property/activity in a

statistically significant sense significant transformations.

A transformation is considered significant if it in-

creases the property value “more often” than it decreases

it, or vice versa. Thus, the distribution of increasing and

decreasing pairs should be significantly different from

the binomial (“no effect”) distribution with a particular

p-value (usually 0.05). More specifically, the p-value can

be calculated using Formula 1:

pValueregression¼ Prob ξ 0:5; Nð Þ≤ min npos; nneg
� �� �

ð1Þ

where Prob stands for probability, npos and nneg are the

number of pairs that decreased and increased the prop-

erty, N is the total number of pairs, and ξ (0.5, N )is the bi-

nomial distribution with N trials and a probability of 0.5.

The mechanics of “statistical significance” are somewhat

different for binary classification properties, where a com-

pound is classified as either “active” or “inactive”. Such

properties include, for example, mutagenicity or CYP in-

hibition. For binary classification problems, we consider

the transformation as significant if the percentage of “ac-

tive” molecules in the analysed set is significantly changed
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after the transformation. Technically, we define the bino-

mial distribution of active as our “null hypothesis” and cal-

culate the p-value as follows:

pValueclassification¼min ð Prob ξ
npos

N
; N

� �

≤~npos

n o

;

Prob ξ
n

neg

N
; N

� �

≤~nneg

n o

Þ

ð2Þ

where npos, nneg, ñpos and ñneg are the number of “active”

and “inactive” molecules in the sets before and after ap-

plying the transformation.

Visually, significant transformations can be described

by distributions of “pair deltas”, that is, by the difference

of the property values between the molecules in a

matched pair. Figure 14 shows a histogram of pair deltas

for the octanol/water partition coefficient and aquatic

toxicity for two simple transformations. The delta-pair

histograms were built using the data publicly available in

the OCHEM database.

Sometimes it is more convenient to use the signifi-

cance level, which is a log-scale representation of the p-

value calculated according to Formula 3. Thus, a p-value

of 0.01 corresponds to a significance level of “2”, while a

p-value of 0.001 corresponds to a significance level of

“3” and so on.

significance level ¼ − log10 pValueð Þ ð3Þ

As many transformations are analysed, some transforma-

tions can pass the p-value threshold and be misclassified as

“significant” by mere chance. This phenomenon, known as

the “multiple comparisons” problem, can be partially ad-

dressed using the Holm-Bonferroni method [8].

Practical significance

In practice, it is important that the transformation effect

is not only statistically significant but also practically sig-

nificant in absolute terms. A transformation may be sta-

tistically significant but lead to a low absolute effect (e.g.

a toxicity reduction of 0.1 log unit). The practical signifi-

cance is defined for each endpoint individually and is

subjective.

For the purposes of this study, we will ignore the prac-

tical significance at the transformation identification

stage. Instead, we will consider it when using these

transformations in the molecular optimization process,

which is often the ultimate goal of the MMP analysis.

MMPs in the QSAR context

Here we describe a number of analytical methods that

allow us to interpret QSAR models using the MMP

approach.

Figure 13 Exemplary molecular transformations. Single and double-point transformations shown.
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Predicted values instead of experimental data

In the MMP-related scientific literature, statistical ana-

lysis is usually performed using experimental data. One

of the major contributions of the current study is to use

predicted values in addition to experimental ones. This

approach gives two important advantages.

First, experimental data are often limited and do not

have sufficient measurements for a meaningful MMP-

based statistical analysis. Using predictions for large

datasets (e.g. compound libraries) allows us to overcome

the data limitation problem.

Second, using predicted values allows us to extract the

rules, based on the model’s point of view. We do not dir-

ectly analyse the data, rather we view it through the lens

of the model. This allows the analyst to interpret the

model itself rather than interpreting the available experi-

mental data.

Applicability domain

For any analysis based on predictions, it is of crucial

importance to consider the reliability of predictions and

to take into account the applicability domain (AD) of

the models [24,25]. The applicability domain of QSAR

models is a research field in itself and has received abun-

dant attention in the literature [26-28]. For this study,

we used the standard deviation (STD) of ensemble

predictions to define the applicability domain. This

was shown to be the most reliable approach for differ-

entiating accurate and inaccurate predictions and for

estimating the prediction accuracy (the root mean

square error, RMSE, for classification models or the

correct prediction rate for classification models), as

described elsewhere [27,28].

The prediction accuracy is taken into account during

identification of “significant” transformations. Tech-

nically, we generate 1,000 replicas of the analysed

dataset by perturbing each prediction with an amount

of Gaussian noise with a magnitude (standard devi-

ation) depending on the estimated accuracy of the pre-

diction. Such a bootstrapping process is intended to

exclude transformations that are based on non-reliable

predictions.

Transformations graph

Each molecular transformation is a replacement of

one molecular fragment by another; that is, a trans-

formation is a relation between two molecular frag-

ments. Based on the “significant” transformations, it is

possible to create a directed graph of molecular frag-

ments. Each node in the graph is a fragment, and each

edge a significant transformation. Such graphs can dis-

play a number of transformations and enable better

interpretation. The graph in Figure 15 shows a part of

the transformations related to Aquatic toxicity.

Compared to a simple list of significant transformations,

such a graph provides a more visual and interpretable

insight.

Figure 14 Effect of a transformation on molecular properties. A) A simple transformation and the distribution of its effect on the octanol/
water partition coefficient. The histogram is visually biased to positive values: on average, this transformation increases lipophilicity. B)
Replacement of carbon by bromine significantly increases aquatic toxicity.
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Delta-pair chart

MMPs can be used to identify subtle prediction behav-

iour, e.g. model reaction to activity cliffs. We define a

chart that shows the actual and predicted effects of mo-

lecular transformations a delta-pair chart. Such charts

can identify pairs that have a significant activity change,

referred to as activity cliffs. The chart in Figure 16 shows

the unaccounted and mispredicted activity cliffs, which

can help identify “weak points” in a model. The screen-

shot is based on an aquatic toxicity model [27] publicly

available at https://ochem.eu/model/3.

The points on the diagonal correspond to a perfect

match between the experimental and predicted effects of

a molecular transformation. Conversely, the points in

quadrants 2 and 4, (−, +) and (+, −), correspond to mis-

predicted activity cliffs. The larger number of points in

quadrants 1 and 3 indicates that the model has correctly

learned the majority of structure activity relationships

presented in the data.

Since the direction of an MMP transformation can be

arbitrarily changed, the position of points on the plot

can easily be flipped between quadrants 1 and 4 and be-

tween quadrants 2 and 3.

Datasets and models

For the identification of matched pairs and molecular

transformations we used two chemical libraries, Chem-

Div and EINECS, described below.

ChemDiv compound library

Chemical Diversity (ChemDiv) is a chemical provider

and contract research organization. It maintains and de-

velops several general purpose and targeted molecular

libraries for a variety of applications. In this study, we

used a chemically diverse ChemDiv library containing

391,145 molecules.

EINECS compound library

The EINECS (European INventory of Existing Commer-

cial chemical Substances) dataset comprises 68,779 unique

chemical compounds that are produced in or imported to

Europe in amounts of more than one ton per year. These

compounds are intended for the registration in REACH

program and, therefore, they are of particular interest for

the assessment of their environmental hazard.

To demonstrate the concept and methodology of

prediction-driven MMPs, we used the following two

QSAR/QSPR models, described below and summarized in

Table 4.

Aquatic toxicity model

This model [27] predicted the growth-inhibition concen-

trations measured on a ciliated protozoan Tetrahymena

pyriformis. This is an established screening tool for tox-

icity. The model was developed using E-state indices and

Associative Neural Networks [29] and produced one of

the highest accuracies in a benchmarking study to pre-

dict environmental toxicity [30].

Figure 15 A transformations graph for aquatic toxicity. Arrows point towards the direction of increasing toxicity. For example, it can be seen
that the presence of bromine is potentially more toxic than the presence of chlorine, whereas the hydroxyl group is the least toxic residual in
this example.
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CYP3A4 model

The CYP model [31] was developed for inhibition of

Cytochromes P450 (CYP), a superfamily of enzymes

involved in the metabolism of a large number of xeno-

biotic compounds [32,33]. Over 75% of currently mar-

keted drugs are cleared with the help of CYP enzymes,

and almost half of these are metabolized by the CYP3A4

enzyme [34]. Inhibition of CYP3A4 may therefore lead to

toxicity by drug-drug interaction. This makes prediction

of CYP3A4 enzyme inhibition one of the main goals in

early stage drug discovery.

In this study, we use a classification model, which as-

signs “inhibitor” and “non-inhibitor” labels to the pre-

dicted compounds. It was developed using a training set

of over 15,000 compounds obtained by high-throughput

screening [35]. The model was built using E-state indices

and ALogPS descriptors using Weka implementation of

J48 decision trees. Additionally, stratified bagging was

Figure 16 A delta-pair chart for an aquatic toxicity model. Three representative cases of activity cliffs are shown. The right part shows the
significant transformations for aquatic toxicity.

Figure 17 A simplified database schema to store MMPs, transformations and transformation annotations.
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used to handle the imbalance between active and in-

active molecules in the training set. The resulting model

has one of the highest published accuracies for compar-

able datasets [31].

Implementation aspects

Integration with OCHEM

All aforementioned MMP utilities have been tightly inte-

grated with the Online Chemical Modelling Environ-

ment (OCHEM, available at http://ochem.eu). OCHEM

is an online platform that allows scientists to perform

the full cycle of QSAR research, including:

� data collection, upload and management

� development of regression and classification QSAR

models with a dozen machine learning methods

� integration with more than 20 molecular descriptor

packages (both free and commercial)

� applicability domain assessment

� running predictions on published models for a

number of endpoints (Ames test, CYP inhibition,

Aquatic toxicity, Melting and Boiling points, Bio-

concentration factor, Fish toxicity and many more)

� a database of structural alerts with a screening

utility (the ToxAlerts module) [36]

A full list of OCHEM features can be found in the lit-

erature [22] or in the knowledge base [37].

The MMP utilities are tightly integrated with the

OCHEM user interface. The utilities can be summarized

briefly as follows: analysing MMPs for a dataset, identifica-

tion and saving significant transformations, constructing a

delta-pair chart for a model, drawing molecular fragment

transformation graphs, and searching for transformations

that affect multiple properties in a desired manner (“trans-

formation optimizer” utility). More detailed documenta-

tion and a user guide to MMPs in OCHEM can be found

online in the knowledge base [22,37].

Automatic indexation of MMPs

All molecules stored in OCHEM are automatically

screened for identification of MMPs. Technically, an

asynchronous background job fragments all the mole-

cules and creates an index as described in [6]. The frag-

mentation is performed on a distributed calculation

system provided by OCHEM. A second job uses this

index to identify MMPs, and create and update molecu-

lar transformations. OCHEM tracks the uniqueness of

molecules using InChi hash-keys [38,39] in order that

each unique molecule is processed only once.

An important consequence of the asynchronous index-

ing procedure is that new molecules are not available

immediately for MMP analysis but only after indexing,

which is usually a matter of a few hours.

A simplified database schema for storing MMPs and

transformations is shown in Figure 17.

Technical limitations

To deal with the combinatorial explosion problem, only

molecules with 40 or fewer breakable bonds are consid-

ered for MMP indexing. Larger molecules are ignored.

The variable part of the molecule should have no more

than 10 atoms and fewer atoms than the main scaffold

of the molecule.

Technical statistics

Currently, the OCHEM database contains 700,000

indexed molecules, corresponding to about 12 million

matched molecular pairs categorized in ~500,000 unique

molecular transformations. The total size of the database

(excluding molecular structures) is 3 gigabytes.
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