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Abstract

Discrete sequence modelling and prediction is an important goal and a challenge for pervasive computing.
Mobile client’s data request forecasting and location tracking in wireless cellular networks are characteristic
application areas of sequence prediction in pervasive computing. This article presents information-theoretic
techniques for discrete sequence prediction. It surveys, classifies, and compares the state-of-the-art solu-
tions, suggesting routes for further research by discussing the critical issues and challenges of prediction
in wireless networks.

Introduction
The proliferation of cellular networks and the penetration of Internet services are changing many

aspects of mobile computing. Constantly increasing mobile client populations utilize diverse mobile

devices to access the wireless medium and various heterogeneous applications are being developed

to satisfy the eager client requirements. In these environments, seamless and ubiquitous connectiv-

ity as well as low client-perceived latencies are two fundamental goals. The first goal calls for smart

techniques for determining the current and future location of a mobile, and the second calls for ef-

fective techniques for deducing future client requests for “information pieces” (i.e., objects/records

from databases, multimedia files, URLs, etc).

Location and request prediction in wireless networks

Location (request) prediction is the task of exploiting the past movements (requests) in deducing

what the future locations (requests) will be. Therefore, location (request) prediction can improve

the network performance (reduce the user’s latency). The ability to determine the mobile client’s

(future) location can significantly improve the wireless network’s overall performance in a number

of different ways. Consider for instance the handover procedure in a cellular network covering a

metropolitan city; instead of relying on reactive approaches, i.e., allocating appropriate resources

during the handover, we could come up with proactive approaches, i.e., allocating resources before

needed, so as to bypass, instead of correct, the negative effect of handover [5]. Additionally,

methods like the Shadow Cluster [6], could benefit from location prediction, by refraining from

allocating resources to all neighboring cells, but instead, they could allocate resources only to

the most probable-to-move cells. Finally, location prediction could be exploited in call admission

control techniques and also in sequential paging schemes [1] to reduce the combined paging cost.

Apart from the impact upon the network infrastructure, the task of prediction can be employed in

improving the performance of many modern data dissemination-based applications (Digital Video

Broadcasting-Handheld, services like that offered by the DirectBand Network) which are offored

by commercial companies and rely on IEEE 802.11 or 3G wireless networks. In such kind of

applications, the clients access the data by monitoring the broadcast channel, until they get the

required information, which increases the access latency. Although, client-side caching of frequently

accessed data could reduce the problem, it is not a panacea and prefetching can be used to further

reduce the access latency.
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Figure 1. Example mobile transaction. The switching center may allocate more resources and relocate some

data (E, D) to the rightmost cell, since the mobile host is expected to move there. In the current cell (zoomed

leftmost cell), while the mobile host waits for datum A to arrive in the broadcast channel, may prefetch data

C and B, since he forecasted their future use. In many cases, due to the broadcast scheduling algorithm, the

data B,C may arrive earlier than A, but their next appearance may be far from A’s appearance. Therefore,

prefetching reduces the overall latency.

As an example exhibiting the benefits of both location and request prediction, consider the

scenario where a mobile client, roaming inside the coverage area of a cellular network, submits

transactions to a distributed database system (Figure 1). This database system (by making a sim-

plifying assumption) uses the cellular system’s base stations for communicating with the mobile

and as its distributed servers as well. To achieve fast response times (i.e., no need for costly re-

mote accesses and expensive handovers) and fault-tolerance (i.e., data availability), a cost-effective

solution would be the selective and dynamic allocation of resources (i.e., needed data, bandwidth)

in those sites (base stations) which the user would visit soon. Such a scheme would require by the

system’s side the ability to predict both information needs and the trajectory of the mobile client.

Unifying location and request prediction The issues of location and request prediction had

been treated in isolation, but pioneering works ([12] and [1]) are paving the way for treating both

problems homogeneously; they exhibited the possibility of using data compression methods in

carrying out prediction. The unifying principle is that they model the respective state space as

finite alphabets comprised of discrete symbols. In the mobility tracking scenario, the alphabet

consists of all possible sites (cells) where the client has ever visited or might visit. In the request

prediction scenario, the alphabet consists of all the data objects requested by the client plus the

objects that might be requested in the future. Both location and request prediction are related

to the ability of the underlying network to record, learn and predict the mobile’s “behavior”. The

success of the prediction is presupposed and is boost by the fact that mobile users exhibit some

degree of regularity in their movement and/or in their access patterns [1]. A “smart” network

can record the movement(request) history and then construct a mobility(data access) model for its

clients.

This article provides a unifying framework for all the methods dealing with the location pre-

diction and request forecasting using information-theoretic structures; the framework treats them

as (variable/fixed length) Markov chains and presents the different families of methods categoriz-

ing the state-of-the-art algorithms into their respective families. An important objective of the

article is to include in the presentation not only the algorithms which are familiar in the wireless

communications community, but also techniques which have been developed in other disciplines,

like computational biology, machine learning, and World Wide Web, in order to achieve cross-

discipline understanding and proliferation of ideas. The purpose of the categorization is to reveal

the shortcomings and advantages of each method and identify routes for further research.
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The discrete sequence prediction problem
In quantifying the utility of the past in predicting the future, a formal problem definition is

needed. Let Σ be an alphabet, consisting of a finite number of symbols s1, s2, . . . , s|Σ|, where | · |

stands for the length/cardinality of its argument. A predictor accumulates sequences of the type

ai = α1
i , α

2
i , . . . , α

ni

i , where αj
i ∈ Σ, ∀i, j and ni denotes the number of symbols comprising ai.

Without lost of generality, we can assume that all the knowledge of the predictor consists of a

single sequence a = α1, α2, . . . , αn. Based on a, the predictor’s goal is to construct a model that

assigns probabilities for any future outcome given “some” past. Using the characterization of the

mobility/request model as a stochastic process (Xt)t∈N , we can formulate this goal as follows:

Definition 1 (Discrete Sequence Prediction problem). At any given time instance t (mean-

ing that t symbols xt, xt−1, . . . , x1 have appeared, in reverse order) calculate the conditional prob-

ability

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . ],

where xi ∈ Σ, ∀xt+1 ∈ Σ. This model introduces a stationary Markov chain, since the probabilities

are not time-dependent. The outcome of the predictor is a ranking of the symbols according to

their P̃ . The predictors which use such kind of prediction models are termed Markov predictors.

The “history” xt, xt−1, . . . used in the above definition is called the context of the predictor,

and it refers to the portion of the past that influences the next outcome. The history’s length (also,

called the length or memory or order of the Markov predictor) will be denoted by l. Therefore, a

predictor which exploits l past symbols, will calculate conditional probabilities of the form:

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , Xt−l+1 = xt−l+1]. (1)

Some Markov predictors fix, in advance of the model creation, the value of l, presetting it in a

constant k, in order to reduce the size and complexity of the prediction model. These predictors,

and the respective Markov chains are termed fixed length Markov chains/predictors of order k.

Therefore, they compute conditional probabilities as above, considering only the events from t up

to t − k + 1, with k < l. Although it is a nice model from a probabilistic point of view, these

Markov chains are not very appropriate from the estimation point of view. Their main limitation

is related to their structural poverty, since there is no means to set an optimized value for k.

Other Markov predictors deviate from the fixed memory assumption, and allow the order of

the predictor to be of variable length, i.e., to be a function of the values from the past. These

predictors compute conditional probabilities of the form of equation (1), but l is a function of time,

i.e., l = l(xt, xt−1, . . . ).

These predictors are termed variable length Markov chains; the length l might range from 1 to t.

If l = l(xt, xt−1, . . . ) ≡ k for all xt, xt−1, . . . , then we obtain the fixed length Markov chain. The

variable length Markov predictors may or may not impose an upper bound on the considered

length. The concept of variable memory offers a richness in the prediction model and the ability to

adjust itself to the data distribution. Unfortunately, it is not a straightforward problem to choose

in a data-driven way the function l = l(·).

The power of Markov predictors
The issue of prediction in wireless networks has received attention during the past years, exploiting

techniques like learning automata, Kalman filtering and pattern matching. Learning automata [5]

are simple, but they are not considered very efficient learners, because of the need to devise appro-

priate penatly/reward policies, and due to their slow convergence to the correct actions. Kalman
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filtering-based methods [7] construct a mobile motion equation relying on specific distributions for

its velocity, acceleration and direction of movement. They can not be used for request prediction,

but only for location prediction and their performance largely depends on the stabilization time

of the Kalman filter and knowledge (or estimation) of the system’s parameters. Finally, pattern

matching techniques have been used for location prediction [7]. They compile mobility profiles,

and perform approximate similarity matching, using the edit distance, between the current and

the stored trajectories, in order to derive predictions. For the edit distance, it is hard to select the

meaningful set of edit operations, to assign weights on them, and so on.

Therefore, why are Markov predictors more appropriate for carrying out location predic-

tion/request prediction, and why this prediction is amenable to Markovian prediction? Their

most profound advantage is their generality. They are domain independent and a simple mapping

from the “entities” of the investigated domain to an alphabet is all that is required. Thus, they

are able to support both location and request prediction. Markovian prediction relies on the short

memory principle, which says that the (empirical) probability distribution of the next symbol,

given the preceding sequence, can be quite accurately approximated by observing no more than

the last few symbols in that sequence. This principle fits reasonably and intuitively with how

humans are acting when travelling or seeking information. A mobile user usually travels with a

specific destination in mind, designing its travel via specific routes (e.g., roads). This “targeted”

traveling is far from a random walk assumption, and it is confirmed by studies with real mobil-

ity traces [11]. Similarly, almost all request traces exhibit strong spatial locality, which describes

correlated sequences of requests.

Families of Markov predictors
Markov predictors create probabilistic models for their input sequence(s) and they use digital

search trees (tries) to keep track of the contexts of interest, along with some counts used in the

calculation of the conditional probabilities P̃ . In the sequel of the paper, we will use the sample

sequence of events a = aabacbbabbacbbc, with length equal to |a| = 15. The appearance count of

subsequence s = ab is E(s) = E(ab) = 2 and the normalized appearance count of s is equal to E(s)

divided by the maximum number of (possibly overlapping) occurrences a subsequence of the same

length could have, considering the a’s length, i.e., En(s) = E(s)
|a|−|s|+1 . The conditional probability

P̃ (b|a) of observing a symbol, e.g., b, after a given subsequence, e.g., a, is defined as the number

of times that b has shown up right after the subsequence a divided by the total number of times

that the subsequence has shown up a all, followed by any symbol. Therefore P̃ (b|a) = E(ab)
E(a) = 0.4.

The Prediction by Partial Match scheme

The Prediction by Partial Match (PPM) is based on the universal compression algorithm reported

in [2]. For the construction of the prediction model, it assumes a pre-determined maximal order, say

k, for the generated model. Then, for every possible subsequence of length of 1 up to k+1, creates

or updates the appropriate nodes in the trie. The PPM predictor for the sequence aabacbbabbacbbc

is depicted in Figure 2. The maximum context that the PPM predictor can exploit is k; though,

all intermediate contexts with length from 1 to k − 1 can be used. The interleaving of various

length contexts does not mean that this scheme is a variable length Markov predictor, because the

decision on the context length is made beforehand and not in a data-driven way.

Apart from this basic scheme a number of variations have been proposed, which attempt to

reduce the size of the trie by pruning some of its paths, based on statistical information derived

from the input data, e.g., [3]. Apparently, these schemes are offline, making one or multiple passes

over the input sequence in order to gather the required statistical information.
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Figure 2. A PPM Markov predictor for the sequence aabacbbabbacbbc.

The Lempel-Ziv-78 scheme

The virtues of the Lempel-Ziv-78 predictor (LZ78) were investigated very early in the literature [1,

12]. The algorithm LZ78 [15] makes no assumptions about the maximal order for the generated

model. It parses the input sequence into a number of distinct subsequences, say s1, s2, . . . , sx,

such that ∀j (1 ≤ j ≤ x), the maximal prefix of subsequence sj is equal to some si, for some

1 ≤ i < j. The LZ78 predictor for the sequence aabacbbabbacbbc is depicted in the left part of

Figure 3. Though, LZ78 for this example is not able to produce a prediction for the test context

ab (i.e., there is no subtree under the gray-shaded node).
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Figure 3. (Left) A LZ78 Markov predictor for the sequence aabacbbabbacbbc. (Right) A LZ78 predictor

enhanced according to [1, 8].

The LZ78 predictor is an online scheme, it lacks administratively tuned parameters, like lower

bounds on appearance counts, and it is a characteristic paradigm of a variable length Markov pre-

dictor. Although, strong results do exist which prove its asymptotic optimality and its superiority

over any fixed length PPM predictor, in practice, various experimental studies contradict this

result, because of the finite length of the input sequence. The original LZ78 prediction scheme

was enhanced in [1, 8] in a way such that apart from a considered subsequence which is going to

be inserted into the trie, all its suffixes are inserted, as well (right part of Figure 3).

The Probabilistic Suffix Tree scheme

The Probabilistic Suffix Tree predictor (PST ) was introduced in [9] and although it specifies a

maximum order for the contexts it will consider, it is actually a variable length Markov predictor

and constructs its trie for an input sequence as follows. It uses five administratively set parameters:

k, the maximum context length, Pmin, a minimum normalized appearance count, r, which is a

simple measure of the difference between the prediction capability of the subsequence at hand and

its direct father node, γmin and α which together define the significance threshold for a conditional

appearance of a symbol. Then, for every subsequence of length of 1 up to k, if it has never been

encountered before, a new node is added to the trie, provided that a set of three conditions hold.

E.g., the subsequence abcd will be inserted into the trie of the PST iff:

a) En(abcd) ≥ Pmin, and

b) There exists some symbol, say x, for which the following relations hold:

b1)
E(abcdx)
E(abcd) ≥ (1 + a)γmin, and

b2)
P̃ (x|abcd)

P̃ (x|abc)
≥ r or ≤ 1/r, in other words, E(abc)

E(abcd) ∗
E(abcdx)
E(abcx) ≥ r or ≤ 1/r
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The PST predictor with k = 3, Pmin = 2
14 , r = 1.05, γmim = 0.001, α = 0 for the sequence

aabacbbabbacbbc is depicted in Figure 4.
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Figure 4. A PST Markov predictor for the sequence aabacbbabbacbbc.

The Context Tree Weighting scheme

The Context Tree Weighting predictor [14] (CT W) is based on the idea of combining exponentially

many Markov chains of bounded order, and the original proposition dealt with binary alphabets

only. The CT W assumes a pre-determined maximal order, say k, for the generated model and

constructs a complete binary tree T of height k. Each node s maintains two counters as and

bs, which count the number of zeros and ones, respectively, that followed context s in the input

sequence so far. Additionally, each context (node) s maintains, apart from the pair (as, bs), two

probabilities P s
e and P s

w. The former, P s
e , is the Krichevsky-Trofimov estimator for a sequence

to have exactly as zeros and bs ones. The latter probability, P s
w, is the weighted sum of some

values of Pe. The CT W predictor for the sample binary sequence 010|11010100011 is depicted in

the left part of Figure 5. With PR
e and PR

w denoting the Krichevsky-Trofimov estimate and the

CT W estimate of the root, respectively, we can predict the next symbol with the aid of a CT W

as follows. We make the working hypothesis that the next symbol is a one, and we update the

T accordingly obtaining a new estimate for the root P
′R
w . Then, the ratio

P
′
R

w

P R
w

is the conditional

probability that the next symbol is a one.
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Figure 5. (Left) A CT W Markov predictor for the binary sequence 010|11010100011. (Right) A sketch of the

De CT W Markov predictor for the sequence aabacbbabbacbbc.

For the case of non-binary alphabets, Volf [13] proposed the Decomposed CT W (De CT W).

Assuming that the symbols belong to a alphabet Σ with cardinality |Σ|, it considers a full binary

tree with |Σ| leaves. Each leaf is uniquely associated with a symbol in Σ. Each internal node v

defines the binary problem of predicting whether the next symbol is a leaf on v’s left subtree or a

leaf on v’s right subtree, “attaching” a binary CT W predictor to each internal node (Figure 5).
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Comparison of prediction schemes
Implicitly or explicitly all Markov predictors all based on the short memory principle, which says

that the probability distribution of the next symbol can be approximated by observing no more

than the last k symbols in that sequence. Some methods fix in advance the value of k (e.g., PPM,

CT W). If the selected value for k is too low, then it will not capture all the dependencies between

symbols, degrading its prediction efficiency. On the other hand, if the value of k is too large, then

the model will overfit the training sequence. Therefore, variable length Markov predictors (e.g.,

LZ78, PST ) are in general more appropriate from this point of view. This was the motivation for

subsequent enhancements to PPM and CT W so as to consider unbounded length contexts, e.g.,

the PPM⋆ algorithm.

On the other hand, variable length predictors face the problem of which sequences and of

what length should be considered. PST attempts to estimate the predictive capability of each

subsequence in order to store it in the trie, which results in deploying many tunable parameters.

LZ78 employs a prefix-based decorrelation process, which results in some recurrent structures to

be excluded from the trie, at least at the first stages. This characteristic is not very important for

large sequences, but may incur performance penalty for short sequences; for instance, the pattern

bba is missing in both variants of LZ78 of Figure 3. Although this example is by no means a kind

of proof that LZ78 is inferior to the other algorithms, it is an indication of how an individual

algorithm’s particularities may affect its prediction performance, especially in short sequences.

Despite their superior prediction performance, PPM schemes are far less commonly applied than

algorithms like LZ78, which is favored over PPM algorithms for its relative efficiency in memory

and computational complexity.

Prediction method Overheads Particularity

Family Variant Markov class Train Parameterization Storage

LZ78
[1] Variable on-line moderate moderate

May miss patterns
[15] Variable on-line moderate moderate

PPM
[2] Fixed on-line moderate large Fixed length.

[3] Fixed off-line heavy large High complexity

PST [9] Variable off-line heavy low Parameterization

CT W
[13] Fixed on-line moderate large

Binary nature
[14] Fixed on-line moderate large

Table 1. Qualitative comparison of discrete sequence prediction models.

From Table 1 we can gain some insights regarding which method is more appropriate for which

type of application. To the best of our knowledge, we found no study which compares all families

mentioned in this article for either the location prediction of the request prediction issue with both

synthetic and real data, although a worthwhile study containing comprehensive experiments with

real data is reported in [11]. Aiming to provide suggestions for policy selection, we select two

primary dimensions; the first dimension reflects the type of the problem (i.e., location or request

prediction) and the second dimension reflects the “network part”, where the prediction is carried

out (i.e., fixed, resource-rich network servers or resource-starving mobile hosts).

For data-consuming applications, some very important intuitive and experimentally confirmed

results exist, which state that: a) user request sequences are of considerably varying length, where

quite large sequences have significant non-zero probability (Universal Law of Mobile Web Surfing),

b) user interests vary significantly with time (not “strong” stationarity), c) many alternative paths

exist which lead to the same datum, thus the regularity patterns are “blurred” by noise. Due to

the not so strong stationarity, and the existenc of many alternative symbols (in request prediction
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scenaria), the possibility of using LZ78 types of predictors is not very high. Due to the variance in

the length of the individual client’s access sequence, the rest of the variable-order Markov predictors

are more appropriate; PST would be a perfect choice under the assumptions that the procedure

is performed offline and it runs on a resource-rich server or a laptop.

If energy conservation is the main issue in these applications (e.g., PDAs), then the choice

of PPM style predictors seems more appropriate since they are online, but they sacrifice some

prediction performance (due to the relatively small and fixed order model employed) for reduced

model complexity. The third observation may turn all prediction methods inefficient, since it

violates the “consecutiveness” property of appearance of the symbols in the patterns, upon which

property all described Markov predictors rely. In such cases, the modified Markov predictors

described in [3] can be employed, but these algorithms are offline and require substantial resources

(memory, power) to be executed. Therefore they could only be used by fixed network servers.

Location prediction is considered as a more manageable problem than request prediction, be-

cause of the fewer alternatives in possible contexts (i.e., hexagonal architecture of cellular systems,

few fixed access points in wireless LANs) and because of the “strong” stationarity (i.e., few habitual

routes in campuses/cities, few travel paths in urban regions – road network).

For location prediction applications, several families of Markov predictors could be used in

some specific scenarios each. For dynamic tracking of mobile hosts (with the tracking application

running either in the network server or the mobile host) PPM and LZ78 methods are appro-

priate. The small order PPM model and the enhanced LZ78 [1] are expected to achieve the

best performance, because of the undoubted validity of the stationarity assumption. Indeed, the

study in [11] confirmed that intuitive results. These variants are perfect fit for dynamic resource

allocation before handovers, as well. For location area design applications, where we are interested

in discovering “long-standing” repetitive user routes, the process is offline and therefore methods

like PST or [3] are appropriate and less vulnerable to statistical deviation.

To support the aforementioned design guidelines we performed a performance comparison of

the major Markov predictors, as described in [1, 2, 9, 13]. We generated synthetic sequences of 500

symbols each (drawn from a 26-symbol alphabet), falling into four categories: a) with strong sta-

tionarity and short (relative to the order of PPM, De CT W) patterns, b) with strong stationarity

and longer (relative to the order of PPM, De CT W) patterns, c) with strong stationarity, but

high variance in the patterns’ length, and d) with piecewise stationarity (cf. Section “Further

research”). All patterns were blurred with “white” noise. The average prediction precision of each

Markov predictor for each category of sequences is depicted in the four areas of Figure 6.

We can easily see the low performance of the enhanced LZ78 algorithm while the sequences

are at their beginings, and how it considerably improves its performance while more symbols are

accumulated. PPM in general performs superior to all its competitors when the patterns’ lenght

is smaller than its order and this situation is reversed when there is high variance in the patterns’

length, in which case PST prevails. Finally, none of the predictors performs satisfactory for the

piecewise stationary sequences.

Further research
The classical result about the duality between lossless compression and prediction implies that any

universal lossless compression algorithm can be used to carry out prediction. Although quite a lot

of theoretical lossless compression schemes do exist in the literature, only a few of them have been

implemented for practical purposes. This is due to the need for effectively combining prediction

efficiency, computational complexity and low implementation effort. These three “dimensions”

limit the range of possible alternative practical prediction models. Towards this direction, the
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Figure 6. Performance evaluation of major Markov predictors.

Burrows-Wheeler (BW) lossless compression scheme offers significant opportunities for combining

the excellent prediction ratios of PPM and the low complexity of schemes based on LZ78. This

compression scheme is composed by three steps: a) the Burrows-Wheeler Transform (BWT), b)

a Move-To-Front transform, and c) a variant of Run-Length Encoding and entropy coding. The

main difference between BW compression and its context-based competitors (CT W, PPM, LZ78,

PST ) is that the latter methods encode each symbol knowing the left context of its appearance,

which helps estimating the probability of the symbol occurrence. In BW schemes, firstly, the right

context is exploited, and secondly, the information regarding the contexts is lost after the BWT

stage. Recovering contextual information could make BW appropriate for prediction in wireless

settings, but unfortunately no full solution to this problem has been described yet. So far, no

practical prediction scheme is based on the BW scheme.

The cornerstone for building the Markov predictors described in this paper is the “stationarity

assumption”, which implied time-homogeneous transition probabilities. Under this assumption, the

trie of each predictor grows node-by-node increasing the respective node counters, i.e., identical

subsequences are “aggregated” (mapped) into the same node of the trie. Under the stationarity

assumption, Markovian prediction is well understood. By completely removing the notion of

stationarity, it is obvious that we can hardly have any prediction capability, since the fundamental

tenet of predictability is violated, i.e., some degree of ergodicity.

In-between these two extremes lies the more realistic case of piecewise stationarity, where the

sequence of symbols is treated now as a series of non-overlapping segments, each of them having

been generated by a stationary source. It is supposed that the system has no knowledge about

the number of these segments, their duration, the kind of change between them (abrupt or slowly

varying). Clearly, the removal of the full stationarity assumption, turns the procedure for creation

of predictors mentioned in the previous paragraph, not appropriate at all or of reduced value.

For instance, in the simplest case of a mobile client whose roaming patterns change gradually, the

predictors will tend to favor the “old habits” of the client and will adapt to the changing conditions

in a very slow rate. Therefore, the assumption of non time-homogeneous transition probabilities

turns the current predictors inefficient and raise some design challenges for any new scheme that
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will be designed to address this assumption. Although research works exist dealing with piecewise

stationarity (e.g., [10]) these works mainly focus on memoryless sources and have not considered

Markov sources.

Markov predictors could still achieve prediction efficiency for piecewise stationary sources, but

they should be armed with some smart mechanisms. For instance, an enhanced LZ78 scheme is

presented in [1, 8], which inserts into the trie all proper suffixes of a discovered subsequence (a

LZ78 word). Indeed, this improvement is shown to outperform the classic LZ78 decorrelation

scheme. Although not explicitly mentioned as such in [1], this enhancement can be seen as a

method of modeling intra-word correlations, i.e., an approach to account for the fact that full

stationarity might not be valid for the sequence, in which case the original decorrelation procedure

finds the wrong words. This technique seems appropriate in cases of abrupt changes between

stationary segments, but does it really help for piecewise stationary slowly varying sequences?

Also, the enhancement reported in [4] takes a first step toward addressing this issue, but in many

real applications, for instance in daily movement patterns of mobiles, it may be the case that the

stationary segments are repeating. How could we discover (segment the sequence) and exploit such

repeating statistics? As we mentioned, “full aggregation” (i.e., accumulating counts in nodes) is

not helpful; partial (controlled) or no aggregation could be considered as well, but in any case

novel prediction algorithms should be designed, since, as [11] concluded, there is significant gap

between the performance of the examined Markov predictors and an “optimal” offline predictor.

Summary
Designers of modern wireless networks are increasingly confronted with the issues of providing

seamless and ubiquitous connectivity in a system-independent nature, as well as providing low

access latency to data-hungry applications. Smart wireless networks could deduce future client

locations and allocate resources in advance, in order to mitigate the negative effect of handovers

and perform paging in a cost-effective manner. Similarly, smart agents running on the mobile

clients could forecast future client data needs and preload the respective data from the broadcast

channels, while waiting to get the explicitly-requested information pieces.

This article presented the issues of location and request prediction in wireless networks in a

homogeneous fashion, characterizing them a discrete sequence prediction problems, and surveyed

the major Markovian prediction methods. The article by no means serves as an exhaustive survey,

but as a vehicle to promote understanding and proliferation of ideas. We explained the virtues

of Markov predictors and showed important yet to be addressed research issues. We envision

predictive model design as a fertile research area.
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