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Summary. We discuss prediction of random effects and of expected responses in multilevel
generalized linear models. Prediction of random effects is useful for instance in small area
estimation and disease mapping, effectiveness studies and model diagnostics. Prediction of
expected responses is useful for planning, model interpretation and diagnostics. For prediction
of random effects, we concentrate on empirical Bayes prediction and discuss three different
kinds of standard errors; the posterior standard deviation and the marginal prediction error
standard deviation (comparative standard errors) and the marginal sampling standard devi-
ation (diagnostic standard error). Analytical expressions are available only for linear models
and are provided in an appendix. For other multilevel generalized linear models we present
approximations and suggest using parametric bootstrapping to obtain standard errors. We also
discuss prediction of expectations of responses or probabilities for a new unit in a hypotheti-
cal cluster, or in a new (randomly sampled) cluster or in an existing cluster. The methods are
implemented in gllamm and illustrated by applying them to survey data on reading proficiency
of children nested in schools. Simulations are used to assess the performance of various pre-
dictions and associated standard errors for logistic random-intercept models under a range of
conditions.
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1. Introduction

Multilevel generalized linear models are generalized linear models that contain multivariate

normal random effects in the linear predictor. Such models are also known as hierarchical gen-

eralized linear models or generalized linear mixed (effects) models. A common special case is

multilevel linear models for continuous responses. The random effects represent unobserved

heterogeneity and induce dependence between units nested in clusters. In this paper we dis-

cuss prediction of random effects and expected responses, including probabilities, for multilevel

generalized linear models.

There are several reasons why we may want to assign values to the random effects for indi-

vidual clusters. Predicted random effects can be used for inference regarding particular clusters,

e.g. to assess the effectiveness of schools or hospitals (e.g. Raudenbush and Willms (1995) and

Goldstein and Spiegelhalter (1996)) and in small area estimation or disease mapping (e.g. Rao
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(2003)). Another important application is in model diagnostics, such as checking for violations

of the normality assumption for the random effects (e.g. Lange and Ryan (1989)) or finding

outlying clusters (e.g. Langford and Lewis (1998)).

There is a large literature on prediction of random effects and responses in multilevel linear

models. Contributions from a frequentist stance include Swamy (1970), Rosenberg (1973), Rao

(1975), Harville (1976), Ware and Wu (1981), Strenio et al. (1983), Kackar and Harville (1984),

Reinsel (1984, 1985), Bondeson (1990), Candel (2004, 2007), Afshartous and de Leeuw (2005)

and Frees and Kim (2006). References with a Bayesian perspective include Lindley and Smith

(1972), Smith (1973), Fearn (1975) and Strenio et al. (1983). There are also relevant sections in

the books by Searle et al. (1992), Vonesh and Chincilli (1997), Demidenko (2004), Jiang (2007)

and McCulloch et al. (2008). A limitation of much of this work is a failure clearly to delineate

different notions of uncertainty regarding predictions and to discuss which are appropriate for

various purposes. Notable exceptions include Laird and Ware (1982) and in particular Goldstein

(1995, 2003).

Compared with the linear case, there are few contributions regarding prediction of random

effects in multilevel generalized linear models with other links than the identity. The reason

may be that this case is considerably more challenging since results cannot be derived by matrix

algebra and expressed in closed form. Insights from the literature on prediction of latent vari-

ables in the closely related item response models are hence useful. In this paper we briefly review

various approaches to assigning values to random effects in multilevel generalized linear mod-

els, present different standard errors for empirical Bayes predictions of random effects and

discuss the purposes for which each standard error is appropriate. We recommend using the

posterior standard deviation as standard error for inferences regarding the random effects of

specific clusters. We also suggest computationally efficient approximations for standard errors

of empirical Bayes predictions in non-linear multilevel models as well as a computationally

intensive parametric bootstrapping approach.

Predictions of expected responses, or response probabilities, are also often required. These

are useful for interpreting and visualizing estimates for multilevel models using graphs. For

example, in logistic regression models, the regression coefficients can be difficult to interpret,

and we may want to explore the ‘effects’ of covariates on predicted probabilities. Furthermore,

planning may require predictions of the responses of new units in existing clusters or in new

clusters. For example, a credit card holder may apply for an extended limit on his credit card.

In this case the financial institution may want to predict the probability that the applicant will

default on his payment on the basis of his payment history. Regarding prediction of expected

responses with non-linear link functions, we are not aware of any work apart from a few con-

tributions in the literature on small area estimation (e.g. Farrell et al. (1997) and Jiang and

Lahiri (2001)), a theoretical paper by Vidoni (2006) and some applied papers (e.g. Rose et al.

(2006)). We point out that it is important to distinguish between different kinds of predictions,

for instance whether a prediction concerns a new unit in a hypothetical cluster, or in a randomly

sampled new cluster or in an existing cluster.

The plan of this paper is as follows. We start by introducing multilevel linear and generalized

linear models in Section 2. In Section 3 we estimate a random-intercept model to investigate the

contextual effect of socio-economic status (SES) on reading proficiency by using data from the

‘Program for international student assessment’ (PISA). We then discuss prediction of random

effects in Section 4 and different kinds of standard errors that are associated with such predic-

tions in Section 5. These methods are applied to the PISA data in Section 6. In Section 7 we

describe prediction of different kinds of expected responses and their uncertainty and apply the

methods to the PISA data in Section 8. In Section 9 we investigate the performance of some of
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the proposed methods using Monte Carlo simulations. Finally, we close the paper with some

concluding remarks.

The PISA data and the Stata ‘do file’ to perform the analysis that are presented in the paper

can be obtained from

http://www.blackwellpublishing.com/rss/SeriesA.htm

2. Multilevel linear and generalized linear models

We restrict discussion to two-level models because the notation becomes unwieldy for higher

level models. However, the ideas that are presented here can be extended to models with more

than two levels. It is useful to introduce multilevel linear models briefly before discussing the

generalized linear counterparts.

2.1. Multilevel linear models

For the response yij of unit i in cluster j, the two-level linear model can be expressed as

yij =x′
ijβ+ z′

ijζj + "ij,

where xij are covariates with fixed coefficients β, zij are covariates with random effects ζj and

"ij are level 1 errors.

It is useful to write the model for all nj responses yj for cluster j as

yj =Xjβ+Zjζj +εj, .1/

where Xj is an nj × P matrix with rows x′
ij, Zj an nj × Q matrix with rows z′

ij and εj =
."1j, . . . , "njj/′. We allow the covariates Xj and Zj to be random and assume that they are strictly

exogenous (e.g. Chamberlain (1984)) in the sense that E."ij|ζj, Xj, Zj/ = E."ij|ζj, xij, zij/ =
E."ij/=0, and E.ζj|Xj, Zj/=E.ζj/=0.

The random effects and level 1 errors are assumed to have multivariate normal distributions

ζj|Xj, Zj ∼ N.0,Ψ/ and εj|ζj, Xj, Zj ∼ N.0,Θj/, both independent across clusters given the

covariates. It is furthermore usually assumed that Θj =θInj . In this case, the responses for units

i in cluster j are conditionally independent, given the covariates and random effects, and have

constant variance θ.

For simplicity we shall sometimes consider the special case of a linear random-intercept model

yij =x′
ijβ+ ζj + "ij,

where ζj is a cluster-specific deviation from the mean intercept β0.

2.2. Multilevel generalized linear models

A two-level generalized linear model can be written as

h−1{E.yij|ζj, xij, zij/}=x′
ijβ+ z′

ijζj ≡ηij,

where h−1.·/ is a link function and ηij is the linear predictor (‘≡’ denotes a definition). In other

words, the conditional expectation of the response, given the covariates and random effects, is

µij ≡E.yij|ζj, xij, zij/=h.x′
ijβ+ z′

ijζj/=h.ηij/:

As for linear models, it is assumed that the random effects are multivariate normal and that the

covariates are strictly exogenous. The responses are assumed to be conditionally independent,
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given the covariates and random effects, and have conditional distributions from the exponential

family. For this family of distributions, the conditional variance is given by

var.yij|µij/=φijV.µij/,

where φij is a dispersion parameter and V.µij/ is a variance function specifying the relationship

between conditional variance and conditional expectation.

The multilevel linear model results when an identity link is specified, µij =ηij, combined with

a conditional normal distribution for the response yij|µij ∼N.µij, θ/. In this case, the variance

function is 1 and the dispersion parameter is a free parameter φij = θ. Another important spe-

cial case is a logistic regression model for dichotomous responses which combines a logit link,

logit.µij/≡ log{µij=.1−µij/}=ηij, with a conditional Bernoulli distribution for the response,

yij|µij ∼ Bernoulli.µij/. The variance function is now V.µij/ =µij.1 −µij/ and the dispersion

parameter is 1 (e.g. Skrondal and Rabe-Hesketh (2007a)).

We refer to Rabe-Hesketh and Skrondal (2008a) for a comprehensive discussion of multilevel

generalized linear models.

2.2.1. Relationship with item response and common factor models

Item response models and common factor models can be written as

h−1{E.yj|ζj, Xj/}=Xjβ+Λζj,

where the ‘random effects’ ζj are called latent variables, common factors or latent traits, units i

correspond to ‘items’ and clusters j correspond to subjects. The identity link produces common

factor models (e.g. Lawley and Maxwell (1971)) and logit and probit links yield categorical

factor models (e.g. Mislevy (1986)) or item response models (e.g. Embretson and Reise (2000)).

Note that the structure of these models is very similar to two-level generalized linear mod-

els. The difference is that the unknown parameter matrix Λ replaces the known cluster-specific

covariate matrix Zj. Usually, but not necessarily, Xjβ is also replaced by intercepts Iβ = β.

Since parameters are usually treated as known when making predictions, the distinction between

variables Zj and parameters Λ becomes irrelevant.

See Skrondal and Rabe-Hesketh (2007b) for a recent review discussing the relationships

between these and other models.

2.3. Marginal likelihood

Letting ϑ denote the model parameters, the likelihood contribution for cluster j, lj.ϑ/≡g.yj|Xj,

Zj;ϑ/, becomes

lj.ϑ/=
∫

ϕ.ζj;Ψ/f.yj|ζj, Xj, Zj;ϑf /dζj =
∫

ϕ.ζj;Ψ/
nj∏

i=1

f.yij|ζj, xij, zij;ϑf /dζj:

The first term in the integral is the random-effects density (multivariate normal with zero means

and covariance matrix Ψ) and the second term is the conditional density (or probability) of the

responses given the random effects and covariates. We use the notation ϑf to denote the vector

of parameters appearing in the conditional response distribution, so that ϑ consists of ϑf and

the unique elements of Ψ. Since the clusters are assumed to be independent, the likelihood for

the sample is l.ϑ/=Π
J
j=1lj.ϑ/:

Except for the case of multilevel linear models, the integrals usually do not have analytic solu-

tions and must be evaluated numerically, typically by adaptive quadrature (e.g. Pinheiro and
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Bates (1995) and Rabe-Hesketh et al. (2005)) or by Monte Carlo integration (e.g. McCulloch

(1997)). Alternatives to maximum likelihood that do not require integration include penalized

quasi-likelihood (e.g. Breslow and Clayton (1993)) and Markov chain Monte Carlo sampling

(e.g. Clayton (1996)).

3. Application: contextual effect of socio-economic status on reading proficiency

It has been found in a large number of studies that various measures of the social composition of

schools affect student achievement beyond the individual effects of student background charac-

teristics (see Rumberger and Palardy (2005) for a recent literature review). In particular, it has

been found that there is considerable variability in school mean SES in the UK and the USA and

that school mean SES has a large effect on student achievement after controlling for individual

SES (e.g. Willms (1986), Raudenbush and Bryk (2002), pages 135–141, and Rumberger and

Palardy (2005)). Such findings have led to calls for comprehensive schooling or desegregation

policies to narrow the gap in achievement between high and low SES students.

Here we shall estimate the contextual effects of SES on reading proficiency. We use the US

sample from the PISA from 2000, an international educational survey funded by the Organisa-

tion for Economic Co-operation and Development that assesses reading and mathematical and

scientific literacy among 15-year-old students (see http://www.pisa.oecd.org).

We define reading proficiency as achieving at least the second highest of five reading pro-

ficiency levels as defined in the PISA manual (Organisation for Economic Co-operation and

Development, 2000). The motivation for this is that it is often easier to interpret changes in the

proportion of children who are proficient than changes in mean reading scores. To derive the

binary proficiency variable, we applied a threshold of 552.89 to the weighted maximum likeli-

hood estimates (Warm, 1989) of reading ability derived from a partial credit item response model

(see Adams (2002) for details). As a measure of SES, we use the international socio-economic

index as defined in Ganzeboom et al. (1992).

We let the reading proficiency and SES of student i in school j be denoted yij and xij respec-

tively and consider the random-intercept logistic regression model

logit{Pr.yij =1|xij, ζj/}=β0 +β1.xij − x̄·j/+β2x̄·j + ζj

=β0 +β1xij + .β2 −β1/x̄·j + ζj, ζj|xij ∼N.0, ψ/,

where x̄·j is the school mean SES and ζj is a school-specific random intercept. In this model,

β1 represents the within-school effect of SES and β2 represents the between-school effect. The

difference, β2 −β1, represents the contextual effect: the additional effect of school mean SES on

proficiency that is not accounted for by individual level SES. In research on school effects, the

term contextual effects is often taken to refer to the effects of the ‘hardware’ of the school, such

as location and resources, student body and teacher body, and not the ‘software’ of the school

or climate (Ma et al., 2008). However, the estimate of the ‘contextual effect’ β2 −β1 will partially

encompass the effects of all school level variables that are correlated with SES including school

climate.

In the PISA data used here, there are 2069 students from 148 schools with between one and 28

students per school. The sample mean SES is 46.8. The sample standard deviation of individual

SES is 17.6, the sample standard deviation of school mean SES (using one observation per

school) is 9.0 and the sample standard deviation of the school mean-centred SES is 15.4. Thus,

there is considerable socio-economic segregation between schools.

Maximum likelihood estimates of the model parameters and their standard errors are given in

Table 1. These estimates were obtained using gllamm (e.g. Rabe-Hesketh and Skrondal (2008b))
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Table 1. Maximum likelihood estimates for the random-intercept logistic regres-
sion model for the PISA data

Parameter Covariate Estimate Standard OR 95% confidence
error interval

β0 −4:785 0.427
10β1 [.xij −x·j/=10] 0:184 0.031 1.2 (1.1,1.3)
10β2 [x·j=10] 0:891 0.088 2.4 (2.1,2.9)
10.β1 −β2/ 0.707 0.092 2.0 (1.7,2.4)
ψ 0.280

in Stata with 20-point adaptive quadrature. (For simplicity, we have ignored sampling weights

here and refer to Rabe-Hesketh and Skrondal (2006) for pseudo-maximum-likelihood estima-

tion taking the complex survey design of the PISA study into account.) Since the regression

coefficients represent changes in the log-odds (logits), their exponentials represent odds ratios.

The estimated odds ratios (ORs) are also given in Table 1 together with their approximate

95% confidence intervals. For a given school mean SES, every 10-unit increase in individual

SES is associated with an estimated 20% increase in the odds of proficiency (within effect).

The estimated odds ratio per 10-unit increase in school mean SES, for students whose individ-

ual SES equals the school mean, is 2.4 (between effect). The estimated odds double for every

10-unit increase in school mean SES for students with a given individual SES. This contex-

tual effect is highly statistically significant (z = 7:7; p < 0:001) and may be due to direct peer

influences, school climate, allocation of resources and organizational and structural features of

schools.

ORs are difficult to interpret because they express multiplicative effects rather than additive

effects and because odds are less familiar than proportions and probabilities. In Section 8 we

therefore produce graphs of predicted probabilities to convey the magnitude of the estimated

contextual, within-school and between-school effects of SES.

4. Prediction of random effects

We now discuss how to assign values to the random effects ζj = .ζ1j, . . . , ζQj/′ for individual

clusters j =1, . . . , J . This assignment usually proceeds after the model parameters have been esti-

mated, with the estimates ϑ̂ treated as known parameters. When the model parameters are

treated as known, the problem of assigning values to random effects can be approached from at

least four different philosophical perspectives which we refer to as Bayesian, empirical Bayesian,

frequentist prediction and frequentist estimation.

In the Bayesian approach, inference regarding ζj for cluster j is based on the posterior dis-

tribution of ζj given the known data for the cluster which are treated as observed values of

random variables. However, some Bayesians also consider hypothetical replications of the data

to validate Bayesian probability statements, which is referred to by Rubin (1984) as frequency

calculations. Similarly, empirical Bayesians evaluate inferences with respect to joint sampling

of ζj and yj (e.g. Morris (1983)). Robinson (1991) pointed out that this sampling model is also

relevant for classical (i.e. frequentist) inference if the problem is viewed as assigning a value to

the realization of a random variable. In this case, the random-effects distribution is viewed as

representing the variation of ζj (in the population), whereas Bayesians would view this prior dis-

tribution as representing uncertainty regarding ζj. Searle et al. (1992) also viewed the target of
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inference as the unobserved realization of a random variable and used the word prediction to dis-

tinguish their approach from frequentist estimation. In frequentist estimation, ζj are treated as

fixed parameters, with only the responses viewed as random in the sampling model. In this case,

inference regarding the random effects typically proceeds by maximum likelihood estimation.

In Sections 4.1 and 4.2, we use mostly Bayesian and empirical Bayesian reasoning, but it is

useful to keep in mind that the difference from frequentist prediction is largely semantic (remem-

bering that the model parameters are treated as known). We use the term prediction to avoid

any confusion with frequentist estimation which is briefly described in Section 4.3.1.

4.1. Empirical posterior distribution

With the model parameters treated as known and equal to their maximum likelihood estimates

ϑ̂ we have two sources of information concerning the random effects. The first piece of informa-

tion is the prior distribution ϕ.ζj; Ψ̂/ of the random effects, representing our a priori knowledge

about the random effects before ‘seeing’ the data for cluster j. The second piece of information

is the data yj, Xj and Zj for cluster j.

A natural way of combining the sources of information regarding the random effects is

through the posterior distribution ω.ζj|yj, Xj, Zj; ϑ̂/ of ζj, the distribution of ζj updated with

or given the data yj, Xj and Zj. Using Bayes theorem, we obtain

ω.ζj|yj, Xj, Zj; ϑ̂/=
ϕ.ζj; Ψ̂/ f.yj|ζj, Xj, Zj; ϑ̂

f
/

g.yj|Xj, Zj; ϑ̂/
:

The denominator is just the likelihood contribution lj.ϑ̂/ of the jth cluster and usually does

not have a closed form but can be evaluated numerically. Here the parameters are treated as

known and equal to their estimates, so the posterior distribution is ‘empirical’ or ‘estimated’ (e.g.

Carlin and Louis (2000a), page 58). In a fully Bayesian approach, prior distributions would be

specified for the model parameters, and the posterior distribution of the random effects would

be marginal with respect to these parameters. It should be noted that the estimated posterior

distribution can also be derived from a frequentist perspective by treating ζj as unobservable

random variables and conditioning on the observed responses yj (as well as Xj and Zj).

For linear models it follows from standard results on conditional multivariate normal densi-

ties that the posterior density is multivariate normal. For other response types, it follows from

the Bayesian central limit theorem (e.g. Carlin and Louis (2000a), pages 122–124) that the pos-

terior density tends to multivariate normality as the number of units nj in the cluster increases

(see Chang and Stout (1993) for asymptotic normality in binary response models).

4.2. Empirical Bayes prediction of the random effects

Empirical Bayes prediction is undoubtedly the most widely used method for assigning values to

random effects. Empirical Bayes predictors (see Efron and Morris (1973, 1975), Morris (1983),

Maritz and Lwin (1989) and Carlin and Louis (2000a,b)) of the random effects ζj are the means

of the empirical posterior distribution (with parameter estimates ϑ̂ plugged in):

ζ̃j
EB =E.ζj|yj, Xj, Zj; ϑ̂/=

∫
ζj ω.ζj|yj, Xj, Zj; ϑ̂/dζj: .2/

Whenever the prior distribution is parametric, the predictor is denoted parametric empirical

Bayes. Empirical Bayes prediction is usually referred to as ‘expected a posteriori’ (EAP)

estimation in item response models (e.g. Bock and Aitkin (1981)) and as the ‘regression method’
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(e.g. Thurstone (1935) and Thomson (1938)) for factor scoring in factor analysis. The reason

for the term ‘empirical Bayes’, which was coined by Robbins (1955), is that Bayesian principles

are adapted to a frequentist setting by plugging in estimated model parameters. True Bayesians

would obtain the posterior distribution of the random effects, assuming a prior distribution for

ϑ, instead of simply plugging in estimates ϑ̂ for ϑ.

The empirical Bayes predictor can be justified by considering the quadratic loss function

LEB.ζ̃j, ζj/= .ζ̃j −ζj/′W.ζ̃j −ζj/,

where W is some arbitrary (usually symmetric) positive definite weight matrix. Treating the

parameters as known, the empirical Bayes predictor minimizes the (estimated) posterior risk

defined as the posterior expectation of the quadratic loss

R.ζ̃j, ζj/=
∫

LEB.ζ̃j, ζj/ω.ζj|yj, Xj, Zj; ϑ̂/dζj .3/

(see proposition 5.2.(i) of Bernardo and Smith (1994)). In other words, the empirical Bayes

predictor minimizes the posterior mean-squared error of prediction, given the responses and

covariates.

The empirical Bayes predictor also minimizes the mean-squared error of prediction (MSEP)

over the joint distribution of the random effects and the responses, giving it a frequentist motiva-

tion as the ‘best predictor’ (e.g. Searle et al. (1992), pages 261–262). The MSEP is the expectation

of the posterior risk with respect to the distribution of yj and is also called the empirical Bayes

risk, Bayes risk or preposterior risk since this is the posterior loss one expects before having

seen the data (Carlin and Louis (2000a), pages 332–334).

Apart from linear models, it is in general impossible to obtain empirical Bayes predictions by

analytical integration, and numerical or simulation-based integration methods must be used.

Note that empirical Bayes predictions are a by-product of maximum likelihood estimation of

model parameters in the implementation of adaptive quadrature that was suggested by Rabe-

Hesketh et al. (2005).

In a linear random-intercept model, the empirical Bayes predictor is

ζ̃j
EB = R̂j

{
1

nj

nj∑
i=1

.yij −x′
ijβ̂/

}
, .4/

where

0<R̂j ≡
ψ̂

ψ̂ + θ̂=nj

< 1:

The term in curly brackets in equation (4) is the mean ‘raw’ or total residual for cluster j, which

is sometimes called the ‘ordinary least squares estimator’ or maximum likelihood estimator

of ζj (see Section 4.3.1). R̂j is a shrinkage factor which pulls the empirical Bayes prediction

towards 0, the mean of the prior distribution. The shrinkage factor can be interpreted as the

estimated reliability of the mean raw residual as a ‘measurement’ of ζj (the variance of the ‘true

score’ divided by the total variance). The reliability decreases when nj decreases and when θ̂

increases compared with ψ̂; the conditional density of the responses Π
nj

i=1f.yij|ζj, xij; ϑ̂/ then

becomes flat and uninformative compared with the priordensityϕ.ζj; ψ̂/.

For a linear random-intercept model the conditional expectation of the empirical Bayes pre-

dictor, given the random intercept, is

Ey.ζ̃j
EB|ζj, Xj; ϑ̂/= R̂jζj:
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The conditional bias .R̂j − 1/ζj is ‘inward’ or towards zero. Such inward bias is also found

in logistic and probit random-intercept models (e.g. Hoijtink and Boomsma (1995)). In all

multilevel generalized linear models, the empirical Bayes predictor is unconditionally unbiased

since Ey.ζ̃j
EB|Xj, Zj; ϑ̂/=Ey{E.ζj|yj, Xj, Zj; ϑ̂/}=E.ζj|Xj, Zj; ϑ̂/=0.

For linear models, the posterior mean (assuming known model parameters) is the best

linear unbiased predictor (BLUP) (e.g. Goldberger (1962) and Robinson (1991)) because it

is linear in yj, unconditionally unbiased and best in the sense that it minimizes the marginal

sampling variance of the prediction error. With parameter estimates plugged in, the posterior

mean is sometimes referred to as the empirical best linear unbiased predictor (EBLUP). Note

that in contrast with parametric empirical Bayes prediction, the concept of best linear unbiased

prediction does not rely on distributional assumptions (e.g. Searle et al. (1992)).

Deely and Lindley (1981) argued that substitution of estimated parameters in the empirical

Bayes predictor is purely pragmatic and has limited statistical rationale. For special cases of

linear mixed models, Morris (1983) derived a correction that was designed to counteract the

bias that is incurred by substituting estimates for parameters and Rao (1975) proposed a correc-

tion that minimizes the mean-squared error when analysis-of-variance or moment estimators

are used to estimate the model parameters (see also Reinsel (1984)). However, whenever ϑ̂ is

consistent, the effect of substituting estimates for parameters is expected to be small when the

sample size is large.

4.3. Alternative methods

4.3.1. Maximum likelihood estimation

After estimation of ϑ, the random effects ζj are sometimes treated as the only unknown par-

ameters to be estimated by maximizing the likelihood

L.ζj/=
nj∏

i=1

f.yij|ζj, xij, zij; ϑ̂
f

/:

As would be expected, the estimates for a cluster become asymptotically unbiased as the number

of units in the cluster tends to ∞, although this result is of limited practical utility when cluster

sizes are small. Unlike the empirical Bayes predictor, the maximum likelihood estimator for

linear models is conditionally unbiased, given the values of the random effects ζj.

An advantage of maximum likelihood estimation is that no distributional assumptions need

to be invoked for the random effects. However, maximum likelihood estimates have a large

mean-squared error when the clusters are not large, which was described as the ‘bouncing beta

problem’ by Rubin (1980). Furthermore, the likelihood does not have a maximum in models

for binary data if all responses for a cluster are the same, or in random-coefficient models if the

cluster size is less than the number of random effects. Neither example poses any problems for

empirical Bayes prediction owing to the information that is provided by the prior distribution.

A more fundamental problem with maximum likelihood estimation is that ζj are treated as

unknown parameters or fixed effects, which is at odds with the model specification where ζj are

random effects.

In logistic random-intercept models or item response models, the maximum likelihood esti-

mator is biased ‘outwards’ or away from zero for finite cluster sizes, the opposite phenome-

non of shrinkage (see Hoijtink and Boomsma (1995)). For such models an unbiased ‘weighted

maximum likelihood estimator’ was proposed by Warm (1989). In factor analysis, maximum

likelihood estimation of factor scores is referred to as Bartlett’s method (e.g. Bartlett (1938)).
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4.3.2. Empirical Bayes modal prediction

Instead of using the posterior mean as in empirical Bayes prediction, we could use the posterior

mode. The posterior mode minimizes the posterior expectation of the 0–1 loss function

LBM.ζj, ζ̃j/=
{

0 if |ζj − ζ̃j|�ε,

1 if |ζj − ζ̃j|>ε,

where ε is a vector of minute numbers such that LBM.ζj, ζ̃j/ is 0 when ζ̃j is in the close vicinity

of ζj and 1 otherwise. This kind of prediction is called ‘maximum a posteriori’ (MAP) prediction

in item response theory (e.g. Bock and Aitkin (1981)).

Generally, there is no analytical expression for the empirical Bayes modal predictor in multi-

level generalized linear models and we must resort to numerical methods. Since the denominator

of the posterior distribution does not depend on ζj as seen in Section 4.1, we can obtain empirical

Bayes modal predictions as solutions to the estimating equations

@

@ζj

ln{ϕ.ζj; Ψ̂/}+
@

@ζj

ln{f.yj|ζj, xij, zij; ϑ̂
f

/}=0, .5/

assuming that standard second-order conditions for maximization are fulfilled. If f.yj|ζj, xij,

zij; ϑ̂
f

/ is viewed as the likelihood (see Section 4.3.1), the empirical Bayes modal predictor can

be viewed as a penalized maximum likelihood estimator where the penalty term serves to shrink

the predictions towards the prior mode.

In contrast with empirical Bayes, empirical Bayes modal predictions can be obtained by using

computationally efficient gradient methods and do not require numerical integration. For this

reason, empirical Bayes modal prediction is often used as an approximation to empirical Bayes

prediction. Indeed, for linear models the posterior is multivariate normal so the empirical Bayes

and empirical Bayes modal predictors coincide.

The version of adaptive quadrature that was suggested for maximum likelihood estimation of

model parameters by Pinheiro and Bates (1995) and Schilling and Bock (2005) yields empirical

Bayes modal predictions as a by-product.

5. Empirical Bayes standard errors

We now present different kinds of covariance matrices for empirical Bayes predictions. In prac-

tice, standard deviations are often called standard errors in this context. There are two principal

uses of empirical Bayes standard errors; either for inferences regarding the ‘true’ realized values

of ζj for individual clusters (comparative standard errors) or for model diagnostics (diagnostic

standard errors). Posterior standard deviations and prediction error standard deviations serve

the former purpose, and marginal sampling standard deviations serve the latter purpose. Closed

form expressions for the special case of linear multilevel models are presented in Appendix A.

5.1. Comparative standard errors

Here we consider standard errors that are appropriate for inferences regarding the realized

values of ζj. One important use of such standard errors is for making comparisons between

clusters, and for this reason Goldstein (1995) used the term ‘comparative standard error’.

5.1.1. Posterior standard deviations

The empirical Bayesian posterior covariance matrix of the random effects is given by



Prediction in Multilevel Models 669

cov.ζj|yj, Xj, Zj; ϑ̂/=
∫

.ζj − ζ̃j
EB/.ζj − ζ̃j

EB/′ ω.ζj|yj, Xj, Zj; ϑ̂/dζj:

(The posterior risk, which was discussed in Section 4.2, is just a weighted sum of the elements

of this covariance matrix.) The corresponding variances can also be viewed as the conditional

mean-squared error of prediction (CMSEP), given yj, when the parameters ϑ are assumed

known (Booth and Hobert, 1998).

Assuming approximate normality of the empirical posterior distribution (and known model

parameters), Bayesian credible intervals can be formed by using the posterior mean and poster-

ior standard deviation. Bayesian credible intervals have a known probability of containing the

random effects for given observed data and are thus conditional on the data, which was referred

to as conditional empirical Bayes coverage by Carlin and Louis (2000a), page 79. Interestingly,

Rubin’s (1984), page 1160, frequency calibration argument implies that correct credible intervals

should have correct unconditional empirical Bayes coverage (at the same level of confidence), i.e.

coverage with respect to joint sampling of ζj and yj. Therefore, the intervals are also appropriate

for frequentist prediction. The posterior standard deviation is commonly used as a standard

error of prediction in multilevel generalized linear models (e.g. Ten Have and Localio (1999))

and item response theory (e.g. Bock and Mislevy (1982) and Embretson and Reise (2000)).

In general, there is no closed form for the posterior covariance matrix and the integrals must

be approximated for instance by adaptive quadrature. For a linear random-intercept model, the

posterior variance is

var.ζj|yj, Xj; ϑ̂/= .1− R̂j/ψ̂:

As expected, the posterior variance is smaller than the prior variance owing to the information

that is gained regarding the random intercept by knowing the responses yj.

To account for parameter uncertainty, Booth and Hobert (1998) considered the CMSEP over

the distribution of ϑ̂ and ζj, for given yj. In a random-intercept model, their approximation

amounts to adding a Taylor series expansion of E{.ζ̃j
EB − ζ̈j/2|yj} as a correction term to the

empirical posterior variance, where ζ̈j is the posterior mean based on the true parameters ϑ

instead of on the estimates ϑ̂. If a consistent estimator ϑ̂ is used, the correction term will become

small when there are a large number of clusters. Using flat priors for the model parameters, Kass

and Steffey (1989) suggested a very similar approximation for the Bayesian posterior covariance

matrix. For the CMSEP, Booth and Hobert (1998) also obtained a correction term by parametric

bootstrapping.

Ten Have and Localio (1999) used numerical integration to evaluate the Kass and Steffey

approximation for multilevel logistic regression. In a related setting, Tsutakawa and Johnson

(1990) adopted a Bayesian approach, taking parameter uncertainty into account by specifying

prior distributions for ϑ and using Bayesian approximations to obtain the posterior mean and

variance of ζj. Laird and Louis (1987) suggested using bootstrapping to estimate the posterior

covariance matrix taking parameter uncertainty into account. Their type III parametric boot-

strap consists of repeatedly simulating new data from the estimated model and re-estimating

the parameters to generate replicates of the empirical Bayes predictions and their posterior

standard deviations. The posterior variance, taking parameter uncertainty into account, is then

estimated by the mean of the posterior variance plus the variance of the posterior means (see

Rao (2003), page 187, for a discussion of bias correction for this estimator).

5.1.2. Prediction error standard deviations

The (marginal) prediction error covariance matrix is the covariance matrix of the prediction

errors ζ̃j
EB −ζj under repeated sampling of the responses from their marginal distribution,
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covy.ζ̃j
EB −ζj|Xj, Zj; ϑ̂/=

∫
.ζ̃j

EB −ζj/.ζ̃j
EB −ζj/′ g.yj|Xj, Zj; ϑ̂/dyj,

where we have omitted the term involving Ey.ζ̃j
EB −ζj|Xj, Zj; ϑ̂/ because this expectation is 0

owing to the unconditional unbiasedness of the empirical Bayes predictor. The corresponding

variance can also be viewed as the unconditional MSEP when the parameters ϑ are treated

as known (Booth and Hobert, 1998). Weighted sums of the elements of the prediction error

covariance matrix give the (empirical) Bayes risk or preposterior risk that was discussed in

Section 4.2.

It has been shown by Searle et al. (1992), page 263, among others, that

covy.ζ̃j
EB −ζj|Xj, Zj; ϑ̂/=Ey{cov.ζj|yj, Xj, Zj; ϑ̂/}:

Approximating the expected posterior covariance matrix by the posterior covariance matrix

given the observed data, we propose the approximation

covy.ζ̃
EB

j −ζj|Xj, Zj; ϑ̂/ ≈ cov.ζj|yj, Xj, Zj; ϑ̂/: .6/

For linear models, the posterior covariance matrix does not depend on the responses yj so the

approximation becomes exact.

If the sampling distributions of the prediction errors are approximately normal, the (mar-

ginal) prediction error standard deviations could be used to construct confidence intervals for

realized random effects. Under normality of the prediction errors, such Wald-type confidence

intervals have correct unconditional empirical Bayes and frequentist prediction coverage. How-

ever, unlike intervals that are based on the posterior standard deviations, the intervals have no

conditional interpretation, given the data for a cluster.

In multilevel linear models, Goldstein (1995, 2003) defined the comparative standard error as

the marginal prediction error standard deviation. This equals the posterior standard deviation

in the linear case. However, in multilevel generalized linear models, the marginal prediction

error standard deviation is not identical to the posterior standard deviation. For these models,

we suggest using the posterior standard deviation as comparative standard error because the

corresponding confidence intervals should have correct conditional and unconditional coverage

(under normality). Booth and Hobert (1998) made an analogous point, advocating the CMSEP

in favour of the unconditional MSEP that is usually used in small area estimation. In Section

9.1.2 we compare the standard errors using simulations.

Note that the prediction error covariances are not fully frequentist since the sampling vari-

ability of ϑ̂ is ignored. In linear models, it is easy to take uncertainty in the estimated regression

parameters into account (see Appendix A), and Kackar and Harville (1984) gave approxima-

tions also taking the uncertainty of the estimated variance parameters into account for two-level

linear models.

We could also use parametric bootstrapping to estimate the prediction error variances, first

drawing random effects from their prior distribution and subsequently responses from their

conditional distribution given the random effects. The true random effects are then just the sim-

ulated effects and, subtracting these from the empirical Bayes predictions, we can estimate the

prediction error variances. To reflect the imprecision of the parameter estimates, the parameters

should be re-estimated in each bootstrap sample. However, the resulting bootstrap estimator

of the prediction error variance is still biased because the bootstrap samples are generated by

using estimated parameters (Hall and Maiti, 2006). Hall and Maiti (2006) suggested a double-

bootstrap procedure to correct this bias. An alternative approach is to use bootstrapping to
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correct the bias of analytical expansions for the prediction error variance (see the references in

Hall and Maiti (2006)).

5.2. Diagnostic standard errors

For model diagnostics, it is useful to consider the marginal sampling covariance matrix of the

empirical Bayes predictor

covy.ζ̃j
EB|Xj, Zj; ϑ̂/= covy{E.ζj|yj, Xj, Zj; ϑ̂/}=

∫
ζ̃j

EBζ̃j
EB′g.yj|Xj, Zj; ϑ̂/dyj,

where we have again used the fact that Ey.ζ̃j
EB|Xj, Zj; ϑ̂/ = 0. This is the covariance matrix

of the predictions under repeated sampling of the responses from their marginal distribution,

keeping the covariates fixed and plugging in parameter estimates ϑ̂.

The marginal sampling standard deviation can be used for detecting clusters that appear

inconsistent with the model (e.g. Lange and Ryan (1989) and Langford and Lewis (1998)). For

this reason, Goldstein (1995) referred to this quantity as the ‘diagnostic standard error’.

Unfortunately there is no closed form expression for multilevel generalized linear models with

non-linear links. However, it is shown in Appendix B that

covy.ζ̃j
EB|Xj, Zj; ϑ̂/= Ψ̂−Ey{cov.ζj|yj, Xj, Zj; ϑ̂/}:

This led Skrondal (1996) to suggest the approximation

covy.ζ̃j
EB|Xj, Zj; ϑ̂/≈ Ψ̂− cov.ζj|yj, Xj, Zj;ϑ̂/: .7/

For linear models, this approximation holds perfectly, so the marginal sampling variance is R̂jψ̂

for linear random-intercept models.

Because of shrinkage, the sampling variance is smaller than the prior variance. This has led

some researchers (e.g. Louis (1984)) to suggest adjusted empirical Bayes predictors with the

same covariance matrix as the prior distribution. This predictor minimizes the posterior expec-

tation of the quadratic loss function (for given parameter estimates) in equation (3) subject to

the side-condition that the predictions match the estimated first- and second-order moments of

the prior distribution.

The sampling covariances are not fully frequentist since the sampling variability of ϑ̂ is

ignored. However, for linear models, it is quite straightforward to take the uncertainty of the

estimation of the regression parameters β (but not the uncertainty due to estimation of the

variance parameters Ψ and θ) into account (see Appendix A).

We could also estimate the sampling variance by using parametric bootstrapping, first sam-

pling the random effects from the prior distribution and then the responses from their condi-

tional distribution given the random effects and the covariates. (See Section 3 for an example

and Section 9 for a comparison of sampling standard deviations based on the approximation

and based on bootstrapping.) An advantage of the bootstrapping approach is that uncertainty

in the parameter estimates ϑ̂ is easily accommodated by re-estimating the parameters in each

bootstrap sample.

6. Application continued: prediction of school-specific intercepts

We selected 10 schools from the US PISA data with a range of sample sizes nj and with large,

small and intermediate values of the empirical Bayes predictions ζ̃j
EB based on the parameter

estimates for the random-intercept logistic regression model that are presented in Table 1.
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Table 2. Predictions of random intercepts and associated standard errors for 10 schools from the PISA data

School nj ζ̃j
EB ζ̃j

EBM Comparative standard error Diagnostic standard error

SD(ζj |yj) SD(ζ̃j
EB − ζj) SD(ζ̃j

EB) SD(ζ̃j
EB)

(approximation (bootstrap†) (approximation (bootstrap†)
(6)) (7))

105 1 −0.043 −0.040 0.520 0.506 0.097 0.131
85 3 0.132 0.140 0.501 0.496 0.171 0.181
33 4 −0.433 −0.428 0.474 0.463 0.236 0.262

6 10 −0.473 −0.456 0.451 0.422 0.276 0.306
42 12 −0.005 0.001 0.397 0.394 0.350 0.346
35 13 0.800 0.792 0.394 0.379 0.354 0.352

2 17 0.478 0.478 0.363 0.371 0.386 0.379
67 21 0.031 0.039 0.349 0.347 0.398 0.393
54 22 −0.325 −0.319 0.341 0.333 0.405 0.407
19 25 0.861 0.852 0.332 0.323 0.412 0.419

†Bootstrapping using 1000 replicates.

Table 2 gives the school identifier, cluster size nj, empirical Bayes prediction (using gllamm

with 20-point adaptive quadrature), empirical Bayes modal prediction (using xtmelogit in

Stata with 20-point adaptive quadrature), comparative standard errors and diagnostic standard

error SD.ζ̃j
EB/. For the comparative standard errors, both the posterior standard deviation

SD.ζj|yj/ and the prediction error standard deviation SD.ζ̃j
EB − ζj/ are given. The latter is

obtained by using parametric bootstrapping with 1000 replications, and SD.ζj|yj/ also repre-

sents the approximation in expression (6). For the diagnostic standard error, results from both

the approximation in expression (7) and parametric bootstrapping are reported. Note that none

of the standard errors incorporate parameter uncertainty.

We see that the modes and means of the posterior distributions are quite close (compared with

the magnitude of the posterior standard deviations), indicating that the posterior distributions

are quite symmetric. The posterior standard deviation (or approximate comparative standard

error) is lower than the estimated prior standard deviation
√

ψ̂=0:53 and tends to decrease with

increasing cluster size nj, reflecting the increasing accuracy with which ζj can be predicted. The

sampling standard deviations of the empirical Bayes predictions (or diagnostic standard errors)

are lower than the prior standard deviation because of shrinkage and, as expected, this is less

so for larger cluster sizes. The approximations for the standard errors work reasonably well.

If the empirical Bayes predictions have approximately normal sampling distributions, the

diagnostic standard error can be used to identify outlying schools. For example, schools 35 and

19 might be considered outlying because the empirical Bayes predictions exceed two diagnostic

standard errors (ignoring the multiple-testing problem; see Longford (2001) and Afsharthous

and Wolf (2007)). However, as we shall see in Section 9.1.1, the normal approximation works

only for large cluster sizes combined with a small random-intercept variance.

If the sampling distributions of the prediction errors are approximately normal, the posterior

standard deviation could be used to form confidence intervals for the realized random inter-

cepts or form confidence intervals for differences. For instance, the difference in school-specific

intercepts between schools 35 and 42 is predicted as 0.805 with an approximate standard error

of
√

.0:3942 +0:3972/=0:559, so an approximate 95% confidence interval for the difference in

realized intercepts is 0:805±1:96×0:559, giving confidence limits −0:29 and 1.90.
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7. Prediction of expected responses and probabilities

In this section we consider prediction of different kinds of expectations of the responses yij for

covariate values xij =x0 and zij =z0. In the longitudinal setting this kind of prediction is usually

called forecasting. For categorical responses, the expectations of interest are probabilities.

7.1. Conditional expectation: prediction for a unit in a hypothetical cluster

The conditional mean response, or probability, for a unit with covariate values x0 and z0 in a

hypothetical cluster with random effects ζj =ζ0
j is given by

µ̂.x0, z0, ζ0
j/≡Ey.yij|ζ0

j , x0, z0; β̂/=
∫ ∞

−∞
yij f.yij|ζ0

j , x0, z0; β̂/dyij =h.x0′β̂+ z0′ζ0
j/:

The conditional variance of the linear predictor due to parameter uncertainty (given ζj =ζ0
j )

is x0′ cov.β̂/x0. In linear models the linear predictor becomes the prediction of the conditional

mean response, and therefore
√

{x0′ cov.β̂/x0} becomes the standard error of the prediction

and can be used to form confidence intervals. For multilevel generalized linear models we can

use the delta method to obtain the standard error of prediction, or form confidence intervals for

the linear predictor and apply the inverse link function to the limits of the confidence interval.

Instead of using particular values ζ0
j of the random effects, we can consider the distribution

of µ̂.x0, z0, ζj/ in the population of clusters. For example, Duchateau and Janssen (2005) used

the random-effects density ϕ.ζj; Ψ̂/ to derive the density function of the conditional probability

in a logistic regression model, giving a ‘prevalence density’. Since the inverse link function h.·/
is a monotonic function, substituting given percentiles of z0′ζj (for fixed z0) gives the corre-

sponding percentiles of µ̂.x0, z0, ζj/ (given the covariates). In random-intercept models, it is

natural to consider the median by substituting ζj =0, and perhaps a 95% range by substituting

ζj =±1:96
√

ψ̂; see Section 8 and Fig. 3 there for examples.

An alternative to using the prior distribution of the random effects ϕ.ζj; Ψ̂/ to derive a

distribution of µ̂.x0, z0, ζj/ would be to use the posterior distribution ω.ζj|yj, Xj, Zj; ϑ̂/. The

expectations of these two types of distributions of µ̂.x0, z0, ζj/ are discussed in Section 7.2 and

Section 7.3 respectively.

7.2. Population-averaged expectation: prediction for a unit in a new cluster

We now consider the predicted mean response for the population of clusters. Using the

double-expectation rule, the (predicted) population average of the conditional mean response,

or probability, µ̄.x0, z0/ is obtained by integrating µ̂.x0, z0, ζj/ over the (prior) random-effects

distribution,

µ̄.x0, z0/≡Ey.yij|x0, z0; ϑ̂/=
∫ ∞

−∞
µ̂.x0, z0, ζj/ϕ.ζj; Ψ̂/dζj:

This population-averaged or marginal expectation can be used to make a prediction for a unit

in a new cluster, assuming that the new cluster is sampled randomly.

In linear models, the population average is obtained by simply plugging in the mean of the

random effects (which is 0) in the expression for the conditional expectation, µ̂.x0, z0, 0/, and

the corresponding sampling variance is x0′ cov.β̂/x0. In this case the predicted marginal expec-

tation can also be used to predict a response yij for a unit in a new cluster j with covariates values

x0 and z0. The variance of the prediction error yij − ŷij, treating Ψ̂ and θ̂ as known, becomes

var
y,β̂.yij − ŷij|x0, z0; Ψ̂, θ̂/=x0′ cov.β̂/x0 + z0′

Ψ̂z0 + θ̂:
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Afshartous and de Leeuw (2005) called this method of predicting responses the ‘prior

prediction method’. They showed that the population-averaged expectation is also the posterior

expectation for a new unit in a new cluster (when parameters are assumed known), making it a

Bayes rule under squared error loss. This predictor therefore also minimizes the unconditional

MSEP.

In most models with non-linear link functions, we cannot obtain population-averaged expec-

tations or probabilities by simply plugging in the mean of the random effects in the expression for

conditional expectation. The integral that is involved in the expectation must generally be evalu-

ated numerically or by simulation, a notable exception being probit models (e.g. Rabe-Hesketh

and Skrondal (2008a, b)). For a two-level complementary log–log-discrete-time survival model,

Rose et al. (2006) nevertheless predicted the probability of survival for a new unit in a new clus-

ter by using the conditional predicted probability µ̂.x0, z0, 0/ with random effects set to zero

instead of the population-averaged probability.

The fact that population-averaged and conditional expectations differ, µ̄.x0, z0/ �= µ̂.x0, z0, 0/,

leads to the important distinction between marginal (or population-averaged) effects and

conditional (or cluster-specific) effects in multilevel generalized linear models. Briefly, marginal

effects express comparisons of population strata defined by covariate values, whereas condi-

tional effects express comparisons holding the cluster-specific random effects (and covariates)

constant.

Approximate confidence intervals for predicted marginal expectations can be obtained by

simulating parameters from their estimated asymptotic sampling distribution (see Section 8

and Fig. 2 there for examples).

7.3. Cluster-averaged expectation: prediction for a new unit in an existing cluster

We now consider the mean response for a particular cluster, which we call cluster-averaged

in contrast with population-averaged expectation. Since the random effects for the cluster are

unknown, we cannot use the conditional mean that was discussed in Section 7.1. Instead, we

average over the posterior distribution which represents all our knowledge about the random

effects for the cluster.

The cluster-averaged expectation µ̃j.x0, z0/ is obtained by integrating µ̂.x0, z0, ζj/ over the

posterior distribution of the random effects for the cluster

µ̃j.x0, z0/≡Eζ{µ̂.x0, z0, ζj/|yj, Xj, Zj; ϑ̂}=
∫ ∞

−∞
µ̂.x0, z0, ζj/ω.ζj|yj, Xj, Zj; ϑ̂/dζj:

This posterior expectation can be used to make predictions for a new unit in the existing cluster

j, exploiting the information that we already have about the cluster. The posterior expectation

is a Bayes rule under squared error loss and is the empirical best predictor (EBP) that was

suggested by Jiang and Lahiri (2001) for small area estimation of proportions. For non-linear

link functions, µ̃j.x0, z0/ �= µ̂.x0, z0, ζ̃j
EB/, so the posterior expectation should be obtained by

using, for instance, numerical integration (see Section 8 and Fig. 3 there for examples). Simply

plugging in the empirical Bayes predictions of the random effects ζ̃j
EB in non-linear functions

is nevertheless not uncommon (e.g. Gibbons et al. (1994) and Farrell et al. (1997)).

It is also sometimes useful to obtain ‘post-dictions’ (‘predictions’ after the fact) for an existing

unit in an existing cluster. For example, in longitudinal binary data, ‘post-dicted’ probabilities

can be used to plot individual growth trajectories for visualizing aspects of the model and the data

(e.g. Rabe-Hesketh and Skrondal (2008b), pages 269–271). It may appear odd to use the observed

response for a unit (within the posterior distribution of ζj given yj) to make a prediction for the

same unit, but it is the unknown probability that we are predicting, not the observed response.
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For linear models, the posterior expectation of the conditional mean response simply becomes

µ̂.x0, z0, ζ̃j
EB/ and can be used as a predicted response ỹ

p
ij for a new unit in an existing cluster.

The variance of the prediction error yij − ỹ
p
ij, treating Ψ̂ and θ̂ as known, is

var
y,β̂.yij − ỹ

p
ij|x

0, z0; Ψ̂, θ̂/=x0′ cov.β̂/x0 + z0′ covy.ζ̃j
EB −ζj|Xj, Zj; ϑ̂/z0

−x0′ cov.β̂/X′
jΣ̂

−1

j ZjΨ̂z0 − z0′
Ψ̂Z′

jΣ̂
−1

j Xj cov.β̂/x0 + θ̂:

As pointed out by Afshartous and de Leeuw (2005), this ‘multilevel prediction method’

minimizes the conditional and unconditional MSEP (for known parameters) since it is a Bayes

rule under squared error loss. Not surprisingly, therefore, their simulations for linear multilevel

models show that this method produces a smaller MSEP for predicting responses for a new unit

in an existing cluster, compared with the population-averaged expectation that was discussed

in Section 7.2.

8. Application continued: predicting probabilities of reading proficiency

Returning to the PISA data on reading proficiency and SES, we now demonstrate how graphs

of predictions can be used to convey complex estimated relationships and their uncertainty.

This graphical approach is especially poignant when communicating the results of statistical

modelling to non-statistical audiences such as educators and policy makers. All predictions are

obtained by using gllapred, the prediction command of gllamm.

We first consider three kinds of effect (the between, within and contextual effect) of SES

on the population-averaged probability of reading proficiency. We calculated predicted popu-

lation-averaged probabilities µ̄.x0
j / for covariate values x0

j = .x0
ij −x·j0, x·j0/′ chosen to represent

the three kinds of effects of SES (note that the random part of the model contains a random

intercept only, so for simplicity z0 is omitted from the notation that was introduced in Section 7):

(a) between effect, x0
j = .0, x̄·j/′, where x̄·j ranges from 25 to 68;

(b) contextual effect, x0
j = .45− x̄·j, x̄·j/′, where x̄·j ranges from 25 to 68;

(c) within effect, x0
j = .x0 −45, 45/′, where x0 ranges from 25 to 68.

The corresponding curves are shown in Fig. 1. The broken curve (between effect) represents

the expected proportion of students who are proficient as a function of school mean SES for

students whose SES equals the school mean. The full curve (contextual effect) represents the

expected proportion of students who are proficient as a function of school mean SES for students

whose individual SES is 45. Finally, the dotted curve (within effect) represents the proportion of

students who are proficient as a function of individual SES for a school whose mean SES is 45.

We see that the within effect is quite small compared with the between-school and contextual

effects, with the expected proportion proficient increasing by less than 0.1 when individual SES

increases from 25 to 68. The contextual effect is very pronounced, with the expected proportion

proficient ranging from about 0.1 to about 0.7 as school mean SES increases from the lowest to

the highest value in the sample and when individual SES is held constant at 45.

Unfortunately, plots such as Fig. 1 ignore the uncertainty that is involved in making predic-

tions using estimated model parameters. To address this problem, Fig. 2 shows approximate

pointwise 95% confidence bands for the predicted population-averaged probability µ̄.x0
j / for

the contextual effect with x0
j = .45 − x̄·j, x̄·j/′. To produce the confidence bands, we randomly

drew 1000 parameter vectors from a multivariate normal distribution with mean vector ϑ̂ and

covariance matrix ĉov.ϑ̂/, the estimated asymptotic sampling distribution of the estimates. For

each randomly drawn parameter vector ϑk, k = 1, . . . , 1000, we computed the predicted mar-
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Fig. 1. Between-school (– – –), contextual ( ) and within-school (- - - - - - - ) effects of SES on the pre-
dicted population-averaged probability of proficiency, with individual SES set to 45 for the contextual effect
and school mean SES set to 45 for the within-school effect
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Fig. 2. Contextual effect of SES: predicted population-averaged probabilities of reading proficiency as a
function of school mean SES for students with SES equal to 45, with pointwise 95% confidence intervals
representing parameter uncertainty (by simulation with 1000 replicates)

ginal mean µk.x0
j / for each school and then identified the 25th- and 976th-largest values for

each school.

It is also useful to convey the variability between clusters due to the random part of the

model. Fig. 3 considers the contextual effect for x0
j = .45 − x̄·j, x̄·j/′ and shows the school-

specific posterior mean probabilities µ̃j.x0
j / for the schools in the sample (dots), together

with the corresponding estimated median probability µ̂.x0
j , ζj/ = µ̂.x0

j , 0/ (full curve) and the

2.5- and 97.5-percentiles µ̂.x0
j , ± 1:96

√
ψ̂/ (broken curves), as a function of school mean x̄·j

when student SES is 45. Fig. 3 shows the conditional effect of school mean SES and the
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Fig. 3. Contextual effect of SES: predicted median probability of reading proficiency ( ) and 95%
range of probabilities (– – –) as a function of school mean SES for students with SES equal to 45; predicted
school-specific posterior mean probabilities ( ) for students with SES equal to 45

variability between schools keeping student SES constant. Whereas the 95% range conveys

the estimated variability in the population, the school-specific predictions can be useful for

identifying schools that do remarkably well or badly taking into account the school mean

SES (with student SES held constant). The school-specific predictions all lie within the 95%

range, and this is probably due to shrinkage. The effect of another covariate, such as gen-

der, could also be considered by producing separate curves for boys and girls. If gender had a

school level random coefficient, displaying posterior mean probabilities by gender would also be

informative.

Table 3 presents various predicted probabilities for the same schools as in Table 2. Since

these probabilities depend on x0
j = .45 − x̄·j, x̄·j/, the cluster-mean SES x̄·j is provided as well.

The population-averaged probabilities µ̄.x0
j / are closer to 0.5 than the median probabilities

µ̂.x0
j , 0/, but they do not differ dramatically here because the estimated random-intercept

variance is quite small. To help to interpret the cluster-averaged or posterior mean probabilities

µ̃j.x0
j / and the conditional probabilities µ̂.x0

j , ζ̃j
EB/, we present the empirical Bayes predictions

Table 3. Different kinds of predicted probabilities of reading proficiency for 10
schools from the PISA data (with student SES set to 45)

School nj x̄·j µ̄(x0
j ) µ̂(x0

j , 0) ζ̃j
EB µ̃j(x0

j ) µ̂(x0
j , ζ̃j

EB)

105 1 34.000 0.187 0.175 −0.043 0.181 0.169
85 3 34.000 0.187 0.175 0.132 0.206 0.195
33 4 53.000 0.451 0.448 −0.433 0.352 0.345
6 10 40.200 0.259 0.247 −0.473 0.179 0.170

42 12 49.833 0.400 0.393 −0.005 0.396 0.392
35 13 50.846 0.416 0.411 0.800 0.604 0.608
2 17 47.765 0.367 0.359 0.478 0.475 0.475

67 21 47.333 0.361 0.352 0.031 0.363 0.359
54 22 53.318 0.456 0.454 −0.325 0.378 0.375
19 25 50.680 0.413 0.408 0.861 0.617 0.620
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ζ̃EB
j again in Table 3. We see that the school-specific probabilities µ̃j.x0

j / differ more from the

population-averaged (or median) probabilities µ̄.x0
j / (or µ̂.x0

j , 0/) when the posterior distribu-

tion has its mean further from 0 as would be expected. As discussed, plugging the empirical Bayes

prediction into the conditional response probability does not give the posterior mean probability.

The latter is closer to 0.5, and the difference is greater for smaller cluster sizes where the

posterior standard deviations are larger (see Table 2), but none of the differences are very

pronounced.

9. Monte Carlo simulations

We now use simulations to assess the performance of methods for obtaining diagnostic and

comparative standard errors for empirical Bayes predictions of random effects and to assess the

performance of approximations that are sometimes used for predicted response probabilities.

We consider one of the most common types of multilevel generalized linear model, a random-

intercept logistic regression model,

logit{Pr.yij =1|ζj/}= β0︸︷︷︸
0

+ζj,

where ζj ∼N.0, ψ/. The model can alternatively be written as a latent response model

yÅ
ij = β0︸︷︷︸

0

+ζj + "ij,

yij =
{

1 if yÅ
ij > 0,

0 otherwise,

where ζj ∼N.0, ψ/ and "ij has a standard logistic distribution which has zero mean and variance

π2=3. The intra-class correlation ICCÅ between different latent responses yÅ
ij and yÅ

i′j in the same

cluster becomes

ICCÅ =
ψ

ψ +π2=3
:

To investigate the effects of the cluster size nj and intraclass correlation ICCÅ, we use a

full factorial design with nj ∈ {3, 10, 20, 100} and ICCÅ ∈ {0:1, 0:2, 0:5, 0:8}, corresponding to√
ψ ∈{0:60, 0:91, 1:81, 3:62}. With cluster sizes ranging from 1 to 28 and an estimated ICCÅ of

0.08, the PISA data are most similar to the conditions nj = 3, nj = 10 and nj = 20 combined

with ICCÅ =0:1. For each condition we simulate responses for J =10000 clusters of the same

size nj =n from the logistic random-intercept model.

We obtain predictions that are based on true parameter values, imitating the situation where

naive parametric bootstrapping is performed without re-estimating the model parameters in

each bootstrap sample so that parameter uncertainty is ignored. The 10000 clusters can there-

fore be viewed as independent bootstrap samples.

9.1. Empirical Bayes predictions of random effects

9.1.1. Diagnostic standard errors

Posterior means and standard deviations of ζj are obtained by 30-point adaptive quadrature.

The standard deviation of the empirical Bayes predictions across the 10000 clusters is a simu-

lation-based estimate of the diagnostic standard error of the empirical Bayes predictions. For
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each cluster, we also obtain an approximate squared diagnostic standard error as shown in

expression (7), by using the posterior variance for the second term in the following equality,

instead of its expectation:

vary.ζ̃j
EB; ϑ̂/= ψ̂ −Ey{var.ζj|yj; ϑ̂/}≈ ψ̂ −var.ζj|yj; ϑ̂/:

The mean of this approximation across the 10000 clusters is an alternative simulation-based

estimate of the squared diagnostic standard error. Both simulation-based estimates of the diag-

nostic standard error were very close in our experiment, never differing from each other by more

than 2% (we report the latter estimate in Fig. 4).

The most likely use of the diagnostic standard error is for the detection of unusual clusters

based on a normal approximation of the sampling distribution of the empirical Bayes predic-

tions. We therefore consider the null hypothesis that the model is correct and perform z-tests

for each cluster using

(a) the simulation-based diagnostic standard error and

(b) the approximate diagnostic standard error.

Fig. 4. Empirical sampling distributions of empirical Bayes predictions for various intraclass correlations
and cluster sizes: below each graph we report SD.Qζj

EB/ (from parametric bootstrapping), followed by the
10th and 90th percentiles of the approximations of this standard error in parentheses, followed in square
brackets by type I error rates (per thousand) using the simulation-based SD.Qζj

EB/ and the approximationp
{ψ̂ �var.ζj jyj /} for each cluster, where the nominal rate is 50 per thousand; the horizontal bars represent

the intervals ˙1:96 SD.Qζj
EB/
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The results are presented in Fig. 4. The graphs show the empirical sampling distribution

of the empirical Bayes predictions for each of the 16 conditions, together with the interval

±1:96SD.ζ̃j
EB/. For predictions outside this interval, the null hypothesis is rejected. The dis-

tributions of the empirical Bayes predictions look markedly non-normal for most conditions.

This is partly because the predictions are discrete with nj + 1 unique values, corresponding to

all possible cluster totals of the responses, 0, 1, . . . , nj. This will also be true if the model includes

covariates, because in a logistic regression model

f.yj|Xj/={1+ exp.x′
ijβ+ ζj/}−nj

nj∏
i=1

exp.x′
ijβ+ ζj/yij

= exp

(
ζj

nj∑
i=1

yij

)
{1+ exp.x′

ijβ+ ζj/}−nj

nj∏
i=1

exp.x′
ijβyij/,

so the cluster total Σiyij is a sufficient statistic for ζj.

For ICCÅ = 0:8, the distributions are very non-normal with large proportions of extremely

large and small empirical Bayes predictions. The distributions look increasingly normal as the

intraclass correlation ICCÅ decreases and the cluster size nj increases (towards the bottom left

of Fig. 4).

Below each graph in Fig. 4 we report the simulation-based diagnostic standard error, together

with the 10th and 90th percentiles (in parentheses) of the approximate diagnostic standard error

across the 10000 clusters. The approximation works poorly for ICCÅ =0:8 where both percen-

tiles tend to be quite different from the simulation-based diagnostic standard error. The rejection

rates (per thousand) by using the simulation-based and approximate diagnostic standard error

together with a normal approximation are given in square brackets and should be compared

with the nominal rate of 50 (per thousand). The test seems to work for ICCÅ
�0:2 and nj =100,

where the distributions appear to be approximately normal, performs reasonably for the neigh-

bouring conditions of ICCÅ = 0:1 and nj = 20, and ICCÅ = 0:5 and nj = 100, but fails for the

other conditions.

9.1.2. Comparative standard errors

For the same simulated data as above, we consider both the posterior standard deviation

SD.ζj|yj/ and the parametric bootstrap estimate of the prediction error standard devi-

ation SD.ζ̃j
EB − ζj/. The bootstrap estimate can be obtained either as the standard deviation of

the prediction errors across the 10000 clusters, or as the square root of the mean of the squared

posterior standard deviations. The two simulation-based estimates agree very closely, and we

use the latter. We assessed the performance of the standard errors by forming a confidence inter-

val for the realized random intercept and checking whether the actual realized random intercept

falls outside the interval (‘non-coverage’).

Table 4 gives results in the same format as in Fig. 4. We do not present graphs of the empirical

prediction error distributions because they all looked approximately normal. The non-coverage

rates are fairly close to the nominal rates and appear to be somewhat better for the posterior

standard deviation than for the prediction error standard deviation.

9.2. Predicted response probabilities

9.2.1. Prediction for a unit in a new cluster

We compare our recommended method, the population-averaged or marginal probability,

π̂M = µ̄.x0/, with the conditional probability π̂C = µ̂.x0, 0/ given that ζj = 0. The latter pre-

dictor, which is also the median probability, is easier to compute.
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Table 4. Prediction error standard deviation SD. Qζj
EB � ζj / by paramet-

ric bootstrapping, 10th and 90th percentiles of SD.ζj jyj / (in parentheses)
and non-coverage (per thousand) of confidence interval for ζj based on
SD. Qζj

EB � ζj / and SD.ζj jyj / respectively (in square brackets)

nj Results for the following values of ICCÅ

ICCÅ =0.1 ICCÅ =0.2 ICCÅ =0.5 ICCÅ =0.8

3 0.54 (0.54,0.54) 0.74 (0.73,0.74) 1.2 (1.1,1.2) 2.0 (1.3,2.2)
[51,54] [52,52] [51.54] [49.49]

10 0.45 (0.44,0.45) 0.55 (0.53,0.58) 0.79 (0.63,1.1) 1.5 (0.67,2.0)
[53,52] [53,52] [53,50] [57,49]

20 0.37 (0.36,0.38) 0.43 (0.41,0.47) 0.61 (0.44,0.78) 1.3 (0.46,1.9)
[51,50] [48,48] [53,52] [61,50]

100 0.20 (0.19,0.21) 0.22 (0.20,0.24) 0.32 (0.20,0.47) 0.83 (0.21,1.7)
[51,53] [50,46] [50,51] [66,50]

The ratio of the MSEP for the two methods depends on the intraclass correlation of the latent

responses ICCÅ and on the fixed part of the linear predictor, x0′β̂. We considered x0′β̂ ranging

from 0 to 3 and computed both probabilities for the four values of the intraclass correlation

of the latent responses that were used previously. Since the population-averaged probability

gives the expected proportion of new units with yij =1, the expectation of the squared error of

prediction .yij − π̂ij/2 is

µ̄.x0/.1− π̂ij/2 +{1− µ̄.x0/}.0− π̂ij/2:

Fig. 5 shows the ratio of the MSEP using the median probability versus the population-aver-

aged probability as a function of x0′β̂ for the four values of the intraclass correlation. We see that

the MSEP is never more than 5% greater for the median compared with the population-averaged

probability if the intraclass correlation is 0.5 or less. However, for higher intraclass correlations

the difference becomes more substantial, exceeding 15% for an intraclass correlation of 0.8 when

the fixed part of the linear predictor exceeds 1.72. (For ICCÅ = 0:8 and x0′β = 1:72 we obtain

π̂M =0:66 and π̂C =0:85.)

9.2.2. Prediction for a new unit in an existing cluster

We now compare the cluster-averaged or posterior mean probability µ̃j.x0/ with the con-

ditional probability µ̂.x0, ζ̃j
EB/ given that the random intercept equals its posterior mean.

This is useful since the former is preferred but the latter can be obtained in most standard

software. For the simulated data that were considered in the previous section, we deleted

one response per cluster and subsequently predicted it by using the two methods. The ratio

of the MSEP (across the 10000 clusters) was very close to 1 across conditions, the

largest ratios being 1.02 for ICCÅ = 0:5 and nj = 3 and 1.05 for ICCÅ = 0:8 and nj = 3, when

the posterior standard deviations tend to be large. Simulations with the fixed part of the linear

predictor set to 1 and 2 also gave ratios close to 1, the largest ratios being 1.05 for conditions

with nj =3. Substituting the empirical Bayes prediction into the expression for the conditional

probability therefore is a reasonable approach for the range of conditions that are considered

here.
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Fig. 5. Ratio of the MSEP comparing the median with population-averaged response probabilities for four
values of the intraclass correlation of the latent responses when the fixed part x00β̂ ranges from 0 to 3 with
ICCÅ D0:1 (– – –), ICCÅ D0:2 (-- - - - - - ), ICCÅ D0:5 (� - � - � -) and ICCÅ D0:8 ( )

10. Concluding remarks

We have investigated prediction of random effects and of expected responses, including proba-

bilities, in multilevel generalized linear models.

For prediction of random effects, we have concentrated on empirical Bayes prediction and

discussed three different kinds of standard errors for the predictions: posterior standard devi-

ations, prediction error standard deviations (comparative standard errors) and marginal sam-

pling standard deviations (diagnostic standard errors). We have discussed the interpretation of

these different notions of uncertainty and suggested approximations for some of the standard

errors. For prediction of expected responses, or response probabilities, we have considered three

different kinds of expectations: conditional expectations, population-averaged (or marginal)

expectations and cluster-averaged (or posterior mean) expectations. We have discussed their use

and shown how to obtain them. The methods have been illustrated by applying them to survey

data on children nested in schools.

Our simulations for a random-intercept logistic regression model suggest that the sampling

distribution of the empirical Bayes predictions is too discrete and non-normal for the diagnostic

standard error to be used in the usual way for identifying outliers, except for cluster sizes of 100

or more combined with intraclass correlations of 0.5 or less, or cluster sizes of 20 or more com-

bined with intraclass correlations of 0.1 or less. In these situations, the proposed approximation

for the diagnostic standard error works well.

The sampling distribution of the prediction errors is quite normal across the range of

intraclass correlations and cluster sizes that were considered, and using the marginal prediction

error standard deviation as standard error produces adequate inferences based on the normal

approximation. However, the posterior standard deviation is preferred from a theoretical per-

spective and performed somewhat better in the simulations. We therefore recommend using the

posterior standard deviation as comparative standard error.

For predicting the response of a new unit in the random-intercept logistic regression model,

we recommend using the population-averaged probability if the prediction is for a new cluster

and the cluster-averaged probability if the prediction is for an existing cluster. A simpler alterna-

tive to the population-averaged probability is the conditional probability given that the random
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intercept is 0. Our simulations showed that this alternative increases the MSEP substantially

compared with the marginal probability if the intraclass correlation is high and the fixed part

of the linear predictor is large. A simpler alternative to the posterior mean probability is the

conditional probability given that the random intercept is equal to its posterior mean. This

approach worked well for the range of situations that was considered.

Simulation results for predictions in linear mixed models were reported in Afshartous and

de Leeuw (2005). Further work would be useful to investigate the performance of different types

of predictions for response types other than continuous and dichotomous.

A great advantage of specifying statistical models is that they can be used for prediction.

For instance, many of the predicted probabilities that were discussed in this paper could not

be obtained by using generalized estimating equations. However, the quality of the predictions

hinges on the appropriateness of the model specification. In particular, it has been found that

a misspecified random-effects distribution can lead to poor performance of empirical Bayes

prediction of the random effects (e.g. Rabe-Hesketh et al. (2003) and McCulloch and Neu-

haus (2007)). To safeguard against such misspecification one might leave the distribution of

the random effects unspecified and use non-parametric maximum likelihood estimation (see

Clayton and Kaldor (1987) and Rabe-Hesketh et al. (2003) and the references therein).

Although we have focused on multilevel generalized linear models in this paper, the ideas

extend directly to generalized latent variable models such as those described in Rabe-Hesketh

et al. (2004) and Skrondal and Rabe-Hesketh (2004, 2007b). For these general models, as well as

multilevel generalized linear models, almost all of the methods are implemented in gllapred

and gllasim, the prediction and simulation commands of gllamm (e.g. Rabe-Hesketh and

Skrondal, 2008b).
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Appendix A

Here we give analytical results for linear multilevel or mixed models, yj =Xjβ+Zjζj +εj . The empirical
Bayes predictor is

ζ̃j
EB = Ψ̂Z′

jΣ̂
−1

j .yj −Xjβ̂/, .8/

where Σ̂j ≡ ZjΨ̂Z′
j + Θ̂j is the estimated residual covariance matrix of yj . The maximum likelihood esti-

mator is

ζ̃j
ML = .Z′

jΘ̂
−1

j Zj/
−1Z′

jΘ̂
−1

j .yj −Xjβ̂/: .9/

The empirical posterior covariance matrix and marginal prediction error covariance matrix are (e.g. Searle
et al. (1992))

cov.ζj|yj , Xj , Zj ; ϑ̂/= covy.ζ̃j
EB −ζj|Xj , Zj ; ϑ̂/= Ψ̂− Ψ̂Z′

jΣ̂
−1

j ZjΨ̂: .10/

For fixed Ψ̂ and θ̂, the maximum likelihood estimator of β is just the generalized least squares estimator

β̂=
(

J∑

j=1

X′
jΣ

−1
j Xj

)−1 J∑

j=1

X′
jΣ

−1
j yj:

It therefore follows from results derived in Harville (1976) that the posterior covariance matrix and mar-
ginal prediction error covariance matrix, taking the uncertainty of the estimated regression parameters
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into account, become

cov.ζj|yj , Xj , Zj ; Ψ̂, θ̂/=covy.ζ̃j
EB−ζj|Xj , Zj ; Ψ̂, θ̂/=Ψ̂−Ψ̂Z′

jΣ̂
−1

j ZjΨ̂+Ψ̂Z′
jΣ̂

−1

j Xj cov.β̂/X′
jΣ̂

−1

j ZjΨ̂,

where

cov.β̂/=
(

J∑

j=1

X′
jΣ̂

−1

j Xj

)−1

is the covariance matrix of the generalized least squares estimator.
The marginal sampling covariance matrix of the empirical Bayes predictions is

covy.ζ̃j
EB|Xj , Zj ; ϑ̂/= Ψ̂− cov.ζj|yj , Xj , Zj ; ϑ̂/= Ψ̂Z′

jΣ̂
−1

j ZjΨ̂: .11/

If β̂ is estimated by maximum likelihood for fixed Ψ̂ and θ̂ (generalized least squares) the marginal
sampling covariance matrix, taking the uncertainty of the estimated regression parameters into account,
becomes

covy.ζ̃j
EB|Xj , Zj ; Ψ̂, θ̂/= Ψ̂Z′

jΣ̂
−1

j ZjΨ̂− Ψ̂Z′
jΣ̂

−1

j Xj cov.β̂/X′
jΣ̂

−1

j ZjΨ̂: .12/

Appendix B

Proposition 1.

covy.ζ̃j
EB|Xj , Zj ; ϑ̂/= Ψ̂−Ey{cov.ζj|yj , Xj , Zj ; ϑ̂/}:

Proof.

cov.ζj|Xj , Zj ; ϑ̂/=Ey{cov.ζj|yj , Xj , Zj ; ϑ̂/}+ covy{E.ζj|yj , Xj , Zj ; ϑ̂/}



covy{E.ζj|yj , Xj , Zj ; ϑ̂/}
︸ ︷︷ ︸

covy.ζ̃
EB

j |Xj , Zj ; ϑ̂/

= cov.ζj|Xj , Zj ; ϑ̂/
︸ ︷︷ ︸

ˆ
Ψ

−Ey{cov.ζj|yj , Xj , Zj ; ϑ̂/}:

We first use a useful identity for covariance matrices and the equivalence then follows from rearranging
the terms. Finally, we use the definition of the empirical Bayes predictor and the symbol for the covariance
matrix of the random effects. The proposition was used by Skrondal (1996).
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