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Abstract

This contribution describes a common family of estimation methods for system
identi�cation, viz prediction error methods. The basic idea behind these meth-
ods are described. An overview of typical model structures, to which they can
be applied, is also given, as well as the most fundamental asymptotic properties
of the resulting estimates.
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1 Basic Idea

System Identi�cation is about building mathematical models of dynamical sys-
tems using measured input-output data. This can of course be done using a
number of di�erent techniques, as evidenced in this special issue. Prediction
Error Methods is a broad family of parameter estimation methods than can
be applied to quite arbitrary model parameterizations. These methods have a
close kinship with the Maximum Likelihood method, originating from [4] and
introduced into the estimation of dynamical models and time series by [2] and
[1].

This article describes the basic properties of prediction error methods, ap-
plied to typical models used for dynamical systems and signals. See [5] or [8]
for thorough treatments along the same lines.

Some basic notation will be as follows. Let the input and output to the
system be denoted by u and y respectively. The output at time t will be y(t),
and similarly for the input. These signals may be vectors of arbitrary (�nite)
dimension. The case of no input (dim u =0) corresponds to a time series
or signal model. Let ZN = fu(1); y(1); u(2); y(2); : : : u(N); y(N)g collect all
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past data up to time N . For the measured data, we always assume that they
have been sampled at discrete time points (here just enumerated for simplicity).
However, we may very well deal with continuous time models, anyway.

The basic idea behind the prediction error approach is very simple:

� Describe the model as a predictor of the next output:

ŷm(tjt� 1) = f(Zt�1) (1)

Here ŷm(tjt� 1) denotes the one-step ahead prediction of the output, and
f is an arbitrary function of past, observed data.

� Parameterize the predictor in terms of a �nite dimensional parameter vec-
tor �:

ŷ(tj�) = f(Zt�1; �) (2)

Some regularity conditions may be imposed on the parameterization, see,
e.g., Chapter 4 in [5].

� Determine an estimate of � (denoted �̂N ) from the model parameterization
and the observed data set ZN , so that the distance between ŷ(1j�); : : : ; ŷ(N j�)
and y(1); : : : ; y(N) is minimized in a suitable norm.

If the above-mentioned norm is chosen in a particular way to match the assumed
probability density functions, the estimate �̂N will coincide with the Maximum
likelihood estimate.

The prediction error method has a number of advantages:

� It can be applied to a wide spectrum of model parameterizations (See
Section 2.)

� It gives models with excellent asymptotic properties, due to its kinship
with maximum likelihood. (See Sections 4 and 5.)

� It can handle systems that operate in closed loop (the input is partly
determined as output feedback, when the data are collected) without any
special tricks and techniques. (See Section 4.)

It also has some drawbacks:

� It requires an explicit parameterization of the model. To estimate, say, an
arbitrary linear, �fth order model, some kind of parameterization, covering
all �fth order models must be introduced.

� The search for the parameters that gives the best output prediction �t may
be laborious and involve search surfaces that have many local minima.
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2 Model Parameterizations

The general predictor model is given by (2):

ŷ(tj�) = f(Zt�1; �)

To give a concrete example, the underlying model could be a simple linear
di�erence equation

y(t) + a1y(t� 1) + : : :+ any(t� n) = b1u(t� 1) + : : :+ bmu(t�m) (3)

Ignoring any noise contribution to this equation, or assuming that such a noise
term would be unpredictable, the natural predictor becomes

ŷ(tj�) = �a1y(t� 1)� : : :� any(t� n) + b1u(t� 1) + : : :+ bmu(t�m) (4)

� =
�
a1 : : : an b1 : : : bm

�T
(5)

which corresponds to

f(Zt�1; �) = �T'(t) (6)

'(t) =
��y(t� 1) : : : �y(t� n) u(t� 1) : : : u(t�m)

�T
(7)

It is natural to distinguish some speci�c characteristics of (2):

� Linear Time Invariant (LTI) Models: f(Zt�1; �) linear in Zt�1, and not
depending explicitly on time, which means that we can write

f(Zt�1; �) =Wy(q; �)y(t) +Wu(q; �)u(t) (8)

=

t�1X
k=1

wy(k)y(t� k) +

t�1X
k=1

wu(k)u(t� k) (9)

for some LTI �lters Wy and Wu that both start with a delay. Here, q is
the shift operator.

� Linear Regression Models: f(Zt�1; �) linear in �, but possibly nonlinear
in Z. Clearly, (3) is both a linear model and a linear regression model.

� Non-linear Models: f(Zt�1; �) is non-linear in Z.

We shall comment on these cases some more:

2.1 Linear Models

The linear predictor model (8) is equivalent to the assumption that the data
have been generated according to

y(t) = G(q; �)u(t) +H(q; �)e(t) (10)
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where e is white noise (unpredictable), and H is monic (that is, its expansion in
q�1 starts with the identity matrix). We also assume that G contains a delay.
This can be seen by rewriting (10) as

y(t) = [I �H�1(q; �)]y(t) +H�1(q; �)G(q; �)u(t) + e(t)

The �rst term in the RHS only contains y(t� k); k � 1 so the natural predictor
of y(t), based on past data will be given by (8) with

Wy(q; �) = [I �H�1(q; �)]; Wu(q; �) = H�1(q; �)G(q; �) (11)

It will be required that � are constrained to values such that the �lters H�1G
and H�1 are stable. Note that the parameterization of G and H is otherwise
quite arbitrary. It could, for example be based on a continuous time state space
model, with known and unknown physical parameters in the matrix entries:

_x(t) = A(�)x(t) +B(�)u(t) (12)

y(t) = Cx(t) + v(t) (13)

Here the states x may have physical interpretations, such as positions, velocities,
etc and � corresponds to unknown material constants, and similar. Sampling
this model and then converting it to input output form gives a model of the
type (10) where G depends on � in a well-de�ned (but possibly complicated)
way.

Linear Black-box models

Sometimes we are faced with systems or subsystems that cannot be modeled
based on physical insights. The reason may be that the function of the system
or its construction is unknown or that it would be too complicated to sort out
the physical relationships. It is then possible to use standard models, which
by experience are known to be able to handle a wide range of di�erent system
dynamics.

A very natural approach is to describe G and H in (10) as rational transfer
functions in the shift (delay) operator with unknown numerator and denomina-
tor polynomials.

We would then have

G(q; �) =
B(q)

F (q)
=
b1q

�nk + b2q
�nk�1 + � � �+ bnbq

�nk�nb+1

1 + f1q�1 + � � �+ fnfq�nf
; (14)

Then

�(t) = G(q; �)u(t) (15)

is a shorthand notation for the relationship

�(t)+f1�(t� 1) + � � �+ fnf�(t� nf)

=b1u(t� nk) + � � �+ bnbu(t� (nb+ nk � 1)) (16)
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Here, there is a time delay of nk samples.
In the same way the disturbance transfer function can be written

H(q; �) =
C(q)

D(q)
=

1 + c1q
�1 + � � �+ cncq

�nc

1 + d1q�1 + � � �+ dndq�nd
(17)

The parameter vector � thus contains the coeÆcients bi; ci; di; and fi of the
transfer functions. This model is thus described by �ve structural parameters:
nb; nc; nd; nf; and nk and is known as the Box-Jenkins (BJ) model.

An important special case is when the properties of the disturbance signals
are not modeled, and the noise model H(q) is chosen to be H(q) � 1; that is,
nc = nd = 0. This special case is known as an output error (OE) model since
the noise source e(t) = v(t) will then be the di�erence (error) between the actual
output and the noise-free output.

A common variant is to use the same denominator for G and H :

F (q) = D(q) = A(q) = 1 + a1q
�1 + � � �+ anaq

�na (18)

Multiplying both sides of (14)-(17) by A(q) then gives

A(q)y(t) = B(q)u(t) + C(q)e(t) (19)

This model is known as the ARMAX model. The name is derived from the fact
that A(q)y(t) represents an AutoRegression and C(q)e(t) a Moving Average
of white noise, while B(q)u(t) represents an eXtra input (or with econometric
terminology, an eXogenous variable).

The special case C(q) = 1 gives the much used ARX model (3).

2.2 Non-linear Models

There is clearly a wide variety of non-linear models. One possibility that allows
inclusion of detailed physical prior information is to build non-linear state space
models, analogous to (12). Another possibility, sometime called \semi-physical
modeling" is to come up with new inputs, formed by non-linear transformations
of the original, measured u and y, and then deal with models, linear in these new
inputs. A third possibility is to construct black-box models by general function
expansions:

Non-linear Black-box Models

The mapping f can be parameterized as a function expansion

f(Zt�1; �) =

dX
k=1

�k�(�k('(t) � 
k)); '(t) = '(Zt�1) (20)

Here, ' is an arbitrary function of past data. However, in the most common
case, ' is given by (7). Moreover,� is a \mother basis function", from which the
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actual functions in the function expansion are created by dilation (parameter
�) and translation (parameter 
). For example, with � = cos we would get
Fourier series expansion with � as frequency and 
 as phase. More common are
cases where � is a unit pulse. With that choice, (20) can describe any piecewise
constant function, where the granularity of the approximation is governed by
the dilation parameter �. A related choice is a soft version of a unit pulse, such
as the Gaussian bell. Alternatively, � could be a unit step (which also gives
piecewise constant functions), or a soft step, such as the sigmoid.

Typically � is in all cases a function of a scalar variable. When ' is a column
vector, the interpretation of the argument of � can be made in di�erent ways:

� If � is a row vector �('�
) is a scalar, so the term in question is constant
along a hyperplane. This is called the ridge approach, and is typical for
sigmoidal neural networks.

� Interpreting the argument as k' � 
k� as a quadratic norm with the
positive semide�nite matrix � as a quadratic form, gives terms that are
constant on spheres (in the � norm) around 
. This is called the radial
approach. Radial basis neural networks are common examples of this.

� Letting � be interpreted as the product of �-functions applied to each
of the components of ', gives yet another approach, known as the ten-
sor approach. The functions used in (neuro-)fuzzy modeling are typical
examples of this.

See [5], Chapter 5 or [7] for more details around this interpretation of basis
functions.

3 Estimation Techniques

Once the model structure, i.e., the parameterized function f(Zt; �) has been
de�ned, and a data set ZN has been collected, the estimation of the parameter
� is conceptually simple: Minimize the distance between the predicted outputs
(according to parameter �) and the measured outputs:

�̂N = argmin
�
VN (�) (21)

VN (�) =

NX
t=1

`(y(t)� f(Zt�1; �)) (22)

Here ` is a suitable distance measure, such as `(") = k"k2. The connection to
the celebrated Maximum likelihood method is obtained by a particular choice of
norm: Assume that the data are produced by the mechanism

y(t) = f(Zt�1; �) + e(t) (23)

where fe(t)g is a sequence of independent random variables with probability
density function p(x). Then, with `(x) = � log p(x), the criterion (22) is the
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negative logarithm of the likelihood function for the estimation problem (apart

from �-independent terms). This makes �̂N equal to the maximum likelihood
estimate (MLE).

Numerical Issues

The actual calculation of the minimizing argument could be a complicated story,
with substantial computations, and possibly a complex search over a function
with several local minima. The numerical search is typically carried out using
the damped Gauss-Newton method, For the case of a scalar output and `(") =
1
2"

2, this takes the form

�̂(i+1) = �̂(i) � �iR
�1
i ĝi

ĝi = V 0

N (�̂
(i))

V 0

N (�) =
dVN (�)

d�
= � 1

N

NX
t=1

(y(t)� ŷ(tj�)) (t; �);

 (t; �) =
@

@�
ŷ(tj�)

Ri = V 00

N (�̂
(i)) � 1

N

NX
t=1

 (t; �̂(i)) T (t; �̂(i))

(24)

Here �i is a scalar, adjusted so that the criterion VN (�
(i+1)) < VN (�

(i)).
A thorough discussion of numerical issues of this minimization problem is

given in [5], Chapter 10, and in [3].

4 Convergence Properties

An essential question is, of course, what will be the properties of the estimate
resulting from (21). These will naturally depend on the properties of the data

record ZN . It is in general a diÆcult problem to characterize the quality of �̂N
exactly. One normally has to be content with the asymptotic properties of �̂N
as the number of data, N , tends to in�nity.

It is an important aspect of the general identi�cation method (21) that the
asymptotic properties of the resulting estimate can be expressed in general terms
for arbitrary model parameterizations.

The �rst basic result is the following one:

�̂N ! �� as N !1 where (25)

�� = argmin
�
E`("(t; �)) (26)

That is, as more and more data become available, the estimate converges to
that value ��, that would minimize the expected value of the \norm" of the
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prediction errors. This is in a sense the best possible approximation of the true
system that is available within the model structure. The expectation E in (26)
is taken with respect to all random disturbances that a�ect the data and it also
includes averaging over the input properties. This means, in particular, that ��

will make ŷ(tj��) a good approximation of y(t) with respect to those aspects of
the system that are enhanced by the input signal used.

The characterization of the limiting estimate can be more precise in the case
of a linear model structure. We distinguish between the cases of open and closed
loop data and will in the remainder of this section assume that the system is
single-input-single-output.

4.1 Linear Systems: Open Loop Data

Suppose that the data actually have been generated by

y(t) = G0(q)u(t) + v(t) (27)

where u and v are independent. This means that the input u has been generated
in open loop, i.e., independently of y. Let �u(!) be the input spectrum and
�v(!) be the spectrum of the additive disturbance v. Then the prediction error
can be written

"F (t; �) =
1

H(q; �)
[y(t)�G(q; �)u(t)] =

1

H(q; �)
[(G0(q)�G(q; �))u(t) + v(t)] (28)

By Parseval's relation, the prediction error variance can also be written as an
integral over the spectrum of the prediction error. This spectrum, in turn, is
directly obtained from (28), so the limit estimate �� in (26) can also be de�ned
as

�� = argmin
�

�Z �

��

jG0 �G�j2�u(!)

jH�j2 d!

+

Z �

��

�v(!)=jH�j2d!
� (29)

Here we used for short G� = G(ei! ; �) etc.
If the noise model H(q; �) = H�(q) does not depend on � (as in the output

error model) the expression (29) thus shows that the resulting model G(ei!; ��)
will give that frequency function in the model set that is closest to the true one,
in a quadratic frequency norm with weighting function

Q(!) = �u(!)=jH�(e
i!)j2 (30)

This shows clearly that the �t can be a�ected by the input spectrum �u and
the noise model H�.
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4.2 Linear Systems: Closed Loop Data

Assume now that the data has been generated from (27), but the input has been
partly determined by output feedback, e.g., as

u(t) = r(t) � Fy(q)y(t) (31)

Moreover, the noise is supposed to be described by

v(t) = H0(q)e(t) (32)

where e is white noise with variance �. The reference (set point) signal r is sup-
posed to be independent of the noise e. Using this fact, together with Parseval's
relation as above, gives the following result:

�� = argmin
�

Z �

��

[jG0 +B� �G�)j2�u + jH0 �H�j2�r
e]=jH�j2d! (33)

where

B� = (H0 �H�) ��ue=�u (34)

�r
e = �� j�euj2=�u (35)

Here �ue is the cross spectrum between e and u, which in the case of (31)-(32)
will be

�ue(!) = �� Fy(e
i!)H0(e

i!)

1 + Fy(ei!)G0(ei!)
(36)

The result (33) contains important information:

� If there exists a �0 such that H0 = H�0 and G0 = G�0 , then this value is
always a possible convergence point. If �r

e > 08! (which, according to
(36) means that u cannot be determined entirely from e by linear �ltering)
then this is the only possible convergence point.

� If H� cannot achieve the value H0 (e.g. if H� is �xed as in an output
error model), and �ue 6= 0, then there is a bias pull B� away from the
true transfer function G0. It is consequently necessary that also the noise
model can be correctly described in the model structure in order to obtain
an unbiased transfer function estimate in case of closed loop data.

The main conclusion is, however, that the prediction error method, applied in
a straightforward fashion, paying no attention to possible feedback e�ects, will
provide unbiased estimates, whenever the true system is contained in the model
set. The only requirement is that the input u should not be formed from e only
by linear time-invariant �ltering.
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5 Asymptotic Distribution

Once the convergence issue has been settled, the next question is how fast the
limit is approached. This is dealt with by considering the asymptotic distri-
bution of the estimate. The basic result is the following one: If f"(t; ��)g is

approximately white noise, then the random vector
p
N(�̂N � ��) converges

in distribution to the normal distribution with zero mean and the covariance
matrix of �̂N is approximately given by

P� = �[E (t) T (t)]�1 (37)

where

� = E"2(t; ��)

 (t) =
d

d�
ŷ(tj�)j�=��

(38)

This means that the convergence rate of �̂N towards �� is 1=
p
N . Think of  as

the sensitivity derivative of the predictor with respect to the parameters. It is
also used in the actual numerical search algorithm (24) Then (37) says that the

covariance matrix for �̂N is proportional to the inverse of the covariance matrix
of this sensitivity derivative. This is a quite natural result.

The result (37) - (38) is general and holds for all model structures, both
linear and non-linear ones, subject only to some regularity and smoothness
conditions. They are also fairly natural, and will give the guidelines for all user
choices involved in the process of identi�cation. Of particular importance is that
the asymptotic covariance matrix (37) equals the Cram�er-Rao lower bound, if
the disturbances are Gaussian. That is to say, prediction error methods give
the optimal asymptotic properties. See [5] for more details around this.

6 Use of Prediction Error Methods

The family of prediction error methods has the advantage of being applicable
to a wide variety of model structures. It also handles closed loop data in a
direct fashion and gives the best possible results (minimal covariance matrix),
provided the model structure contains the true system. The approximation
properties when the true system cannot be achieved in the model structure are
also well understood.

Several software packages that implement these techniques are available, e.g.,
[6], and many successful applications have been reported.

The main drawback of the prediction error methods is that the numerical
search in (24) may be laborious and require good initial parameter values. For
multivariable, linear black-box state space models it is therefore very useful to
combine the use of prediction error methods with so called sub-space methods,
(e.g. [9]).
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