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Abstract—This paper presents a batch estimation method for
Simultaneous Localization and Mapping (SLAM) using the Pre-
diction Error Method (PEM). The estimation problem considers
landmarks as parameter while treating dynamics using state
space models. The gradient needed for parameter estimation is
computed recursively using an Extended Kalman Filter (EKF).
Results using simulations with a monocular camera and inertial
sensors are presented and compared to a Nonlinear Least-
Squares (NLS) estimator. The presented method produce both
lower RMSE’s and scale better to the batch length.

I. INTRODUCTION

This paper investigates the use of the Prediction Error
Method (PEM), see e.g., [1], as a way to utilize the particular
structure of Nonlinear Least-Squares (NLS) problems encoun-
tered in Simultaneous Localization And Mapping (SLAM).
The aim in SLAM is to estimate a moving platform’s position
and orientation while mapping the observed environment,
[2, 3]. A strong trend in SLAM algorithm research is (incre-
mental) batch optimisation which usually solves some form of
NLS problem [4–8]. These often suffers from poor complexity
scaling, usually quadratic in batch length as both motion of
the platform and landmarks are considered as parameters.
The idea behind using PEM is to model the landmarks as
(static) parameters included in the dynamic model used for the
platform’s motion which is modeled as dynamic states. This
is a classic system identification setup and PEM is one, rather
standard and successful, way of estimating the parameters of
the system [1]. The main advantage of this approach is that
problem is split into an optimisation part, where landmarks
are estimated, and predictor part, where the output of the
system (measurements) is predicted. This is done utilizing the
time series nature of data through a filter which also output
a complete state trajectory estimate. This property allows
also for the gradient of the predictor w.r.t. parameters to be
calculated recursively (for a particular choice of the predictor)
so that no numerical gradients are necessary. This approach
is different from both the standard EKF-SLAM approach,
[2], where both the platform’s motion and the landmarks are
considered as states and NLS approaches where everything is
considered as parameters. This split into two parts allows for

computation complexity reduction, the optimisation problem
is smaller (in the number of parameters) than NLS problem,
and the prediction problem is smaller than usual EKF-SLAM
problem since the number of states is constant. Basically, the
optimisation problem will scale with the number of parameters
(landmarks) and the predictor part will scale linearly with
the batch length (time steps). This complexity reduction is
the main motivation behind using PEM as an estimation
method for SLAM, and this will be demonstrated with the
empirical experiments comparing PEM and NLS complexities.
Since both PEM and NLS approaches are optimisation ones
while EKF-SLAM is a filtering approach without gradient or
Jacobian calculation and no comparison with it is done.

The outline of the paper is the following; In Section II a
brief description of PEM and the model structure is given;
In Section III present expressions for a recursive gradient
computation using EKF; In Section IV the example models
that are used for evaluation are presented; In Section V Monte
Carlo simulation results are presented and compared to NLS-
SLAM, as well as some empirical computation complexity
comparison to NLS-SLAM; Section VI ends the paper with
conclusions and directions for future work.

II. THE PREDICTION ERROR METHOD

Assume that measurements, {yt}Nt=1, from a dynamic sys-
tem are available. Suppose also that a model of this system is
parametrised with some (unknown) parameters, θ, and that we
want to estimate these using PEM. This is done by minmising
the sum of the squared prediction errors

V (θ) =
1

2N

N∑
t=1

‖yt − ŷt|t−1(θ)‖22 (1)

as

θ̂ = arg min
θ

V (θ) (2)

where ŷt|t−1(θ) are the (parameter dependent) predicted mea-
surements of the system at time t given all the information
until time t− 1. The exact choice of the predictor to produce
these is usually a matter of the nature of the system that is



considered. The formulation above is a standard nonlinear
least-squares problem and any NLS method, such as the
Levenberg-Marquardt method [9, 10], can be used to solve
it. In this context it is quite advantageous if the predictor is an
analytical function of the parameters and if its gradient w.r.t.
to parameters is available, because that both simplifies and
speeds up the iterative optimisation procedure, compared to
using numerical methods for calculating the gradient.

A quite general system description is a discrete-time non-
linear state space model of the form

xt+1 = ft(xt, ut, wt, θ) (3a)

yt = ht(xt, θ) + et (3b)

where the state dynamics is modeled with the function ft( · ),
ut is the known input, wt is an unknown system noise, the
measurement to state relation is represented with function
ht( · ), and et is the measurement noise. In general, it is
assumed that both the dynamics and measurement equation
are dependent on parameters θ, which is explicitly expressed
in the equations. Given this model, any nonlinear filter can be
used to produce the predicted measurements that is used in
the optimisation procedure. In this particular case we will use
EKF in a similar manner to e.g., [11, 12]. EKF as a predictor
has an advantage because it is simple to implement and has
a possibility to explicitly calculate the gradient of the loss
function.

III. EKF WITH RECURSIVE GRADIENT CALCULATION

In the following section we will give expressions for the
time and measurement updates in the EKF together with the
recursive calculations needed to obtain the gradient of the
loss function in (1). The time update from the EKF gives a
predicted state estimate at time t given all the measurements
up to time t− 1, x̂t|t−1. This prediction of the state together
with the measurement model in (3b) can be used to obtain
the predicted measurement needed for the PEM loss function,
namely ŷt|t−1(θ) = ht(x̂t|t−1(θ), θ). This relation will be used
in the continuation to derive all the necessary expressions that
are used. Notice also that prediction of the state depends on
the parameters, which is a consequence of the EKF estimation
procedure.

For the functions that are dependent on both states and
parameters, there will be two different gradients/Jacobians, one
dependent on the states and one dependent on the parameters.
For the ones dependent on the states we will suppress the
dependence notation, while it will not be suppressed for the
parameters dependence or when it is important to emphasize
the dependence. For example, for function h(x, θ), the Jaco-
bian w.r.t. x will only be called H , while the Jacobian w.r.t.
θ will be called Hθ.

The gradient of (1) w.r.t. a parameter θ is

∂

∂θ
V (θ) =

1

2N

N∑
t=1

∂

∂θ
‖yt − ht(x̂t|t−1(θ), θ)‖22

=
1

N

N∑
t=1

JTt rt (4)

where

rt = yt − ht(x̂t|t−1(θ), θ) (5a)

Jt =
∂rt
∂θ

= −∂ht(x, θ)
∂x

∂x

∂θ
− ∂ht(x, θ)

∂θ

∣∣∣∣
x=x̂t|t−1(θ)

. (5b)

In the continuation we will denote the Jacobian of the mea-
surement function w.r.t. the states as

∂ht(x, θ)

∂xt

∣∣∣∣
x=x̂t|t−1(θ)

= Ht (6)

and the Jacobian of the measurement function w.r.t. the
parameters as

∂ht(x, θ)

∂θ

∣∣∣∣
x=x̂t|t−1(θ)

= Ht,θ. (7)

The Jacobian of the state vector w.r.t. the parameters is given
by the term

∂x

∂θ

∣∣∣∣
x=x̂t|t−1(θ)

= Xt,θ. (8)

This notation gives that (5b) can be written as

Jt = −HtXt,θ −Ht,θ. (9)

The only term above that does not have an explicit expression
is Xt,θ. However, due to the recursive nature of the EKF,
this term can be calculated in a recursive fashion in the time
update. In the next subsections, the necessary equations in
order to calculate all the needed terms are given.

A. Time Update

The time update step in EKF is

x̂t|t−1(θ) = f(x̂t−1|t−1(θ), ut, θ) (10a)

Pt|t−1(θ) = Ft−1(θ)Pt−1|t−1(θ)Ft−1(θ)T +Qt−1(θ) (10b)

Ft−1(θ) =
∂f(x, u, θ)

∂x

∣∣∣∣
u=ut, x=x̂t−1|t−1(θ)

(10c)



where we have explicitly given parameter θ dependence. Given
these equations, the Jacobians are

Xt,θ =
∂f(x, u, θ)

∂x

∂x

∂θ
+
∂f(x, u, θ)

∂θ

∣∣∣∣
u=ut, x=x̂t−1|t−1(θ)

=Ft−1(θ)X̃t−1,θ + Ft−1,θ (11a)

Pt|t−1,θ =Ft−1,xθPt−1|t−1F
T
t−1 + Ft−1Pt−1|t−1,θF

T
t−1

+ Ft−1Pt−1|t−1F
T
t−1,xθ +Qt−1,θ (11b)

Qt−1,θ =
∂Qt−1
∂x

∂x

∂θ

∣∣∣∣
x=x̂t−1|t−1(θ)

= Qt−1,xX̃t−1,θ (11c)

Ft−1,xθ =
∂Ft−1
∂x

∂x

∂θ

∣∣∣∣
x=x̂t−1|t−1(θ)

= Ft−1,xX̃t−1,θ (11d)

where we have defined X̃t−1,θ as the Jacobian of the mea-
surement updated state estimate x̂t−1|t−1. These expressions
give a recursive update of the time updated state Jacobian,
Xt,θ, and its covariance matrix, Pt|t−1,θ, where measurement
updated quantities from the previous timestep are used.

B. Measurement Update

The EKF measurement update is given by

x̂t|t(θ) = x̂t|t−1(θ) +Kt(θ)rt(θ) (12a)

Pt|t(θ) = Pt|t−1(θ)−Kt(θ)Ct(θ)
T (12b)

rt(θ) = yt − ht(x̂t|t−1(θ), θ) (12c)

Kt(θ) = Pt|t−1(θ)Ht(θ)
T (Ht(θ)Pt|t−1(θ)Ht(θ)

T +Rt)
−1

= Ct(θ)St(θ)
−1 (12d)

Ct(θ) = Pt|t−1(θ)Ht(θ)
T (12e)

St(θ) = Ht(θ)Pt|t−1(θ)Ht(θ)
T +Rt. (12f)

Following the same principle as for time update, the Jacobians
of the measurement updated state and its covariance are

X̃t,θ =
∂x̂t|t−1

∂θ
+
∂Kt

∂θ
rt +Kt

∂rt
∂θ

= Xt,θ +Kt,θrt +KtJt (13a)

Pt|t,θ = Pt|t−1,θ −Kt,θC
T
t −KtC

T
t,θ (13b)

and Xt,θ and Pt|t−1,θ are available from the previous time
update iteration. The Jacobian of the loss function, Jt, is
calculated according to (9).

In the above calculations the terms Kt,θ and CTt,θ are
needed, and by using their definitions the following expres-
sions are obtained

Kt,θ = Ct,θS
−1
t − CtS−1t St,θS

−1
t (14a)

CTt,θ = HtPt|t−1,θ +Ht,xθPt|t−1 (14b)

as well as

Ct,θ = Pt|t−1,θH
T
t + Pt|t−1H

T
t,xθ (15a)

St,θ = Ht,xθCt +HtCt,θ. (15b)

Algorithm 1 Time Update step with Jacobian calculation.

Require: θ̂, x̂t−1|t−1, Pt−1|t−1, X̃t−1,θ, Pt−1|t−1,θ, ut
Ensure: x̂t|t−1, Pt|t−1, Xt,θ, Pt|t−1,θ

x̂t|t−1 = f(x̂t−1|t−1, ut, θ̂)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Qt−1

Xt,θ = Ft−1X̃t−1,θ + Ft−1,θ
Qt−1,θ = Qt−1,xX̃t−1,θ
Ft−1,xθ = Ft−1X̃t−1,θ
Pt|t−1,θ = Ft−1,xθPt−1|t−1F

T
t−1 + Ft−1Pt−1|t−1,θF

T
t−1

+Ft−1Pt−1|t−1F
T
t−1,xθ +Qt−1,θ

C. Multirate treatment

In many cases, the time update step is performed in a faster
rate than the measurement update, where it is even possible to
have different measurements with different rates. For example
if the available sensors are the inertial measurement unit (IMU)
and camera, the data from IMU is usually available in a higher
rate than camera images. The same updates are performed even
in that case, but if the measurements are not available at a
certain time, only the time update is performed at that time and
the state estimate, covariance and their Jacobians are simply
copied from predicted to measurement update according to

x̂t|t = x̂t|t−1 (16a)

Pt|t = Pt|t−1 (16b)

X̃t,θ = Xt,θ (16c)

Pt|t,θ = Pt|t−1,θ. (16d)

Basically, these boil down to a recursive state, covariance
and their Jacobians update according to Algorithms 1 and 2.
These calculations give the residual and Jacobian of the loss
function that can be used in any NLS solver.

IV. MODELS

In this section the models that are used for estimation
of the states and parameters in the SLAM problem will be
specified. The sensors of interest are monocular camera and
6-DOF inertial sensors, i.e., gyroscopes and accelerometers. To
reduce the size of state space the inertial sensors are considered
as inputs to state dynamics. A minimal 3D point landmark
parametrisation is used and its measurement function is given
by the pinhole projection model.

A. State Dynamics

The gyroscope and accelerometer signals are considered to
be inputs to the process model. The gyroscope signals are
denoted uω = [uωx , u

ω
y , u

ω
z ]T where the subscript refers to each

axis of the body frame. Similarly the accelerometer signals are
denoted ua = [uax, u

a
y, u

a
z]
T . Both of these are measured in the



Algorithm 2 Measurement Update step with Jacobian calcu-
lation.
Require: θ̂, x̂t|t−1, Pt|t−1, Xt,θ, Pt|t−1,θ
Ensure: x̂t|t, Pt|t, X̃t,θ, Pt|t,θ

if Measurements yt available then
Note: The calculations below are done only for the
observed landmarks
Calculate the Jacobian of the loss function
Jt = −HtXt,θ −Ht,θ

Perform the Measurement Update
rt = yt − ht(x̂t|t−1, θ̂)
Ct = Pt|t−1H

T
t

St = HtCt +Rt
Kt = CtS

−1
t

x̂t|t = x̂t|t−1 +Ktrt
Pt|t = Pt|t−1 −KtC

T
t

Ct,θ = Pt|t−1,θH
T
t + Pt|t−1H

T
t,xθ

CTt,θ = HtPt|t−1,θ +Ht,xθPt|t−1
St,θ = Ht,xθCt +HtCt,θ
Kt,θ = Ct,θS

−1
t − CtS−1t St,θS

−1
t

X̃t,θ = Xt,θ +Kt,θrt +KtJt
Pt|t,θ = Pt|t−1,θ −Kt,θC

T
t −KtC

T
t,θ

else
No measurements available, only copy the predicted
quantities
x̂t|t = x̂t|t−1
Pt|t = Pt|t−1
X̃t,θ = Xt,θ

Pt|t,θ = Pt|t−1,θ
end if

sensor body frame. A discretised process model for the three-
dimensional position, velocity and rotation, [pTt , v

T
t , q

T
t ]T , in

the local navigation frame is then

pt+1 = pt + Tvt +
T 2

2
RT (qt)

(
uat + gb + wa

t

)
(17a)

vt+1 = vt + T RT (qt)
(
uat + gb + wa

t

)
(17b)

qt+1 = exp

(
T

2
Sω(uωt + wωt )

)
qt (17c)

where T denotes the sampling interval, R(qt) is a rota-
tion matrix parametrisation of the unit quaternion qt =

[q0t , q
1
t , q

2
t , q

3
t ]T which describes the rotation from navigation

to body frame, gb = R(qt)g
n, is the gravity expressed in

the body frame, gn = [0, 0,−g] is the local gravity vector
expressed in the navigation frame where g ≈ 9.82 and exp( · )
is here considered as the matrix exponential. The noise terms
are assumed Gaussian and independent [(wa

t )
T , (wωt )T ]T =

wt ∼ N (0, diag (Qa, Qω)) = N (0, Q). The skew-symmetric

matrix

Sω(u) =


0 −ux −uy −uz
ux 0 uz −uy
uy −uz 0 ux
uz uy −ux 0

 (18)

parametrises the quaternion dynamics. This parametrisation
is very similar to reduced-dimension observers in [13]. It is
worth noticing that in this case, the dynamics of the system is
independent of the landmarks (parameters θ) which simplifies
the recursive calculation of the Jacobian a bit. In this case, the
term ∂f/∂θ = Fθ is omitted from (11a).

B. Camera Measurements

The monocular camera is modeled as a standard pinhole
camera, see cf. [14]. The camera calibration matrix and lens
distortion were estimated prior to usage. Since the calibration
and distortion are known the undistorted pixels can be pre-
multiplied with the inverse of the camera matrix, thus the
camera then works as a projective map in Euclidean space,
P : R3 → R2. The projection is defined as P ([X,Y, Z]) =

[X/Z, Y/Z] and the Z coordinate is assumed positive and non-
zero since otherwise the point would be behind the camera.
Then a normalised camera measurement, yt = [ut, vt]

T , of a
landmark, θ, at time t is

yt = P (R(qt)(θ−pt)) + et (19)

which relates the pose (position and orientation) of the camera
to the 3D location of the point. The measurement noise is
assumed i.i.d. Gaussian, et = [eut , e

v
t ]
T ∼ N (0, R). The

correspondence variables at time t, Ct = {cit} ⊆ {1, . . . ,M},
encode the measurement-landmark assignment, yit ↔ θc

i
t . This

gives that all observed landmarks at time t are defined as a
set Mt =

{
θc

i
t
}

where cit = j if measurement i corresponds
to landmark j. At time t the stacked measurement equation,
for all observed landmarks at that time, is then

u1t
v1t
...
uNt
t

vNt
t


︸ ︷︷ ︸
ycam
t

=


P
(
R(qt)(θ

c1t −pt)
)

...

P
(
R(qt)(θ

c
Nt
t −pt)

)


︸ ︷︷ ︸
ht(xt,Mt)

+


e1ut
e1vt

...
eNt u
t

eNt v
t


︸ ︷︷ ︸
ecam
t

(20)

where Nt is the number of landmark measurements at time
t and ecam

t ∼ N (0, Rcam). Rcam is a diagonal matrix since
all the measurements are assumed to be mutual independent.
Note also that first three columns of Ht are equal to −Ht,θ

in (9), due to the structure of the measurement function (19).
Solving the correspondence problem in order to find Ct

is outside the scope for this work and is here assumed to
be correctly solved. However, in practical applications this
assumption cannot be guaranteed causing outliers of some
kind. These faulty associations will in general bias the PEM-
SLAM estimate (just like in any other SLAM method) and
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Fig. 1: Environment setup used in simulated experiments.

some kind of outlier rejection technique should be applied. The
alternative can also be a robust norm applied in loss function
(1) instead of usual 2-norm, see [1].

V. RESULTS

The performance of the method is demonstrated with Monte
Carlo (MC) simulations with the synthetic setup according to
Figure 1. Trajectory consists of 205 images at 4Hz and 2050
acceleration and angular rate measurements at 40Hz which
gives the total trajectory duration time of 51.25s.

The results based on the 50 MC simulations for both PEM-
SLAM and NLS-SLAM, where the noise on the accelerations,
angular rates and camera measurements is varied, are shown
in Figure 2 for the trajectory and the landmarks, respectively.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Position RMSE (PEM−SLAM and NLS−SLAM)

X
 [

m
]

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Y
 [

m
]

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

Z
 [

m
]

Time [s]

(a) RMS error for the trajectory estimated with PEM-SLAM (solid line) and
NLS-SLAM (dashed line) based on 50 MC simulations.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Landmark RMSE (PEM−SLAM and NLS−SLAM)

X
 [

m
]

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Y
 [

m
]

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Z
 [

m
]

Landmark Number

(b) RMS error for all the landmarks estimated with PEM-SLAM (solid line
with circles) and NLS-SLAM (dashed line with crosses) for each coordinate
based on 50 MC simulations.

Fig. 2: RMS errors for the trajectory and landmarks based on
50 MC simulations for both PEM-SLAM and NLS-SLAM.

The noise is sampled from the Gaussian distribution with
zero mean and standard deviations σa = 1 · 10−3 [m/s

2
],

σω = 1 · 10−4 [o/s] and σcam = 1 · 10−4 [m]. For the
comparison of the execution speed between PEM-SLAM and
NLS-SLAM an empirical experiment is done and the resulting
times are shown in Figure 3. The comparison is done for the
calculation of one iteration step for each method, i.e., the
time to calculate the loss function value and the Jacobian.
The depicted surface is the ratio between the execution time
for NLS-SLAM and PEM-SLAM as a function of batch
length (basically the number of images) and the number of
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where the time for NLS is greater than the time for PEM, i.e.,
when the value is larger than 1.

landmarks. Note that the performance will actually depend
on the number of observed landmarks since usually only a
portion of the total number is observed in each image (see
(20)). In order to get an explicit dependence on the number of
landmarks, the simulations are performed in such a way that
all the landmarks are observed in every image and this can be
seen as a worst case scenario. It can be seen that PEM-SLAM
is getting faster when batch length is increasing compared to
number of landmarks. This is very interesting result, since the
batch length is something that is usually given and fixed and
not much can be done about it, while the number of landmarks
can be controlled by the user.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented how a system identification
method, PEM, can be applied to a SLAM problem. This
is achieved by considering the map, modeled as discrete
landmarks, as parameters in the system, and the motion of
the platform as dynamic states. This kind of separation allows
for computation complexity reduction compared to other batch
methods, like EKF-SLAM or NLS-SLAM. The estimation
performance is evaluated with MC simulations on an iner-
tial/visual synthetic and compared to NLS-SLAM, showing
the comparable performance.

Furthermore, PEM-SLAM formulation allows for Moving
Horizon adaption, opening for online algorithms, which will
be the next step of this work.
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APPENDIX

The expressions for the Jacobians that are not calculated
recursively nor implicitly are given in this Appendix. These
Jacobians are Ft−1, Ht, Ht,θ, Ht,xθ and Qt,x. First we define
some auxiliary expressions that are used; the rotation matrix
R(q) as a function of the quaternion is (columnwise)

R:,1(q) =

(q0)2 + (q1)2 − (q2)2 − (q3)2

2(q1q2 − q0q3)

2(q1q3 + q0q2)

 (21a)

R:,2(q) =

 2(q1q2 + q0q3)

(q0)2 − (q1)2 + (q2)2 − (q3)2

2(q2q3 − q0q1)

 (21b)

R:,3(q) =

 2(q1q3 − q0q2)

2(q2q3 + q0q1)

(q0)2 − (q1)2 − (q2)2 + (q3)2

 (21c)

and its Jacobian with respect to q, ∂ R /∂q, (which is a 3×3×4

tensor), is

∂ R

∂q0
= 2

 q0 q3 −q2
−q3 q0 q1

q2 −q1 q0

 (22a)

∂ R

∂q1
= 2

q1 q2 q3

q2 −q1 q0

q3 −q0 −q1

 (22b)

∂ R

∂q2
= 2

−q2 q1 −q0
q1 q2 q3

q0 q3 −q2

 (22c)

∂ R

∂q3
= 2

−q3 q0 q1

−q0 −q3 q2

q1 q2 q3

 . (22d)

The Jacobian of the state dynamics (17) w.r.t. the states is

Ft−1 =

I3 TI3
T 2

2
∂ RT

∂qt−1
(uat−1 + gb)

0 I3 T ∂ RT

∂qt−1
(uat−1 + gb)

0 0 exp
(
T
2 Sω(uωt−1)

)
 . (23)

In order to calculate the Jacobian of the measurement equation
(19) some auxiliary variables are defined as

δ = θ − p (24a)

δcam = R(q)δ (24b)
∂δcam

∂p
= ∆cam

p = −R(q) (24c)

∂δcam

∂q
= ∆cam

q =
∂ R(q)

∂q
δ = R′ δ. (24d)



Note that (24d) is a 3 × 1 × 4 tensor. These give now the
expression for the Jacobian w.r.t. states for one landmark
measurement as

HT =

1

(δcam
3 )2



−R1,1 δ
cam
3 + δcam

1 R3,1 −R2,1 δ
cam
3 + δcam

2 R3,1

−R1,2 δ
cam
3 + δcam

1 R3,2 −R2,2 δ
cam
3 + δcam

2 R3,2

−R1,3 δ
cam
3 + δcam

1 R3,3 −R2,3 δ
cam
3 + δcam

2 R3,3

0 0

0 0

0 0

∆cam
q,1,1δ

cam
3 − δcam

1 ∆cam
q,3,1 ∆cam

q,2,1δ
cam
3 − δcam

2 ∆cam
q,3,1

∆cam
q,1,2δ

cam
3 − δcam

1 ∆cam
q,3,2 ∆cam

q,2,2δ
cam
3 − δcam

2 ∆cam
q,3,2

∆cam
q,1,3δ

cam
3 − δcam

1 ∆cam
q,3,3 ∆cam

q,2,3δ
cam
3 − δcam

2 ∆cam
q,3,3

∆cam
q,1,4δ

cam
3 − δcam

1 ∆cam
q,3,4 ∆cam

q,2,4δ
cam
3 − δcam

2 ∆cam
q,3,4


.

(25)

The Jacobian Ht,θ, i.e., the one w.r.t. landmark, is simply

HT
θ =

1

(δcam
3 )2

R1,1 δ
cam
3 − δcam

1 R3,1 R2,1 δ
cam
3 − δcam

2 R3,1

R1,2 δ
cam
3 − δcam

1 R3,2 R2,2 δ
cam
3 − δcam

2 R3,2

R1,3 δ
cam
3 − δcam

1 R3,3 R2,3 δ
cam
3 − δcam

2 R3,3

 (26)

The Jacobian of H w.r.t. θ, Hxθ, is more complicated and here
we give a compact expression for its elements. The dimension
of the Jacobian is 2×10×3 and we shall denote the elements
of it as Hxθ(i, j, k) where i = 1 : 2, j = 1 : 10 and k = 1 : 3.
Elements where j = 4 : 6 are all zeros for all i and k, while
for j = 1 : 3 we have

Hxθ(i, j, k) =
1

(δcam
3 )2

(
Ri,j R3,k +R3,j

(
Ri,k −2

δcam
i

δcam
3

R3,k

))
(27)

and for j = 7 : 10 we have

Hxθ(i, j, k) =
1

(δcam
3 )2

(
δcam
3 R′i,k,j−6−∆cam

q,i,j−6 R3,k −

− Ri,k ∆cam
q,3,j−6 − δcam

i R′3,k,j−6−

− 2
δcam
i

δcam
3

∆cam
q,3,j−6 R3,k

)
. (28)

The last Jacobian needed is Qx, and in order to calculate it
we will define the state noise covariance as

Q = BQ̄BT (29)

where Q̄ is a constant 6× 6 matrix defined as

Q̄ =

[
σaI3 0

0 σωI3

]
(30)

and the matrix B is

B =

T
2

2 R(q)T 0

T R(q)T 0

0 T
2 S̃(q)

 (31)

with the matrix S̃(q) defined as

S̃(q) =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 . (32)

This matrix is used in the B matrix due to the approximation
of the quaternion dynamics in (17c) with a first order Taylor
expansion and bi-linearity of the resulting expression. Now the
Jacobian of the state noise covariance can be expressed as

Qx = BxQ̄B
T +BQ̄BTx . (33)

Bx is 10 × 6 × 10 tensor where only elements 7:10 in third
dimension are non-zero (since B is function of the quaternions
only). This gives that Bx, for these elements, is

Bx(:, :, 7 : 10) =

T
2

2 R′ 0

T R′ 0

0 T
2 S̃
′

 (34)

and S̃′ = ∂S̃/∂q is simply

∂S̃

∂q0
=


0 0 0

1 0 0

0 1 0

0 0 1

 (35)

∂S̃

∂q1
=


−1 0 0

0 0 0

0 0 −1

0 1 0

 (36)

∂S̃

∂q2
=


0 −1 0

0 0 1

0 0 0

−1 0 0

 (37)

∂S̃

∂q3
=


0 0 −1

0 −1 0

1 0 0

0 0 0

 . (38)
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