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Abstract
The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2
distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of
entropy of next-word probability distributions as well as surprisal. A computational model determined entropy and surprisal for
each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was
measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were
left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left
supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus (“visual word form area”), bilateral
superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that
prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our
study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines
the feasibility of studying continuous spoken language materials with fMRI.
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Introduction
It has become increasingly clear that the brain should be seen as
a proactive organ, actively predicting what will happen next, in-
stead of being a passive input-chewing device (e.g., Friston 2005;
Bar 2009; denOuden et al. 2012; Clark 2013). Prediction is a power-
ful mechanism, allowing for the mental speed that smooth cog-
nitive functioning requires. During language comprehension,
too, there is evidence for prediction. For instance, comprehen-
ders actively predict an upcoming word when that word is pre-
dictable from the preceding context (Wicha et al. 2004; DeLong
et al. 2005; Van Berkum et al. 2005; Federmeier 2007; Dambacher
et al. 2009; Laszlo and Federmeier 2009; Dikker et al. 2010; Dikker
and Pylkkänen 2013; Lau et al. 2016). Although prediction has
not been investigated as much in the language domain as in
other domains of cognitive neuroscience, the research that is
available indicates that prediction plays a role during language

comprehension [see Van Petten and Luka (2012); Hagoort and In-
defrey (2014) and Huettig 2015].

In this study, we investigated the effects of prediction on the
neural language network. Participants’ brain activationwasmea-
sured using fMRIwhile they listened to spoken narratives. Predic-
tion was quantified by means of a computational linguistic
model that assigned occurrence probabilities to all words that
might come next at each point in the narrative. The model then
estimated 2 metrics related to word prediction. First, the model
estimated the entropy of the distribution of next-word probabil-
ities; a measure that quantifies how uncertain the model is
about what will come next. Second, the model estimated surpri-
sal, which expresses how unexpected the current word is given
the previously encountered words.

Although both entropy and surprisal can be taken as mea-
sures of word prediction, they quantify different concepts.
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Entropy is high when many different words may occur next, that
is, the upcomingword is hard to predict from the text so far. In con-
trast, surprisal is high when the current word was unexpected,
that is, it did not conformwith the prediction. In other words, en-
tropy is forward-looking, whereas surprisal is backward-looking.

We will now introduce entropy and word surprisal as con-
cepts from information theory more fully, before turning to our
neural hypotheses.

Surprisal and Entropy

A sentence or text can simply be formalized as a sequence of
words: w1, w2, . . . . We assume that the language-comprehen-
sion system, after processing the first t−1 words (i.e., the
sequencew1, . . . ,wt−1), is in a state that implicitly assigns a con-
ditional probability P(wt|w1, . . . ,wt−1) to each potentially upcom-
ing word wt. The surprisal associated with observing the word
that actually appears at position t is defined as the negative
logarithm of its occurrence probability:

surprisalðtÞ ¼ � log Pðwtjw1; : : :;wt�1Þ:

If the observed word’s probability equals 1 (i.e., no other word was
consideredpossible given thepreceding context), observing it yields
a surprisal of 0. Conversely, the occurrence of a word that was not
among thewords consideredpossible (i.e., has zero probability) cor-
responds to infinite surprisal. Surprisal can be thought of as the de-
gree to which the actually perceived word wt deviates from
expectation; this interpretation highlights the importance of pre-
diction for word surprisal. Word surprisal is formally identical to
self-information, and is sometimes referred to simply as “surprise.”

Themeasure ofword surprisal has proved to be very powerful,
for example, as an optimization criterion in the decoders of stat-
isticalmachine translation (Koehn 2010). Also,word surprisal has
been found to predict the length of words, with shorter words
being used in less surprising situations (Piantadosi et al. 2011;
Mahowald et al. 2013). An important issue is whether word sur-
prisal accurately captures cognitive processing during language
processing. Hale (2001) and Levy (2008) argue that integrating a
word into the current context requires an amount of cognitive
processing effort that is proportional to the word’s surprisal. If
surprisal indeed quantifies language processing effort, it should
correlate with experimental measures of comprehension diffi-
culty. Several previous studies in which word surprisal estimates
were compared with data from sentence reading experiments
confirm that surprisal indeed correlates positively with reading
time (Frank and Thompson 2012; Monsalve et al. 2012; Frank
2013; Smith and Levy 2013). Moreover, it was found that the amp-
litude of theN400 event-related potential (ERP) component corre-
lates with word surprisal values (Frank et al. 2015). The fact that
surprisal correlates with the amplitude of a classical ERP compo-
nent related to language comprehension (Kutas and Federmeier
2011) is another source of evidence for the hypothesis that surpri-
sal indeed captures aspects of language comprehension.

The second information-theoretic quantity we investigate
here, entropy, is also derived from the conditional probabilities
of words given the text so far. However, unlike surprisal, it is
not a function of the currentword’s probability but of the distribu-
tion of probabilities of all possible upcomingwords. It is defined as:

entropy(tÞ ¼ �
X

wtþ1∈W
Pðwtþ1jw1; : : :;wtÞ log Pðwtþ1jw1; : : :;wtÞ;

where W denotes the set of all word types.

Note that the definition of surprisal at position t is based on the
probability of the word wt, whereas the entropy at position t de-
pends on the probabilities of potentially upcoming words wt+1.
If the context w1, . . . ,wt is not very predictive about wt+1, the
total probability is distributed over many words, resulting in
high entropy. Conversely, if only a small set of words is likely to
follow the current context, many words will have (near) zero
probability and entropy is low. In the extreme casewhere a single
word is considered to occur with absolute certainty, entropy
equals zero.

Only few studies have looked at behavioral or neural effects of
entropy during language comprehension, withmixed results. No
correlation has been found between entropy(t) and reading time
(Frank 2013) or ERP amplitude (Frank et al. 2015) on wt+1 (at least,
not after factoring out the effect of surprisal of wt+1). That is, un-
certainty about the upcomingword does not appear to affect pro-
cessing of that word as indexed by reading times and ERPs.
However, Roark et al. (2009) found that wt is read more slowly
when entropy(t) is higher, suggesting that entering a state of
high uncertainty does slow down processing. The current
study, too, investigates the relation between entropy(t) and pro-
cessing ofwt, but looks at brain activation rather than behavioral
measures.

A remaining question then is: What are the neural areas sen-
sitive to entropy and surprisal during language comprehension?
The present study sets out to answer this issue, and specifically
looks into the stages of the cortical hierarchy that are influenced
by these measures of word prediction.

The Current Study

In the current study, wewish to add to the existing literature in 3
ways. First, we investigate which brain areas are involved in en-
tropy and surprisal of words during comprehension of spoken
language stimuli. A remaining issue is atwhat level of neural pro-
cessing prediction occurs during language processing. If word
processing conforms to the principles of predictive coding, sur-
prisal should be expressed throughout the auditory (or language)
hierarchy as predictions at higher-level descend to lower levels,
producing prediction errors (e.g., Friston 2005). In our setting, sur-
prisal reports the prediction error or unpredicted aspects of a
stimulus. In predictive coding schemes, the predictability or
precision of predictions amplifies prediction errors. This priming
or (synaptic) gain control is consistent with modulation of early
cortical areas (such as primary visual cortex). Indeed, modula-
tions of early cortical areas by predictability have been found in
the domain of visual perception (e.g., Kok et al. 2012), as well as
inmagneto- or electroencephalography studies of language com-
prehension (Dambacher et al. 2009; Dikker et al. 2010; Dikker and
Pylkkänen 2013). If prediction influences the level of word form
(as suggested by a predictive coding framework), we predict to
see an effect in areas sensitive to word form processing, or
other parts of early sensory cortex (Dikker et al. 2010).

Prediction may also influence areas more generally thought
to be implicated in integrative processes during language pro-
cessing. Candidate regions are the left and right inferior frontal
gyri (IFG), given that they are known to play an important role
in integration during sentence and discourse comprehension
(e.g., Robertson et al. 2000; Mason and Just 2004; Ferstl et al.
2008; Hagoort et al. 2009; Menenti et al. 2009). Specifically,
Hagoort (2005, 2013) hypothesized that IFG acts as a “unification
space” for language, meaning that it plays a role in preselection
as well as integration of upcoming and perceived information.
The anterior temporal poles are other candidate regions given
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their sensitivity to predictability of context (e.g., Lau et al. 2016).
Note that these 2 scenarios (modulation of areas early in the cor-
tical hierarchy and of more “integrative” areas) are not mutually
exclusive.

Second, we aim at separating effects of surprisal and entropy.
These 2 sides of prediction have been shown to have separable
neural effects in studies using non-language stimuli (e.g., Strange
et al. 2005; Tobia et al. 2012; Ahlheim et al. 2014; Nastase et al.
2014), and here we investigate whether a similar distinction is
present in the language domain.

Finally, this study extends previous research in using ex-
tended narratives as stimuli. Our participants listened to full spo-
ken narratives presented at a natural speed, without an artificial
experimental task. This means we test effects of prediction in
more natural settings than is usually done (such as by presenting
a single sentence). The present study falls within a growing body
of research which investigates language processes with more
naturalistic stimuli such as narratives (Speer et al. 2009; Lerner
et al. 2011; Wallentin et al. 2011; Brennan et al. 2012; Kurby and
Zacks 2013; Altmann et al. 2014; Hsu et al. 2014; Jacobs 2015;
Nijhof and Willems 2015).

Methods
Participants

Twenty-four healthy, native speakers of Dutch (8 male; mean
age 22.9, range 18–31) without psychiatric or neurological pro-
blems, with normal or corrected-to-normal vision, and without
hearing problems took part in the experiment. All participants
except one [seeWillems et al. (2014) for justification of inclusion]
were right-handed by self-report, and all participants were naive
with respect to the purpose of the experiment. Written informed
consent was obtained in accordance with the Declaration of
Helsinki, and the studywas approved by the local ethics commit-
tee. Participants were paid either in money or in course credit at
the end of the study.

Stimuli

Stimuli were taken from theCorpus of SpokenDutch, “Corpus Ge-
sproken Nederlands” (Oostdijk et al. 2000). Recordings were ori-
ginally produced as part of the “Library for the Blind,” and
comprised excerpts from 3 literary novels, all published in 1999
(Table 1). The excerpts were spoken at a normal rate, in a quiet
room, by female speakers (one speaker per story). Stimulus dura-
tions were 3:49 min (622 words), 7:50 min (1291 words), and
7:48 min (1131 words). Reversed speech versions of the stories
were created with Audacity 2.03 (http://audacity.sourceforge.
net/). Descriptive statistics of the stories are displayed in Table 1.

Estimation of Surprisal and Entropy

The conditional word probabilities required for obtaining surpri-
sal and entropy values can be estimated by any probabilistic lan-
guagemodel that is trained on a sufficiently large text corpus.We
opted for a simple, efficient, and widely applied type of language
model: The second-orderMarkovmodel,more commonly known
as a trigram model. It is based on the simplifying assumption that
the probability of word wt depends on the previous 2 words only,
that is, P(wt|w1, . . . ,wt−1) is reduced to P(wt|wt−2,wt−1). Surprisal
estimates by trigram models have been used successfully to ac-
count for experimental data from reading studies. For example,
Frank et al. (2015) showed that trigram-based surprisal correlates
positively with the N400 effect [Note that the stimuli in the pre-
sent study are of a different nature than in those previous stud-
ies. The stimuli in the present paper were pieces of extended
discourse (compared with single sentence in Frank et al. (2015))
and spoken at a normal rate (compared with rapid serial visual
presentation in Frank et al. (2015)], and Smith and Levy (2013)
found a linear relation with word reading time. Hence, previous
research shows that the probabilities derived from trigram mod-
els accurately describe behavioral and neural indices of language
comprehension.

One reasonwhy trigrammodels are rather accurate is that the
probabilities P(wt|wt−2,wt−1) can be reliably obtained from very
large data sets. Here, we used a random selection of 10 million
sentences (comprising 197 million word tokens; 2.1 million
types) from the Dutch Corpus of Web (Schäfer and Bildhauer
2012). Based on this trigram model, for each word of the experi-
mental texts, surprisal and entropy values were computed by
the SRILM (Stolcke 2002) and WOPR (Van den Bosch and Berck
2009) software packages, respectively.

Occasionally, a stimulus word is not present in the training
data, which means it receives a zero probability and, therefore,
an infinite surprisal. These values were replaced by the largest fi-
nite value estimated for the 3 narratives, that is, unknown words
are considered highly unlikely rather than impossible. This is
equivalent to assuming the reasonable belief that any word has
a non-zero probability of occurring, irrespective of the context.

Procedure

Participants listened to the 3 stories, as well as to the reversed
speech versions of the stories, while in the MRI scanner. Each
story and its reversed speech counterpart were presented follow-
ing each other. Half of the participants started with a non-re-
versed stimulus, and half with a reversed speech stimulus.
Participants were instructed to listen to thematerials attentively.
There was a short break after each fragment.

Stimuli were presented with the Presentation software (ver-
sion 16.2, http://www.neurobs.com). Auditory stimuli were

Table 1 Characteristics of the stimuli

Stimulusa No. of words Word duration (ms) Lexical frequencyb (per million words)

Mean Median Range SD Mean Median Range SD

Story 1 622 273 218 4–1174 181 5750 1539 0.02–39 883 8306
Story 2 1291 252 193 31–949 160 6317 2106 0.02–39 883 8876
Story 3 1131 274 212 40–1221 183 6612 1694 0.02–39 883 9483

Note: Descriptive statistics for word duration and lexical frequency per story.

SD: standard deviation.
aStory 1: from Peper, R., Dooi, L.J. Veen, 1999; Story 2: from Van der Meer, V., Eilandgasten, Contact, 1999; Story 3: from Jacobson, A., De Stalker, De Boekerij, 1999.
bLexical frequency estimates were taken from the 44-million-word Subtlex NL database (Keuleers et al. 2010).
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presented through MR-compatible earphones. Presentation of
the story fragments was preceded by a volume test: A fragment
from another story with comparable voice and sound quality
was presented while the scanner was collecting images. Volume
was adjusted to the optimal level based on feedback from the
participant.

Post Hoc Memory Test

After the scanning session, participants were surprise-tested for
their memory and comprehension of the stories. The post hoc
memory test was performed after all stories had been listened
to. This was donewith 5multiple choice questions per story frag-
ment, with 3 answer options to each question. Questions were
about general content, and memory scores were summed, lead-
ing to an overall score of each participant’s memory of the story.

fMRI Data Acquisition and Preprocessing

Images of blood-oxygenation level-dependent (BOLD) changes
were acquired on a 3-T Siemens Magnetom Trio scanner (Erlan-
gen, Germany) with a 32-channel head coil. Pillows and tape
were used to minimize participants’ head movement, and the
earphones that were used for presenting the stories reduced
scanner noise. Functional images were acquired using a fast
T2*-weighted 3D echo planar imaging sequence (Poser et al.
2010), with high temporal resolution (time to repetition: 880 ms,
time to echo: 28 ms, flip angle: 14°, voxel size: 3.5 × 3.5 × 3.5 mm,
36 slices). High resolution (1 × 1 × 1.25 mm) structural (anatomic-
al) images were acquired using an magnetization prepare rapid
gradient echo T1 sequence.

Preprocessing was performed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm) and Matlab 2010b (http://www.mathworks.nl/).
After removing the first 4 volumes (“scans”) to control for
T1 equilibration effects, images were realigned to the first image
in a run using rigid body registration (“motion correction”). The
mean of the motion-corrected images was then brought into
the same space as the individual participants’ anatomical scan.
The anatomical and functional scans were spatially normalized
to the standard MNI template, and functional images were
resampled to 2 × 2 × 2 mm voxel sizes. Finally, data were
spatially smoothed using an isotropic 8-mm full-width at half-
maximum Gaussian kernel.

Data Analysis

At the single-subject level, statistical analysis was performed
using the general linear model, which means that the observed
BOLD time course in each voxel is subjected to a regression ana-
lysis, testing for voxels inwhich the covariates of interest (surpri-
sal and entropy) explain a significant proportion of variance of
that voxel’s time course (Friston et al. 1995). For each story, one
regressor was created, modeling the duration of each single
word. This regressor was convolved with the hemodynamic
response function, to account for the delay in BOLD activation
respective to stimulus presentation. Additionally, 3 covariates
(called “parametric modulations” in SPM8) were added, one con-
taining each word’s log-transformed lexical frequency as deter-
mined from the Subtlex NL corpus (Keuleers et al. 2010), one
containing each word’s surprisal measure, and one containing
the next-word entropy for each word. Log-transformed lexical
frequency per word was added as a covariate of no interest, to
statistically factor out effects of general word frequency, that is,
expectations not based on linguistic context but on general

word usage. Note that the entropymeasure quantifies the uncer-
tainty of the upcomingword, that is, theword at time t+1, whereas
lexical frequency and word surprisal were taken for the word it-
self (the word at time t).

The same model was applied to the data from the reversed
speech stimuli. That is, theword duration regressor and the covari-
ates for a story were also fitted to the data of the reversed speech
version of that story. The modeled time courses from all 6 runs (3
stories and 3 reversed speech stimuli)were combined in one regres-
sionmodel, with separate constant terms per run, but the same re-
gressors for real and reversed speech. The estimates from the
motion correction algorithm (3 rotations and 3 translations per
run) were included in the model as regressors of no interest, to ex-
plain additional variance related to small head movements.

Whole-brain analysis involved group statistics in which parti-
cipantswere treated as a random factor (random-effects analysis).
The difference in the effect (i.e., regression slope) of the surprisal
covariate and the entropy covariate between the real and reversed
speech fragments for every voxel was used as input to the group-
level statistics. Statistical differences were assessed by computing
the t-statistic over participants of this difference score (real vs. re-
versed speech) for each voxel in the brain. The resulting multiple
comparison problem was solved by means of combining a P <
0.005 voxel threshold with a cluster extent threshold determined
by means of 2000 Monte Carlo simulations, after estimation of
the smoothness of the data (Slotnick et al. 2003). This revealed
that clusters of 54 contiguous voxels (resampled 2 × 2 × 2 mmvox-
els) or larger indicated statistically significant effects at the P < 0.05
level, corrected for multiple comparisons. This cluster threshold
was applied in all analyses.

Given our a priori hypothesis about inferior frontal cortex in-
volvement, and given that whole-brain analyses are necessarily
conservative due to the correction for multiple comparisons,
we additionally supplemented the whole-brain analysis with re-
gion-of-interest (ROI) analyses. These were performed using
Marsbar (Brett et al. 2002), and comprised taking the mean con-
trast value per contrast of interest and per participant of all vox-
els in a ROI. Based on previous literature (see Introduction), we
selected Brodmann area (BA) 44 and 45 both on the left and on
the right side, resulting in 4 ROIs. The regions were defined
using a cytoarchitectonic probability map (Amunts et al. 1999;
Eickhoff et al. 2006).

Results
Behavioral

Participants answered on average 10.0 questions correctly (SD
2.21), out of 15 multiple choice questions asked (5 questions per
story, 3 answer alternatives per question), indicating memory
performance above chance.

Whole-Brain Analysis

We first looked for regions that were sensitive to entropy (stron-
ger negative relationship with entropy during real speech when
compared with when listening to reversed speech). Activated re-
gions include the right inferior frontal gyrus, the left ventral pre-
motor cortex, extending into the leftmiddle frontal gyrus, the left
supplementarymotor area (SMA), and left inferior parietal lobule
(Table 2 and Fig. 1).

Additionally, we looked for voxels across the whole brain
whose activation was more strongly modulated by surprisal dur-
ing the real speech when compared with the reversed speech
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fragments. This means that activated regions were sensitive to
surprisal (more surprisal leading to higher activation levels),
and were more so in the real speech conditions when com-
pared with the reversed speech conditions. Statistically sig-
nificant activations were observed in a cluster comprising the
left inferior temporal sulcus and posterior fusiform gyrus, and
in the left posterior superior temporal gyrus. Additionally,
there was an extensive activation spanning the right anterior
temporal pole, right inferior frontal gyrus, right amygdala,
and right brain stem. Finally, there was a cluster of activation
in the right posterior superior temporal gyrus (Table 3 and
Fig. 1).

ROI Analyses

As described above, we tested for effects of surprisal and entropy
in 4 ROIs: left BA44, right BA44, left BA45, and right BA45. No ef-
fects were observed for entropy (Table 4). For surprisal, two-sided
t-tests showed that in the right, but not in the left inferior frontal
cortex, activation levels (beta weights) to surprisal in the non-
reversed (story) condition were significantly different from the
reversed speech (control) condition (Table 4). In Figure 2, we
plot the regression coefficients (beta weights) for surprisal and
entropy, for each of the 4 ROIs.

Discussion
We investigated the neural infrastructure related to prediction
during natural language comprehension. A probabilistic lan-
guage model was trained to predict upcoming words based on
co-occurrences in a 10-million-word corpus of written Dutch.
This model was subsequently presented with 3 short narratives,
and it provided 2 well-established information-theoretic mea-
sures for each word in the narratives. First, we studied the en-
tropy of the probability distribution of upcoming words. This
measure indicates how uncertain the model is about the upcom-
ingword. If the distribution of probabilities is broad, itmeans that
many word candidates can be (weakly) predicted to be the next
upcomingword, whereas if the distribution is narrow, only a lim-
ited subset of words can be (strongly) predicted. In other words,
when entropy is low, the model is relatively certain about
which word will be the next word, whereas when entropy is
high, themodel is less certain about the upcomingword. Entropy
hence expresses the strength of expectations aboutwhat the next
word will be. The second measure was surprisal, which is a
quantification of the degree to which an incoming word was sur-
prising, given its preceding context. The model compares the in-
coming word with its prediction before the word was perceived.
Surprisal is low when the actual perceived word was assigned a

Table 2 Entropy: results of whole-brain analysis

Region MNI
coordinates
(X Y Z)

Cluster
extent
(voxels)

Maximum
t-value

Right inferior frontal
gyrus

54 18 40 180 −3.99
48 18 48

Left middle frontal
gyrus/ventral
precentral sulcus

−46 12 50 353 −3.53
−42 8 56
−36 30 46

Left SMA −4 42 44 −3.14
Left inferior parietal

lobule
−44 −56 50 235 −3.50
−52 −56 48
−46 −48 48

Note: Areas activated to the entropy regressor. A negative relationship with

entropy was tested, which means that activated regions had a stronger negative

relationship with entropy during real than during reversed speech. Displayed are

a description of the area, theMNI coordinates of the peak voxel, the cluster extent

of the cluster, and the t-value of the peak voxel in the cluster. For larger clusters,

several peak voxels’ coordinates are provided to give a better representation of

where activations were observed. All activations survived a P < 0.05 FWE-

corrected statistical threshold.

Figure 1. Results of the whole-brain analysis. Brain areas that were significantly activated in response to the regressors modeling entropy (red) and surprisal (blue; see

Tables 2 and 3). The inset shows the activation in the hippocampus and amygdala (right hemisphere), and the activations in the inferior temporal and fusiform gyrus

in response to word surprisal. Results are corrected for multiple comparisons at the P < 0.05 FWE level. Images are displayed in neurological convention (‘left is left’).
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high occurrence probability, and is highwhen the perceivedword
was estimated to have low probability.

Participants’ brain activation was measured with fMRI while
they listened to spoken versions of the 3 narratives, as well as
to the reversed speech versions of the stimuli (control stimuli).
We found that entropy was negatively correlated with brain acti-
vation levels in the left ventral premotor cortex, leftmiddle front-
al gyrus, right inferior frontal gyrus, left SMA, and left inferior
parietal lobule. Thismeans that these areas hadhigher activation
when uncertainty about the upcoming word was low (i.e., pre-
dictability was high), and had lower activation levels when
uncertainty was high (predictability was low). Surprisal value
correlated significantly and positively with changes in brain
activation levels in the left inferior temporal sulcus stretching
into the fusiform gyrus, bilateral anterior temporal poles, right
amygdala stretching into the hippocampus, right inferior frontal
sulcus, and posterior superior temporal gyri bilaterally. This
means that these brain areas had increased activation when sur-
prisal value was high, that is, when the perceived word deviated
from what was predicted.

The interpretation of our results (see below) is consistent
with hierarchical Bayesian inference as implemented by predict-
ive coding in the brain (e.g., Friston 2005; Clark 2013). In this
framework, predictions cancel prediction errors at lower levels of
cortical hierarchies, where the precision or modulation of predic-
tion errors depends on their predictability. This is consistent with
the activations related to entropy, such asmiddle frontal and ven-
tral premotor cortex. A more surprising (i.e., less predicted) word
generates prediction errors that are greater in amplitude and
take longer to suppress. This we see reflected in the activations
related to surprisal, for example, of the fusiform gyrus.

As explained in Supplementary Materials, we also investi-
gated trigram models that were trained on smaller text corpora,
making them less accurate models of the language. In general,
models that were trained on smaller corpora generated surprisal
and entropy values that were less predictive of brain activation
(see Supplementary Figs 1 and 2). This relation between the qual-
ity of the language model and its fit to experimental data has
been found before for reading time and N400 amplitude, in stud-
ies employing single sentence reading (Monsalve et al. 2012;
Frank 2013; Frank et al. 2015). This is a relevant finding because
it adds plausibility to the conclusion that the effects of surprisal
and entropy on brain activation are due to the language model’s
predictions and not to some other unrelated factor.

Activations Related to Entropy

Left ventral premotor cortex showed a positive relationship with
predictability: When predictability of the upcoming word was
high (i.e., entropy was low), activation in this area was high as
well. The ventral premotor cortex has been found to be sensitive
to entropy before. For instance, Nastase and colleagues presented
participants with series of auditory and visual stimuli, which dif-
fered in entropy from completely random to highly ordered se-
quences. The auditory stimuli were pure tones, and the visual
stimuli consisted of simple colored shapes (e.g., a blue triangle;
Nastase et al. 2014). The left ventral premotor cortex (among
other regions) was sensitive to the level of entropy in the series
in both modalities. Similarly, Schubotz and Von Cramon (2004)
found the left ventral premotor cortex to be sensitive to predict-
ability across different modalities. They presented participants
with sequences of actions (e.g., someone putting a paper into a
post box), and also with sequences of abstract shapes, and
found left ventral premotor cortex to be sensitive to predictability
of both types of stimuli. Nastase et al. (2014) also observed sensi-
tivity of the SMA to entropy, a result which we replicate here.

Another brain structure which has been implicated in the
encoding of entropy is the hippocampus (e.g., Strange et al.
2005). This was not replicated in the present study, instead the
hippocampus was found to be activated in response to word
surprisal (see below).

What we labeled inferior parietal lobule contains the angular
gyrus. Binder et al. (2009) concluded in their extensivemeta-ana-
lysis that this area “occupies a position at the top of a processing
hierarchy underlying concept retrieval and conceptual integra-
tion” (p. 2776). Indeed, the angular gyrus is considered a hub in
the language network (Turken and Dronkers 2011), and our re-
sults are compatiblewith the claim that it is involved in the active
prediction of upcoming words.

The leftmiddle frontal gyrus and right inferior frontal cortices
were also sensitive to entropy. It is tempting to interpret this ac-
tivation as a top-down influence from these areas onto parts of
the language network lower in the cortical hierarchy. When pre-
dictability is high, left middle frontal and right inferior frontal

Table 3 Surprisal: results of whole-brain analysis

Region MNI
coordinates
(X Y Z)

Cluster
extent
(voxels)

Maximum
t-value

L inferior temporal
sulcus/posterior
fusiform gyrus

−46 −46 −16 464 6.46

L posterior superior
temporal gyrus

−64 −36 12 1345 5.84
−58 −50 10
−54 −58 6

L anterior temporal
pole

−52 0 −4 117 3.47
−56 8 −6

R anterior temporal
pole

56 8 −6 813 3.56

R hippocampus 30 −2 −11 3.50
R brain stem 12 −12 −8 3.71
R amygdala 32 −6 −12 3.11
R inferior frontal gyrus 50 12 −4 3.37
R superior temporal

gyrus
64 −26 10 476 4.86

Note: Areas activated to the surprisal regressor. Activated regions had a higher

positive relationship with surprisal during real than during reversed speech.

Displayed are a description of the area, the MNI coordinates of the peak voxel,

the cluster extent of the cluster, and the t-value of the peak voxel in the cluster.

For larger clusters, several peak voxels’ coordinates are provided to give a better

representation of where activations were observed. All activations survived a

P < 0.05 FWE-corrected statistical threshold.

Table 4 Results of the ROI analyses

Entropy Surprisal

t(23) P-value t(23) P-value

L BA44 |t| < 1 n.s. 1.18 0.25
R BA44 |t| < 1 n.s. 2.07 0.05
L BA45 −1.31 0.20 1.47 0.16
R BA45 |t| < 1 n.s. 2.46 0.02

The t-values indicate the difference in fit to surprisal or entropy between non-

reversed (“real”) and reversed speech. Differences which are statistically

significant at the P < 0.05 level are indicated in bold typeface.

BA: Brodmann area.
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cortex can presumably prime representations in other areas.
These areas lend themselves well for such a modulatory func-
tion, as has been observed in previous language-related research
(Fiebach et al. 2006; Snijders et al. 2010).

Activations Related to Surprisal

A cluster of activation in the left inferior temporal sulcus and fu-
siform gyrus was found to be sensitive to surprisal. This area,
which is a well-known activation site in studies of language, is
sensitive to word form, albeit that parts of this area are also sen-
sitive to lexical-semantic features of words (Vinckier et al. 2007;
Levy et al. 2009). Comparing reading of words versus non-words
for instance activates this area, which has been dubbed “visual
word form area” (VWFA; Cohen et al. 2000). Activation of the
VWFA in the present experiment with auditory presentation
may seem surprising. However, it should be noted that parts of
the inferior temporal sulcus, neighboring the VWFA, and over-
lapping with the present activation, have been found to be sensi-
tive to both written and auditory word forms (Cohen et al. 2004).
Cohen and colleagues dubbed this part of inferior temporal
cortex the “lateral inferotemporal multimodal area” (LIMA), an
acronym that did not become nearly as popular as VWFA. The

sensitivity of this region to surprisal suggests that during natural
language comprehension, there might be priming of predicted
word forms, which allows the system to quickly process incom-
ing information. Conversely, when the incoming word violates
the prediction (high word surprisal), this results in prediction
error. This result fits well with an EEG study showing that
left posterior electrodes (presumably reflecting activation of
the word form area) distinguish predictable versus less predict-
ablewords in amultisentence context within 90 ms after reading
of the word (Dambacher et al. 2009). Such an early effect argu-
es for a role of prediction, which is in line with our current
interpretation.

A similar interpretation is to be given to the bilateral activa-
tions of the superior temporal areas thatwe observed. The super-
ior temporal gyrus comprises the primary and secondary
auditory cortices, and here we show that these areas are modu-
lated by how well an incoming word fits the predicted input.
This is reminiscent of recent findings concerning the influence
of prediction during visual perception. In those cases too, early
visual areas are sensitive to the content of a predicted visual
stimulus (e.g., Kok et al. 2012). Here we extend the early role of
prediction to natural language comprehension, by showing that
early auditory areas, as well as areas coding for word forms, are

Figure 2. Results of the ROI analyses. Mean contrast values (beta weights) in 4 ROIs to word surprisal (black bars) and entropy (white bars). Error bars represent standard

error of themean (SEM). Results show that right BA44 and right BA45 are sensitive to surprisal. This is somewhat at odds with thewhole-brain analysis, in which the right

inferior frontal gyrus (overlapping with right BA45) was also sensitive to entropy. However, closer inspection reveals that the activation in the whole-brain analysis was

rather specific to a subpart of the right IFG, and that the activation only comprised 5.1% of right BA45 (Eickhoff et al. 2005), which gets averaged out in the ROI analysis.

Statistically significant differences at the P < 0.05 level are indicated with asterisks.
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sensitive to the surprisal of an incoming word [see Dikker et al.
(2010, 2014) and Molinaro et al. (2013)].

A related low-level activationwas observed in the right amyg-
dala and part of the hippocampus. It is tempting to interpret the
sensitivity of the right amygdala to word surprisal in the context
of the intracranial recordings by Nobre and McCarthy and collea-
gues. They observed differences between normal and anomalous
sentence endings (the N400 paradigm) at several electrode sites
close to the amygdala. Intracranial electrodes in the amygdala
were sensitive to the manipulation, but based on simultaneous
local field recordings they conclude that the neural generator of
the observed difference between anomalous and correct sen-
tence endings is not the amygdala itself but the nearby portion
of the anterior fusiform gyrus [McCarthy et al. 1995; see also
Nobre et al. (1994)]. In other language studies, the amygdala has
been mostly linked to processing of emotional content of words
(e.g., Herbert et al. 2009;Willems et al. 2011; Chowet al. 2014), and
herewe show that this part of the brainmay also be sensitive to a
word’s expectedness. Converging evidence for the role of the
amygdala in prediction during language comprehension comes
from a recent study in which it was found that activation in the
right amygdalawas higher just before participants heard a highly
expected word (J Skipper, personal communication).

The bilateral temporal poles’ sensitivity to surprisal is best
understood with regard to the integrating function which has
been ascribed to the anterior temporal poles (e.g., Brennan
et al. 2012). Activation of the anterior temporal poles is often ob-
served when participants comprehend narratives (e.g., Mazoyer
et al. 1993; Vandenberghe et al. 2002; Crinion et al. 2003, 2006;
Xu et al. 2005; Awad et al. 2007; Ferstl et al. 2008), and their func-
tion is thought to be related to forming a unified whole within
and across sentences. Moreover, Lau et al. (2016) showed that
neural activity in the anterior temporal poles related to reading
word pairs is influenced by the proportion of related pairs within
an experimental block. The fact that the anterior temporal poles
showed sensitivity to word surprisal values adds to the psycho-
logical plausibility of word surprisal.

Finally, we observed that right inferior frontal cortex was sen-
sitive toword surprisal. The right IFG has been found sensitive to
narrative and discourse comprehension (e.g., St George et al.
1999; Robertson et al. 2000; Xu et al. 2005), although the consist-
ency of right IFG activation during discourse comprehension is
debated (Ferstl et al. 2008; Hagoort et al. 2009). The double role
of the right inferior frontal cortex in this study (sensitive to
both entropy and surprisal) could reflect distinguishable sub-
functions of parts of this region (see Fig. 2), and this deserves fur-
ther attention in future studies.

Interestingly, we found no modulatory effects of word surpri-
sal on several areas which have been implicated in discourse or
narrative comprehension. For instance, the anterior medial pre-
frontal cortex as well as the posterior cingulate cortex/precuneus
are found to bemoreactive duringnarrative comprehension than
during comprehension of single, unstructured sentences (Lerner
et al. 2011). One reason for the insensitivity to surprisal could be
that the surprisal value as operationalized here is sensitive to
local context, and not to global context spanning for instance
several paragraphs or even a single sentence [but see Tobia
et al. (2012)]. Also, left inferior frontal cortex was not sensitive
to word surprisal, despite its well-established role in language
comprehension. It is hard to interpret this absence, given that
it could be due to a lack of statistical power. Figure 2B indeed
shows that the left and right inferior frontal cortex shows a simi-
lar pattern of responses, but that only in right inferior frontal cor-
tex the response is robust enough to reach statistical significance.

We therefore refrain from drawing strong conclusions about
hemispheric differences between the left and right inferior front-
al areas based on this result alone.

Conclusion
We investigated the neural implementation of entropy and sur-
prisal of words during natural language comprehension. Left
ventral premotor cortex was sensitive to entropy of the probabil-
ity distribution of the upcoming word, as has been found before
for non-language stimuli. Similarly, an important node in the se-
mantic brain network, the left inferior parietal lobule (“angular
gyrus”), also showed sensitivity to entropy. Taken together
with activations in the leftmiddle frontal and right inferior front-
al cortex, that were also sensitive to entropy, these are areas that
most likely exhibit a top-down influence related to predictability
of the upcoming word, onto other areas in the language network.
Additionally, we found that areas relatively early in the neural
language network are sensitive to surprisal, that is, how predict-
able the current word was given the previous context. The mod-
ulations of left inferior temporal sulcus, bilateral posterior
superior temporal gyri, and right amygdala point to modulating
effects of prediction onto lower levels of processing during lan-
guage comprehension. This suggests that prediction can occur
early in the processing stream, already at the level of word
form [see Dikker et al. (2010, 2014) and Molinaro et al. (2013)]. An-
terior temporal poles and right inferior frontal cortex are similar-
ly sensitive to word surprisal, and based on previous literature,
activation of these areas is most likely best explained as a com-
bination of predictive and integrative functions (Brennan and
Pylkkänen 2012; Hagoort 2013).

Besides the exact interpretation of functional localization in
our results, the current study shows that it is fruitful to use
well-defined information-theoreticmeasures fromcomputation-
al linguistics to inform us about the neural basis of natural
language comprehension. A methodological advance of the pre-
sent study is that participants listened to relatively long stretches
of natural language, and that characterization of the stimuli was
done in a computationally explicit manner. A growing body of re-
search into the neural basis of language uses more naturalistic
stimuli (Speer et al. 2009; Lerner et al. 2011; Wallentin et al.
2011; Brennan et al. 2012; Kurby and Zacks 2013; Altmann et al.
2014; Hsu et al. 2014; Wehbe et al. 2014; Jacobs 2015; Nijhof and
Willems 2015). This ismore than amethodological nicety: In sev-
eral fields of cognitive neuroscience, researchers suggest that
knowledge derived from highly simplified and context-free stim-
uli does not always generalize to more natural situations (e.g.,
Olshausen and Field 2005; Ferreira and Patson 2007; Peelen and
Kastner 2014; Willems 2015). Our study provides insights into
how prediction affects the language system under relatively
natural circumstances of language comprehension.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org.
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