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Abstract— This paper presents
a novel approach to identify
the prediction interval associ-
ated with data using interval
type-2 fuzzy logic systems with
support vector regression. For
such a purpose, a constrained
quadratic objective function is
defined which is then solved
using well-established quadratic
programming approaches. Not
only does the output of interval
type-2 fuzzy logic system replicates the measured value, but also it provides the lower bound and the upper bound
for measured data values. In the proposed approach, to have more valuable information, a penalty term is added in the
cost functions to have full control over the width of prediction interval. This method has been successfully applied to two
benchmark identification problems. It is observed that by using the control parameter in the cost function, it is possible
to obtain a narrower, yet inclusive prediction interval. Furthermore, superior prediction accuracy is obtained compared to
existing methods in literature. Motivated by these results, the proposed approach is used to predict time series collected
using a satellite from Urmia lake water level which resulted in high accuracy and an inclusive prediction interval. The
graphical abstract presented for the paper illustrates the overall data gathering as well as data analysis made to estimate
the prediction interval associated with Urmia lake water level data.

Index Terms— Fuzzy neural networks, prediction algorithms, Estimation, prediction interval, remote sensing, level
measurement,

I. INTRODUCTION

Interval type-2 fuzzy logic systems (IT2FLSs) are widely

known to be an inevitable option in the presence of high levels

of uncertainties and noise in the system [1]. In a fuzzy logic

system, the membership grade assigned to an input by various

experts may be different resulting in interval membership

grades. Interval type-2 fuzzy membership functions (MFs)

are a promising method to deal with such different expert

knowledge which benefit from an infinite number of type-1

fuzzy MFs. Although use of interval type-2 fuzzy MFs makes

the structure of IT2FLSs more complicated, it allows them

to deal with high levels of uncertainties in the system. The

uncertainty can exist in the MFs and/or in the consequent part

resulting in a histogram of values in the consequent part [2].
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The additional degree of freedom which exists in the structure

of IT2FLSs make it possible to deal with uncertainty and noise

which may exist in real world data.

Real world datasets inherently suffer from nonlinearity,

uncertainty and noise. Although fuzzy logic systems, espe-

cially in the case of Mamdani type, are known to be general

function approximators, minimum functional approximation

error inevitably exist [3]. A bounding interval for data can

be more useful than just identifying the crisp output value of

the system as it guarantees the prediction interval for future

data samples. Not only can IT2FLSs deal with uncertainty

and noise but also they promise a prediction interval that

covers data. Piecewise linear methods as well as interval fuzzy

models have already been used to find prediction intervals

[4,5]. A linear programming approach is used to estimate the

parameters of these structures [4,5]. However, the methods

investigated in these studies do not provide any means to

control the prediction interval width, which is the primary

motivation of this study.

Finding an unviolated prediction interval covering all future

possible values is a very useful practice. General function

approximators such as fuzzy logic models may be used to
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estimate interval values associated with data. To show the im-

portance and place of prediction interval identification, several

possible engineering applications that already exist in literature

are studied. For instance, when modeling a nonlinear circuit,

the elements of the circuit that suffer from uncertainties in

their real values due to manufacturing variations. Furthermore,

environmental conditions may impose more uncertainties to

their characteristic [5]. Characteristic identification of physical

systems may be useful for fault identification as well. In [6],

the physical system is modeled completely in terms of an

IT2FLS, the violation of the prediction interval associated

with system is an indication of fault in the system. It is

further possible to use multiple IT2FLSs describing various

faulty conditions of the system which can be used to identify

the cause of the fault rather than just its occurrence [7]. To

achieve stable operation of an energy management system, it

is required to utilize knowledge about the predicted values as

well as uncertainty associated with wind speed, solar energy

and other resources used in such an energy management

system. Such resources are highly stochastic. A robust energy

management system using wind power and speed interval

prediction is investigated in [8], where the obtained prediction

interval for wind is used for management purposes. Another

application of fuzzy prediction interval approach is in stock

exchange price prediction [9]. For such a purpose, simulation

results show that an IT2FLS whose parameters are trained us-

ing genetic algorithms can successfully identify the prediction

interval associated with data [9].

Various algorithms have been used to estimate the pa-

rameters of IT2FLSs. Such optimization algorithms can be

placed into three main categories: derivative-based optimiza-

tion methods, derivative-free optimization approaches and

hybrid algorithms [10]. From another point of view, training

methods for IT2FLSs can be placed into two categories:

iterative approaches and non-iterative approaches [11]. While

optimizing IT2FLSs using least square is a non-iterative

approach, gradient based methods instead require several it-

erations before converging to their optimal solutions [12].

Support vector regression (SVR) is an alternative non-iterative

training machine learning method that can successfully be

applied to train IT2FLSs. It is widely known that an IT2FLS

trained using this method results in superior generalization

properties than most of other approaches [13]. In [13,14],

SVR is used to estimate the parameters of an IT2FLS, the

comparison results show the superiority of this system over

several existing system identification methods. A complete

review summarizing various parameter estimation methods

for IT2FLSs is provided in [10]. The proposed approach in

this study is a non-iterative derivative-free method with a

few design parameters which makes it an ideal choice when

dealing with nonlinear interval system identification. Being

non-iterative, the probability of entrapment in a local minimum

for the proposed algorithm is minimum as well.

Statistical approaches such as bootstrap, Bayesian method as

well as Kalman filter have previously been applied to find the

confidence interval associated with data [15,16]. The structures

used in these studies are mostly artificial neural networks

(ANNs) and cover a wide range of applications including

decision making [8] and prediction interval estimation methods

[17]. However, these approaches mostly involve the calculation

of the Hessian value of an ANN structure’s output with respect

to its parameters which is known to be time consuming.

Moreover, the identification error in these cases needs to be

zero mean with a normal probability distribution function [18].

The fuzzy logic system parameter estimation methods used

in [4,5,19] rely on a constrained cost function. A constrained

least square method is formulated to find the fuzzy prediction

interval whilst having measured data between bounds defined

by fuzzy model [19]. However, such a prediction interval

estimator did not have any parameter to control the width

of the prediction interval. This is the main drawback of

the algorithm introduced in [19] which may result in too

conservative prediction interval. The main motivation of this

paper is to have full control over the width of prediction

interval to obtain a narrow, yet inclusive one.

In this study, the original version of SVR, a powerful ma-

chine learning approach, for the training of IT2FLSs [13,14]

is modified. The two main motivations for the modification

made in this study are:

1) To deal with identification problems when the estimation

error is not Gaussian.

2) To have control over width of the prediction interval

This modified version of SVR includes terms corresponding

to the width of the prediction interval associated with system

output in the cost function to control it. These modifications

form the main contribution of the proposed approach over

existing approaches. Although the prediction interval covering

data presents valuable information about it, too wide prediction

interval contains less specific information about data. It is

therefore highly desirable to have some means to control

the width of prediction interval, which in turn adds another

objective function, making the parameter estimation of the

IT2FLS a multi-objective optimization problem. The added

objective function includes the width of the output interval

associated with fuzzy system output. Two more constraints are

required to be added to make sure that measured data samples

do not fall outside the interval defined by the IT2FLS. The fact

that the proposed approach includes some means to control

width of prediction interval found by the fuzzy system is the

main contribution of the current paper over previously studied

SVR approach in [13,14]. Similar to previous approaches

such as [13,14], the optimization problem is solved using a

quadratic programming algorithm. Uncertainty analysis in the

case of statistical approaches necessitates the calculation of

a Hessian matrix which is a very complex task. Furthermore,

these approaches suffer from requirements on error such as the

normal distribution function and zero-mean which may not be

valid in some cases. The proposed approach is an algebraic

approach which relaxes some of the assumptions about error

such as being zero mean and having a normal probability

distribution function. The proposed algorithm is then used to

estimate the prediction interval for two interesting benchmark

problems. Simulation results support the fact that using the

proposed approach, one can have full control over the width of

the prediction interval, while maintaining prediction accuracy.
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Earth observation has different branches such as ground-

sensing networks and satellite remote sensing [20]. The data

collected using satellites can be used to gain a wide range

of knowledge about the social, economic, and environmental

condition of the region. Spatial temporal dynamic analysis is

possible through remote sensing. For instance, urban popula-

tion in an area is estimated by analyzing the nighttime light.

The brightness of an area in this case is an indication of its

population, wealth and similar parameters associated with the

region [21]. Haze pollution monitoring is another application

of satellite remote sensing [22] which results in high quality

measurements. Various machine learning techniques including

texture analysis [23], clustering and classification [24], as well

as visualization, analysis and interpretation [25] are among the

approaches which have already been applied to the remote

sensing dataset. The analysis of water resources is crucial

because of its social effect on the life of people living in

the nearby area. Such analysis is possible through remote

sensing using the data collected from satellites 1. Urmia

lake has been paid much attention in previous studies due

to its high social impact on life of people neighboring area

and its environmental conditions [26,27]. In this study, the

proposed multi-objective prediction interval is used to analyze

the time series associated with the water level of Urmia lake.

Comparisons are provided between the proposed approach and

state-of-the-art studies applied to the same dataset which show

the superior performance of the proposed approach.

This paper is organized as follows: In Section II, a litera-

ture survey is performed addressing relevant approaches. An

overview of the basic structure of the IT2FLS is provided

in Section III. The proposed methodology for the training of

IT2FLSs are presented in Section IV. The experimental results

of the proposed IT2FLSs are illustrated in Section V. Finally,

in Section VI, the concluding marks are presented.

II. LITERATURE SURVEY

In this section, a list of articles related to the estimation

of the prediction interval associated with data are presented.

Existing approaches can be placed into three major categories

of classical statistical approaches, upper and lower estimation

methods and other optimization-based approaches which does

not include extraction of upper and lower bound of data a

priori (see Fig. 1).

A. Classical Statistical Approaches

The first class are classical statistical approaches that rely on

uncertainty analysis to find the standard deviation associated

with the output of model. These methods assume a normal

distribution function for error which makes it possible to come

up with an appropriate confidence interval covering data.

The bootstrap method aims at constructing several subsets

of data by re-sampling the original dataset. Each subset is

then modeled independently using an identifier, and outputs of

trained models combined to forecast data. The most straight-

forward method is to use the average value of constructed

1Lake Urmia (0115) Height Variations from TOPEX POSEIDON and
Jason series Altimetry

Fig. 1. Categories of different estimation algorithms for prediction
interval identification

models as the overall model. However, Bayesian model aver-

aging as well as weighted average least square can be named as

alternative approaches [28]. Bayesian model averaging assigns

different gains to each model such that the best model has the

greatest share in the output and the worst one has the least

impact on it. Overall model averaging in this case results in a

model that can outperform every single input model. On the

other hand, the weighted average least square method uses

orthogonalization which reduces the computational burden

whilst improving the accuracy of the system [28].

Among various model averaging methods, the simplest one

is taking the average model of several ANNs previously

investigated in [29]. This approach is examined on the energy

market of Victoria region in Australia and New York city

with a sampling time of 30 minutes [29]. In this work, time-

varying variance associated with models is estimated using

the GARCH model. This variance can be controlled to reflect

the prediction interval associated with the (1-α)% confidence

interval. The fundamental assumption for the maximum like-

lihood estimator required for training a GARCH model is the

normal distribution of error.

Bayesian approach is another statistical method that can be

used to find the prediction interval associated with data. The

parameters in this case are estimated such that they minimize

a regularized cost function that includes the sum of squared

error as well as the norm of network weights. The uncertainty

analysis in this algorithm involves the estimation of a Hessian

matrix that can be cumbersome in terms of ANNs as this

structure has a large number of parameters [18].

The Delta method, another statistical approach to estimate

the prediction interval, uses a Taylor expansion of a neural

network to find the uncertainty associated with its output.

This algorithm suffers from computational burden due to

dependency of its uncertainty analysis on a Hessian matrix

[30].

Boot-strap, Bayesian approach and delta methods to find

prediction interval using ANNs are comprehensively investi-

gated in [18] for ten different case studies. The investigated

datasets cover a wide range including synthetic dataset, body

fat estimation, real-world baggage handling system, concrete

compressive strength and six more datasets. It is concluded

ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
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that Bayesian method is the most reliable prediction interval

in most cases. However, the computational burden associated

with this method may be against wide-spread use of this

algorithm [18].

In the case of using the least square estimation method for

ANN parameters, the covariance matrix associated with this

estimator can be constructed based on its properties [31]. In

[31], numerical analysis is presented to demonstrate the quality

of the prediction interval of ANNs for an artificial plant as a

benchmark example. However, the least square algorithm can

be applied on a limited class of linear regression models as

well as the output layer of ANNs when a linear activation

function is used in the output layer. The generalization of this

approach to a wider class of intelligent structures would be

difficult and may involve approximation.

The Kalman filter family are well-known estimation meth-

ods that can be effectively used to tune the parameters of ar-

tificial intelligent structures [32]. Its extended version benefits

from Taylor expansion and can be used to estimate the param-

eters of ANNs when they appear non-linearly in ANN output.

There exist various versions of Kalman filtering including the

extended Kalman filter with U-D factorization, designed to

improve the numerical stability of the estimation method [15].

The adaptive Kalman filter benefits from mechanisms to tune

the Kalman filter parameters during training automatically.

This will contribute to having less design parameters and

consequently less design iterations. On the other hand, their

decoupled extended Kalman filters are frequently used due

to its decoupling procedure. However, they impose more

approximation to reduce the size of covariance matrix [33].

Uncertainty in data directly influences the innovation covari-

ance matrix. Standard deviation associated with each output

can be calculated from the diagonal elements of this matrix

resulting in finding prediction intervals associated with each

output. Different members of the Kalman filter family has

been previously applied to estimate the prediction interval

associated with market clearing price [15] as well as short-

term load forecast [34].

The main disadvantage of using the Kalman filter family to

estimate the confidence intervals is that the assumptions on

noise including the Gaussian probability distribution function

and zero-mean are among the assumptions required for this

estimator. Moreover, the Taylor expansion needed to estimate

the parameters that appear nonlinearly in the output imposes

more inaccuracy to the approximate method as its higher order

terms must be neglected [33].

Fuzzy systems may be considered as alternative general

function approximators for ANNs, and may outperform ANNs

in some cases [35], [36]. The fuzzy confidence interval is

developed in [37] using statistical methods under general

statistical assumptions for data such as zero-mean error, and

the normal probability distribution function for error.

B. Lower Upper Bound Estimation Algorithm

Ideal absolute and relative lower and upper bounding of data

can be generated to identify the prediction interval associated

with it [38]. Multiple linear regression models benefiting from

the least square algorithm to estimate their parameters are used

in [38] to identity the prediction interval width as well as the

measured value. This approach is used to find the prediction

interval of the daily-sampled discharge value of the Yangtze

river, the longest river in Asia, located within the Chinese terri-

tory [38]. The lower upper bound estimator (LUBE) proposed

by Khosravi et. al [39] uses an ANN with two outputs that

directly replicate the upper and lower bounds. A cost function

that includes the coverage probability as well as the width of

the prediction interval is used to estimate the parameters of

the ANN with two outputs [39]. The main disadvantage of

this method is the requirement to select design parameters

in the cost function that greatly influence its performance.

To successfully implement this algorithm, several iterations

with different parameter values in the cost function may be

required before ending up with an appropriate selection. A

similar two output ANN is used in [40] that benefits from

fuzzy objective functions to reduce the number of design

parameters in its cost function. This fuzzy objective function

controls the training procedure of the ANN with two outputs.

Generally, the LUBE methods alleviate the requirement for the

error probability distribution to be normal which is common

for statistical approaches and limits their applicability [39] and

[40].

In a study performed by N. Shrivasta et. al., electricity

price was identified using radial basis neural networks [41].

In this work two support vector machines are used to train

the radial basis kernels to follow the trend of lower and

upper bounds of data. The parameters associated with the two

support vector machines are selected using particle swarm op-

timization rather than grid partitioning to speed up the overall

estimation method. The main objective function considered for

the particle swarm optimizer includes a term associated with

coverage and width criterion. The studied method successfully

obtained the prediction interval for electricity prices of the

Ontario electricity market an hour-ahead forecasting as well

as three-hours ahead forecasting basis. The prediction interval

associated with the Pennsylvania–New Jersey– Maryland day-

ahead market, and real-time market is considered in this

study in a daily basis. It is important to demonstrate that

the proposed approach is fast enough to perform prediction

in a timely manner. Simulation results demonstrate that the

prediction algorithm is reasonably fast, as it takes a couple

of minutes to be completed, that makes it suitable for the

prediction of a few hours ahead [41].

The simplicity of the LUBE method is its main advantage

and has resulted in the use of this algorithm in several prob-

lems including wind power forecasting [40], flood prediction

interval forecast [42], wind speed prediction interval [43] tidal

current forecast [44], and short term photo voltaic forecast

[45].

The main disadvantage is the need to find the upper and

lower bound a priori as well as the selection of parameters

in the cost function. Although the fuzzy approach in [40] de-

creases the number of design parameters in the cost function,

finding appropriate upper and lower bounds is still required for

successful use. The approach presented in this study, does not

require the knowledge of the upper and lower bound associated
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with data a priori. This is the main improvement offered by the

proposed algorithm over approaches studied under the LUBE

title.

C. Methods using Cost Function Defined Directly on

Data

In the approach investigated in [4,5], two lower and upper

fuzzy models are considered to identify the prediction interval.

Data needs to be between the upper and the lower fuzzy

models while the outputs of the fuzzy models are as close as

possible to the measured data. Hence, the problem is formu-

lated as a constrained optimization problem. The cost function

considered in this study is the l∞-norm of the difference

between the output of the two fuzzy models and the measured

data under the constraint imposed by the requirement to have

data in the interval defined by the lower and upper fuzzy

models. Similar methods are investigated for the identification

of uncertain systems for robust fuzzy control purposes, where

the lower and upper fuzzy models are used to identify uncer-

tain dynamics of nonlinear systems in state space form. The

identified interval fuzzy model is then used to design a robust

controller for an inverted pendulum and a bulk converted

circuit [46]. In [4,5,46] a linear programming approach is

used to find the upper and lower fuzzy models. Other than

application to robust control, the fuzzy prediction interval has

been successfully applied to fault detection problems [47].

Other than the interval associated with the output of a fuzzy

model, in [19] another approach is proposed which estimates

the interval associated with the consequent part parameters as

well using the least square method. Hence, this approach is

not a black box method as it gives more information about the

internal parameters of the system.

The main advantage of the approaches in this category

over statistical approaches is that they do not depend on the

assumption on estimation error to have normal probability

distribution function. They also do not necessitate finding

the lower and upper bound for data a priori, a common

requirement of the LUBE method. However, the downfall of

the algorithms used in [4,5,19,46] is that no control exists over

the width of the prediction interval which may result in an

unnecessarily large width for the prediction interval meaning

it contains less specific information about data. Motivated by

this shortcoming an algorithm is proposed in this study that

falls within algorithms explained in Section II-C and is capable

of controlling the width of prediction interval.

D. General overview of aforementioned methods

The general overview of the proposed approaches is pre-

sented here. Classical statistical approaches are widely used

for uncertainty analysis associated with the prediction interval.

They benefit from statistical analysis which makes them a

reliable approach. However, the assumptions associated with

these approaches including the Gaussian probability distri-

bution function for the prediction error as well as being

zero-mean are among the restricting requirements for this

method. The LUBE is the second approach investigated in

this paper. The interesting feature of this algorithm is that

after finding an absolute or relative upper and lower bound

for data, finding the nonlinear function which can approximate

them is straightforward. However, considering the fact that

uncertainty may not be distributed uniformly makes finding

the lower and upper bound associated with data a priori very

difficult. The main disadvantage of the methods investigated

in Section II-C is that no control exists over the width of

the prediction interval in these algorithms which may result

in a wider prediction interval than required. If the width

of prediction interval is wider than required it contains less

specific information about data which needs to be avoided.

The aforementioned shortcomings associated with the three

categories of algorithms are the main motivation for the

proposed approach in this paper.

III. GENERAL STRUCTURE OF INTERVAL TYPE-2 FUZZY

LOGIC SYSTEM

The general structure of interval type-2 fuzzy systems

including its main building blocks is depicted in Fig. 2. Several

structures for IT2FLSs and its type-reducers are investigated in

[48,49]. The structure used in this study benefits from interval

type-2 fuzzy MFs in the antecedent part and interval values

for the consequent part parameters. A typical fuzzy IF-THEN

rule for such a structure is as follows.

Fig. 2. Type-2 fuzzy logic system building blocks

IF x1 is Ãj1 and x2 is Ãj2 and . . . and xn is Ãjn

THEN yj=

n∑

i=1

α̃ijxi+β̃j (1)

where x1, x2, . . . ,xn are the input variables, y is the

single output variable. Moreover, Ãij’s are interval type-2

fuzzy MFs for the jth rule of the ith input. α̃ij and β̃j

(i= 1, . . . ,n, j= 1, . . . ,M) are the interval parameters in the

consequent part of the rules that satisfy the following equation.

α̃ij∈[αij , αij ], β̃j∈[βj
, βj ] (2)

The following definitions are made.

F j=

n∑

i=1

αijxi+β
j

(3)

F j=

n∑

i=1

αijxi+βj (4)

wj(x) =µ
F̃

j
1

(x1) ∗ ...∗µF̃
j
n
(xn) (5)
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wj(x) =µ
F̃

j
1

(x1) ∗ ...∗µF̃
j
n
(xn) (6)

where µ
F̃

j

k

(xk) are µ
F̃

j

k

(xk) are the lower and upper MF

corresponding to jth rule for xk and ” ∗ ” is a t-norm operator.

The output value of IT2FLS is given as

Y (x) = [yl(x), yr(x)] (7)

where x∈Rn is a vector of inputs of system. Among various

defuzzifications approaches to calculate the output of an

IT2FLS, the Maclauren based first order approximate one is

chosen [49]. The accuracy of this defuzzification algorithm is

lower than the exact model of the enhanced Karnik-Mendel

model approach [50] and higher than the approximate models

of Biglarbegian-Melek-Mendel [51] and Nie-Tan [52]. The

computational burden for such an algorithm is less than the

enhanced Karnik-Mendel model as it does not necessitate

the sorting procedure required by it. The Maclauren series

expansion based first order approximate output of the IT2FLS

is as follows [49]:

y∈[yl, yr] (8)

where yl and yr are the left most and right most values

of output of IT2FLSs, respectively. These parameters are

calculated as follows.

yr≈

∑M

j=1 (w
j+wj)F

j
+
∑M

j=1 (sign(m
j)∆wjF

j
)

∑M

j=1 (w
j+wj)+

∑M

j=1 (sign(m
j)∆wj)

(9)

where:

mj=F
j
−

∑M

j=1 w
jF

j

∑M

j=1 w
j

(10)

and ∆wj=wj−wj . Furthermore, yl is calculated as

yl≈

∑M

j=1 (w
j+wj)F j−

∑M

j=1 (sign(m
j)∆wjF j)∑M

j=1 (w
j+wj)−

∑M

j=1 (sign(m
j)∆wj)

(11)

where:

mj=F j−

∑M

j=1 w
jF j

∑M

j=1 w
j

(12)

The final crisp output value of IT2FLS is obtained as

Y (x) =
yl+yr

2
(13)

It is then possible to rewrite (9) as

yr=
M∑

j=1

ν
j
RF

j

R (14)

where:

ν
j
R=

wj+wj+sign(mj)∆wj

∑M

j=1 (w
j+wj)+

∑M

j=1 (sign(m
j)∆wj)

(15)

The parameter yr in a vector form is obtained as:

yr=φRθ (16)

where

φR= [−→ν
T

R,
−→ν

T

Rx1, ...,
−→ν

T

Rxn]
T

(17)

and −→α R is defined as

−→ν R= [ν1R, ..., νMR ]
T

(18)

Furthermore, θ is defined as

θ
T

(n+1).M= [β1, ..., βM , α11, ..., α1M , ..., αn1, ..., αnM ]

where α’s and β’s are the consequent part parameters defined

in (4). Similarly, it is possible to rewire the equation corre-

sponding to yl (11) in a vector form as

yl=

M∑

j=1

ν
j
l F

j
l (19)

where:

ν
j
l =

(wj+wj)− (sign(mj)∆wj)
∑M

j=1 (w
j+wj)−

∑M

j=1 (sign(m
j)∆wj)

(20)

yl=φLθ (21)

where:

φL= [−→ν
T

L,
−→ν

T

Lx1, ...,
−→ν

T

Lxn]
T

(22)

and −→α L is defined as.

−→ν L= [ν1L, ..., νML ]
T

(23)

Furthermore, θ is defined as.

θT(n+1).M= [β
1
, ..., β

M
, α11, ..., α1M , ..., αn1, ..., αnM ]

where α’s and β’s are the consequent part parameters defined

in (3).

IV. SUPPORT VECTOR REGRESSION METHOD

Support vector regression is a powerful machine learning

approach that is widely used to estimate the parameters

of fuzzy logic systems including IT2FLSs [13,14]. Let N

be the number of training data samples to train IT2FLSs

{(x1, t1), ..., (xN , tN )}, with tk, k= 1, ...,N being the target

values for IT2FLSs. The SVR method is designed to guarantee

that training error never exceeds ε [13,14]. Such behavior is

similar to a dead zone term, Dεk, which can add a penalty

term to the cost function when an error is larger than ε and

stays neutral otherwise. A dead-zone function is as follows:

Dεk=

{
0 if |ek| <ε

|ek|−ε otherwise
, k= 1, ...,N

where ek is the identification error. The constrained optimiza-

tion problem to estimate the parameters of the IT2FLS is as

follows [13,14]:

min
θ,θ,ξ,ξ∗

1

2
θT θ+

1

2
θ
T
θ+C

N∑

k=1

(ξk+ξ∗k) (24)

s.t. tk−
1

2
(φL,kθ+φR,kθ)≤ε+ξk, k= 1, ...,N (25)

1

2
(φL,kθ+φR,kθ)−tk≤ε+ξ∗k, k= 1, ...,N (26)

ξk, ξ
∗

k≥0 ∀k (27)
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In the case when ε < |ek|, the terms ξk and ξ∗k act as

a penalty term for cost function. The parameter C forms a

trade-off between the model complexity and its accuracy.

This cost function and its solution using linear program-

ming approaches have been previously considered in literature

[13,14]. Although such approaches result in high performance

identifiers with high generalization performances, there is no

control over the width of the interval value of the output that is

equal to (yr−yl) point-wise. As mentioned earlier, it is highly

desired to have a narrow interval width as it contains more

information about data. Motivated by this fact, a modified

cost function for the SVR model is proposed in this study

in Section 5.

V. PROPOSED MULTI-OBJECTIVE SUPPORT VECTOR

REGRESSION METHOD

As mentioned earlier, the algorithm proposed in this study

not only identifies crisp output value, but also the prediction

interval associated with data. The proposed method benefits

from penalty terms which provide the means to control the

width of the prediction interval using an appropriate design

parameter. The mathematical formulation of the constrained

optimization functions as well as the corresponding quadratic

programming approaches to solve these problems are pre-

sented in this Section.

A. Cost Function Formulation

The objective is to find the nonlinear interval function

covering the data plus having the type reduced output of the

IT2FLS approximate the measured data points. It is desirable

to allow control of the output interval width which is equal

to (yr−yl) point-wise. Therefore, the constrained optimization

problem is modified as follows:

min
θ,θ,ξ,ξ∗

1

2
θT θ+

1

2
θ
T
θ+C

N∑

k=1

(ξk+ξ∗k+ξ−k +ξ+k )

+ γ

N∑

k=1

(tk−φl,kθ)
2

︸ ︷︷ ︸
I1

+ γ

N∑

k=1

(tk−φr,kθ)
2

︸ ︷︷ ︸
I2

(28)

s.t. tk−
1

2
(φL,kθ+φR,kθ)≤ε+ξk, k= 1, ...,N, (29)

1

2
(φL,kθ+φR,kθ)−tk≤ε+ξ∗k, k= 1, ...,N, (30)

φR,kθ−tk≤ε+ξ+k , k= 1, ...,N, (31)

tk−φL,kθ≤ε+ξ−k , k= 1, ...,N, (32)

ξk, ξ
∗

k, ξ
+
k , ξ

−

k ≥0 ∀k (33)

The newly added terms and constraints with respect to the

existing SVR method [13,14] are the terms I1, and I2 terms

in (28) as well as the constraints of (32-34). The nonequality

of (31), if fulfilled, guarantees that the target values do not

exceed the yr. On the other hand, the nonequality of (32), if

fulfilled, guarantees that the target values do not fall below

yl. The terms I1, I2 are used to control the width of interval

with γ being a tuning parameter. While a large value for γ

may decrease the prediction accuracy, a small value for it may

result in a wide interval value for the output that includes less

valuable information.

A Maclauren series first order approximation of type-

reduction + defuzzification, previously designed in [49], is

used. The regressor values φL,k and φR,k depend on the

consequent part parameter values that in turn result in a two

step optimization. In the first step, since the consequent part

parameters are unknown, the regressor values φL and φR are

chosen as:

φR= [−→ν
T

R,
−→ν

T

Rx1, ...,
−→ν

T

Rxn]
T

(34)

and −→ν R is defined as:

−→ν R= [ν1R, ..., νMR ]
T

(35)

where:

ν
j
R=

wj

∑M

j=1 w
j

(36)

and

φL= [−→ν
T

L,
−→ν

T

Lx1, ...,
−→ν

T

Lxn]
T

(37)

and −→ν L is defined as:

−→ν L= [ν1L, ..., νML ]
T

(38)

where:

ν
j
L=

wj

∑M

j=1 w
j

(39)

In the second step, based on the estimations made in the

first step for θ and θ, the newer values of regressors for the

IT2FLS, φL and φR, are calculated considering (17), (18),

(22) and (23). The pseudocode of the proposed algorithm is

as follows:

1) Input Selection and data processing

2) Present data in terms of the maximum and minimum

3) Split the data to test and train dataset

4) MF Generation for the IT2FLS

5) Obtain the regressors using (34) - (39).

6) Tune the consequent part parameters (first stage) to

obtain the regressors using the quadratic programming

approach to solve optimization problem (28)-(33)

7) Obtain the regressors using the updated consequent part

parameters using (15), (17), (18), (20), (22) and (23).

8) Tune the consequent part parameters (second stage)

using the quadratic programming approach to solve (28)-

(33)

9) Evaluate the performance for the train and test data. If

error is satisfactory STOP, otherwise GOTO 4).

The formulation of this problem in terms of quadratic

programming is given in the following section.

B. Solution to Cost Function in terms of a Quadratic

Programming Approach

A quadratic programming problem is defined as follows and

can be solved using various commercially available software

such as the Matlabr quadprog command.

min
x

1

2
xTHx+fTx (40)



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

provided that:

Ax≤b (41)

where H and A are matrices and f , b, and x are vectors.

Formulation of the problem mentioned in Section V.A in

terms of quadratic programming requires the definition of an

unknown parameter x as the vector of unknowns as follows.

x=
[

θ θ ξk ξ∗k ξ−k ξ+k
]

(42)

The matrix H is presented as follows.

H=




H11 H12 H13

H21 H22 H23

H31 H32 H33


 (43)

with its components being represented as follows.

H11=




I+γφL,1φ
T
L,1

...

I+γφL,kφ
T
L,k

...

I+γφL,n+1φ
T
L,n+1




T

H11∈R
(n+1).M×(n+1).M

H22 =




I + γφR,1φ
T
R,1

...

I + γφR,kφ
T
R,k

...

I + γφR,n+1φ
T
R,n+1




T

H22 ∈ R(n+1).M×(n+1).M

H12 = H12 = O(n+1).M×(n+1).M

H13 = O(n+1).M×4N

H23 = O(n+1).M×4N, H31 = O4N×(n+1).M

H32 = O4N×(n+1).M , H31 = O4N×4N

The vector f is represented as follows.

f=
[
f1 f2 f3

]
(44)

where f1, f2 and f3 are represented as follows.

f1 = −2γ
[
t1φL,1 . . . tKφL,K . . . tNφL,N

]

f2 = −2γ
[
t1φU,1 . . . tKφU,K . . . tNφU,N

]

f3 =


 C . . . C
︸ ︷︷ ︸

4N




The matrix A in the inequality is presented as follows.

A=




A11 A12 −I O O O

A21 A22 O −I O O

A31 A32 O O O −I

A41 A42 O O −I O

O O −I O O O

O O O −I O O

O O O O −I O

O O O O O −I




(45)

where:

A11 = −0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A12 = −0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A21 = 0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A22 = 0.5diag (φR,1, . . . , φR,k, . . . , φR,N ) ∈ RN×N

A23 = O ∈ RN×N , A42 = O ∈ RN×N

A23 = diag (φR,1, . . . , φR,k, . . . , φR,N ) ∈ RN×N

A41 = −diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

The vector b in the inequality of (41) is represented as follows.

b=
[
b1 b2 b3 b4 b5 b6 b7 b8

]T
(46)

With its components b1, b2,. . . , b8 given as follows.

b1 =
[
−t1 + ε . . . −tk + ε . . . −tN + ε

]T

b2 =
[
t1 + ε . . . tk + ε . . . tN + ε

]T

b3 =
[
t1 + ε . . . tk + ε . . . tN + ε

]T

b4 =
[
−t1 + ε . . . −tk + ε . . . −tN + ε

]T

b5, b6, b7, b8 = O ∈ RN×N .

VI. SIMULATION RESULTS

To analyze the capability and performance of the proposed

algorithm in predicting an appropriate prediction interval, it

is used for several existing datasets in literature including

input/output data associated with static function approximation

[53], and datasets gathered from time varying dynamic systems

[54]. The prediction is done using the constrained cost function

represented in (28)-(33) (see Section V-A). The accuracy of

the predictions is compared with existing methods to show

the superior performance of the proposed approach over the

state-of-the-art methods in literature. Three sets of parameter

values are considered for the proposed algorithm which are

listed in Table I.

TABLE I

PARAMETER SETS CONSIDERED FOR THE PROPOSED ALGORITHM IN

THE FOLLOWING EXPERIMENTS

Paramater set RMSE for test data

No. 1 ε = 0.01, C = 40 and γ = 0.1

No. 2 ε = 0.01, C = 40, and γ = 1

No. 3 ε = 0.1, C = 40, and γ = 1
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A. Nonlinear Function Approximation

A nonlinear function approximation is considered as the

first example. This nonlinear function has previously been

considered in a number of papers [53] as follows:

y= 1+x0.5
1 +x−1

2 +x−1.5
3 (47)

Fig. 3. Prediction Interval obtained for the nonlinear function approxi-
mation

Fig. 4. Prediction Interval obtained for the nonlinear function approxi-
mation using different values of γ

To estimate this function 1000 randomly generated numbers

are selected from the interval of [1, 5]. This data is further

split into test and train data with 20% of points being consid-

ered for testing, and the rest being used for training purposes.

MFs used in this study are Gaussian interval type-2 fuzzy MFs

with crisp centre and interval σ values. Table II demonstrates

the results of comparison between RMSEs of the proposed

approach versus five other approaches previously investigated

in [53,55]. All competitors listed in this table benefit from

adaptive neuro-fuzzy inference systems constructed upon type-

1 MFs with various training methods. As shown in table II, the

proposed approach considerably outperforms other methods

TABLE II

IDENTIFICATION RESULTS FOR THE NONLINEAR FUNCTION

APPROXIMATION PRESENTED IN EXAMPLE 2. BOLD FACED RESULTS

INDICATES THE BEST ONE.

Method RMSE for

test data

ANFIS GD-RLSE [53] 0.245

ANFIS RPROP+RLSE [53] 0.218

ANFIS QP+RLSE [53] 0.773

ANFIS LM+RLSE [53] 0.288

ANFIS AWPSO+RLS [55] 0.072

Proposed approach with parameter

set No. 1

0.016

Proposed approach with parameter

set No. 2

0.017

in terms of generalization for test datasets. Furthermore, Fig.

3 illustrates that the prediction interval covers the target

data samples. The capability of the proposed algorithms in

controlling the prediction interval using the parameter γ is

illustrated in Fig. 4; where the prediction interval for the case

when γ is equal to 0.1 and 1 are demonstrated. It can be

observed in Fig. 4 that a large value for γ results in a narrower

prediction interval, such a result complies with the claimed

role of γ in the cost function and estimation procedure.

B. Identification of a Time-Varying Nonlinear Dynamic

System

A second order nonlinear dynamic system with time-varying

parameters [54] is used to test the performance of the proposed

approach in this study. The output of this dynamic system is a

nonlinear time-varying function of inputs, time delays of input

and time delayed output values as follows [54]:

y (t+1)=f(y (t) , y (t−1) , y (t−2) , u (t) , u(t−1) (48)

where the nonlinear function f(.) is defined as follows.

f (x1, x2, x3, x4, x5)=
x1x2x3x5 (x3−b)+cx4

a+x2
2+x2

3

(49)

and parameters a, b and c are time-varying parameters defined

as follows.

a (t) = 1.2− 0.2cos

(
2πt

T

)

b (t) = 1.0− 0.4sin

(
2πt

T

)

a (t) = 1.0 + 0.4sin

(
2πt

T

)

with T , the total number of samples, is taken as to be equal to

1000. The input signal to the system u(t) is taken as follows.

u (t)=





sin
(
πt
25

)
t< 250

1.0 250≤t< 500
−1.0 500≤t< 750
f (t) 750≤t< 1000

(50)

where:

f (t) = 0.3sin

(
πt

25

)
+ 0.1sin

(
πt

32

)
+ 0.6sin

(
πt

10

)
.
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TABLE III

IDENTIFICATION PERFORMANCE FOR THE TIME-VARYING SYSTEM

IDENTIFICATION PROBLEM PRESENTED IN THIS PAPER. BOLD FACED

RESULTS INDICATES THE BEST ONE.

Method Rules Epoch Training
RMSE

Testing
RMSE

Type-1 TSK
FNS [56]

9 100 0.0282 0.0598

Type-2
TSK FNS [56]

4 100 0.0284 0.0601

Feedorward
Type-2 FNN

3 100 0.0281 0.0593

SIT2FNN [57] 4 100 0.0351 0.0560

SEIT2 FNN
[58]

3 100 0.0274 0.0574

TSCIT2FNN
[59]

3 100 0.0279 0.0576

IT2 FNN-GD
[54]

- 200 0.0540 0.0613

IT2 FNN-SMC
[54]

- 200 0.0360 0.0390

IT2 FNNPSO
+ SMC [54]

- 200 0.0199 0.0390

Proposed
Approach with
parameter set
No. 3

11 Non-
iterative

0.0146 0.0348

The first 80% of the generated data is used for training and

the last 20% is chosen for testing purposes. Parameter values

used for this system identification case are ε = 0.1, γ = 1,

and C = 40.

Fig. 5. Prediction performance of the proposed approach on time
varying system identification in terms of the training dataset

The proposed algorithm is a non-iterative approach and does

not include any iterations before convergence to true values

of the parameters. A summary of the results obtained using

the proposed method and several existing system identification

models is given in Table III. As Table III shows, the proposed

algorithm outperforms existing methods in terms of system

identification accuracy for the training dataset as well as gen-

eralization to the test data. The identification performance is

illustrated in Fig. 5 which shows that the output of the IT2FLS

closely replicates the real data for training data. Furthermore,

TABLE IV

STATISTICS ASSOCIATED WITH THE URMIA LAKE WATER LEVEL

DATASET.

Parameter Value

Max. 6.5630

Min -1.9430

Std. 2.4125

Mean 2.1689

TABLE V

PREDICTION RESULTS OVER THE URMIA LAKE WATER LEVEL DATASET.

BOLD FACED RESULTS INDICATES THE BEST ONE.

RMSE test RMSE train

Trained ANFIS with hybrid (27
rules) [26]

0.3633 –

Trained ANFIS with PSO (27 rules)
[26]

0.2454 0.43408

Hybrid PSO-RLS (27 rules) [26] 0.11089 0.224

Hybrid PSO-GD (27 rules) [26] 0.12621 0.239

ANFIS (1296 rules) [60] 0.08 –

The proposed method with with pa-
rameter set No. 3

0.0348 0.0146

the data is bounded with yl and yr, which provide an appro-

priate prediction interval for data. As mentioned earlier, such

prediction intervals are controllable using appropriate selection

of the parameter γ. It can be further shown by simulation

that this prediction interval is never violated by desired output

values which is a very appreciable result. In another words,

the yl’s never exceed corresponding desired output values and

yr ‘s are never smaller than the corresponding desired output

values.

C. Discussion

Overall results demonstrate higher accuracy in prediction

with respect to state-of-the-art papers in literature. Prediction

interval estimation is a major feature of the proposed approach

over existing literature which relaxes some of the assumptions

required by previous approaches such as Gaussian probability

distributed functions for prediction error. The prediction in-

terval obtained using this approach is a reasonably inclusive

one which is not too wide to avoid less specific information

associated with data. The role of the parameter γ is also crucial

in the performance of the proposed approach. The larger value

for the parameter γ results in smaller width for prediction

interval which contains more specific information about data.

However, larger value for γ may result in having more points

violating the prediction interval which needs to be avoided.

Hence, the appropriate selection for the parameter γ is required

for appropriate estimation of the prediction interval.

VII. APPLICATION TO PREDICTION INTERVAL

IDENTIFICATION ASSOCIATED WITH URMIA LAKE WATER

LEVEL USING SATELLITE REMOTE SENSING

Remote earth observation through satellites is crucial to

gain valuable information about environmental conditions,

lake water levels, and other vital factors. Such data analysis

can be used to manage drinkable water to prevent disasters

in the area [20]. Remote sensing is a major branch of earth
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Fig. 6. Performance of the proposed approach on lake water level
prediction for the training data set

Fig. 7. Performance of the proposed approach on lake water level
prediction for the training data set

observation science which provides a huge amount of infor-

mation using satellite. A huge amount of data gathered from

the environment require appropriate analysis to be useful for

further analysis and decision making [61]. Machine learning

approaches [62] as well as time series analysis [21] may be

used to analyze collected data. Urmia lake is located in the

span of longitudes of 45◦ to 46◦ east and latitudes of 37◦

to 38.5◦ north in the northwest of Iran. Fluctuation in the

water level of lake Urmia has been paid attention due to

its environmental and social impact on living conditions in

nearby area [26]. The data associated with lake water level

was collected with a sample interval of 10 days between 1992

and 2014 using satellites and includes 727 data samples, from

which 509 samples are selected for training and 218 data

samples are used for testing data. The collection of data was

performed using the TOPEX/Poseidon/Jason satellite series

(at 10-day resolution) 2. The statistics associated with the

lake Urmia dataset water level are presented in Table IV.

This dataset has previously been investigated in a number of

papers in which adaptive neuro-fuzzy inference systems with

various training algorithms were used to predict it [26,60].

The inputs taken for the prediction system in this study are[
y(t− 40) y(t− 30) y(t− 10) y(t)

]
and the desired

value of the system is y(t+10) where y(t−n) represents the

lake water level n days ago. The results obtained using the

proposed approach as well as several approaches in literature

are presented in Table V.

As shown in Table V, the obtained values for the proposed

algorithm outperform other approaches considerably while the

number of rules considered for the proposed method is 5 which

is considerably less than that of [60], [26]. The performance

of the proposed approach as well as test data is indicated in

Figs 6 and 7. As can be seen from these figures, the obtained

results are close to measured lake water level.

VIII. CONCLUSIONS

In this study, the identification of the prediction interval

associated with data is investigated. Three main categories of

prediction interval estimation are distinguished within litera-

ture. The first category, explained in Section II-A, involves

statistical approaches that perform uncertainty analysis on the

model output. Using the co-variance associated with the model

output as well as the properties of error with the normal

probability distribution function, they find the confidence

interval that covers future values of the output at certain

level of confidence. The second class, described in Section

II-B, involves the estimation of lower and upper bounds for

data a priori, which is then used as a guideline to estimate

model parameters. The third category, described in Section

II-C, addresses the shortcomings of the first two categories

including the assumption of the normal probability distribution

function for error as well as finding the lower and upper

bound of data by defining an appropriate cost function on data

directly.

The method which is used to identify the prediction in-

terval using IT2FLSs proposed in this study falls within the

third category of estimation algorithms. Using the proposed

approach, the prediction interval related to data using IT2FLSs

is estimated with a multi-objective cost function. It is assumed

that data values are not interval in nature, however, other

than identification of their crisp values, it is desired to find

a prediction interval covering the data. Using the multi-

objective cost function, not only can we predict data, but

we can also have a parameter to control the width of the

prediction interval to prevent it from being unnecessarily large.

Although the method investigated in this study falls into the

third category of prediction intervals, having control over the

prediction interval width is the most important contribution

of this study with respect to the current approaches in this

category. Benchmark datasets investigated in this study are

2Lake Urmia (0115) Height Variations from TOPEX POSEIDON and
Jason series Altimetry

ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
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generated using a nonlinear function and a time-varying dy-

namic system. A quadratic programming method is used to

minimize the constrained optimization problem and estimate

the parameters of the IT2FLS. It is shown through simulation

that with an appropriate choice of parameters associated with

the proposed algorithm, it is possible to obtain a narrow yet

covering prediction interval whilst maintaining the prediction

accuracy. Comparisons between the proposed approach and

state-of-the-art prediction methods in literature demonstrate

the superior prediction accuracy of the proposed approach over

them. It is further shown that using the proposed approach, an

appropriate prediction interval can be estimated to cover data

with reasonable number of rules without losing accuracy.

Motivated by the results obtained from the proposed ap-

proach over benchmark prediction methods, it is used to

predict the Urmia lake water level collected through satellites.

Such predictions may be used to predict a possible water

shortage in the area and prevent it from happening. Simulation

results demonstrated that the proposed approach is an effective

way to deal with this time series dataset. Comparison results

demonstrated superior performance of the proposed approach

over the state-of-the-art approaches in literature. The predic-

tion interval estimated in this method covers data and can be

used for decision making purposes.

The limitation of the proposed approach is that it is a non-

iterative approach which require the whole dataset in batch

form to be used for parameter estimation. As future work, it

would be interesting to study the recursive and possibly less

computationally expensive version of this algorithm.
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[8] F. Valencia, J. Collado, D. Sáez, and L. G. Marı́n, “Robust energy
management system for a microgrid based on a fuzzy prediction interval
model,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1486–1494,
2015.

[9] M. F. Zarandi, B. Rezaee, I. Turksen, and E. Neshat, “A type-2 fuzzy
rule-based expert system model for stock price analysis,” Expert Systems

with Applications, vol. 36, no. 1, pp. 139–154, 2009.
[10] S. Hassan, M. A. Khanesar, E. Kayacan, J. Jaafar, and A. Khosravi,

“Optimal design of adaptive type-2 neuro-fuzzy systems: A review,”
Applied Soft Computing, vol. 44, pp. 134–143, 2016.

[11] M. A. Khanesar, S. Hassan, E. Cambria, and E. Kayacan, “A novel non-
iterative parameter estimation method for interval type-2 fuzzy neural
networks based on a dynamic cost function,” in 2019 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019, pp. 1–6.
[12] Z. Deng, K.-S. Choi, L. Cao, and S. Wang, “T2fela: type-2 fuzzy extreme

learning algorithm for fast training of interval type-2 tsk fuzzy logic
system,” IEEE transactions on neural networks and learning systems,
vol. 25, no. 4, pp. 664–676, 2013.

[13] V. Uslan, H. Seker, and R. John, “A support vector-based interval type-2
fuzzy system,” in 2014 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE). IEEE, 2014, pp. 2396–2401.
[14] C.-F. Juang, R.-B. Huang, and W.-Y. Cheng, “An interval type-2 fuzzy-

neural network with support-vector regression for noisy regression
problems,” IEEE Transactions on fuzzy systems, vol. 18, no. 4, pp. 686–
699, 2010.

[15] L. Zhang and P. B. Luh, “Neural network-based market clearing price
prediction and confidence interval estimation with an improved extended
kalman filter method,” IEEE Transactions on Power Systems, vol. 20,
no. 1, pp. 59–66, 2005.

[16] H. Papadopoulos and H. Haralambous, “Reliable prediction intervals
with regression neural networks,” Neural Networks, vol. 24, no. 8, pp.
842–851, 2011.

[17] C. I. van Hinsbergen, J. Van Lint, and H. Van Zuylen, “Bayesian
committee of neural networks to predict travel times with confidence
intervals,” Transportation Research Part C: Emerging Technologies,
vol. 17, no. 5, pp. 498–509, 2009.

[18] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Compre-
hensive review of neural network-based prediction intervals and new
advances,” IEEE Transactions on neural networks, vol. 22, no. 9, pp.
1341–1356, 2011.
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