
Prediction, learning, and games

Nicolò Cesa-Bianchi and Gábor Lugosi
Cambridge University Press, 2006

(ISBN 0521841089)

Errata (September 8, 2006)

Pages 12�13, polynomially weighted average forecaster. Theorem 2.1 cannot be

invoked to prove Corollary 2.1 because the polynomial potential Φp(u) = ku+k2
p is not

twice di�erentiable when u has one or more components equal to 0 (thanks to Amy Green-

wald and Casey Marks for pointing this out). However, we can use Theorem 2.1 to prove

the following slightly weaker version of Corollary 2.1 in which the factor
p

p − 1 has been

replaced by
p

p.

Corollary 1 Assume that the loss function ` is convex in its �rst argument and that

it takes values in [0, 1]. Then, for any sequence y1, y2, . . . 2 Y of outcomes and for

any n � 1, the regret of the polynomially weighted average forecaster satis�es

bLn − min
i=1,...,N

Li,n �
q

npN2/p .

Proof. We make the following observation
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where in the last step we used the fact that (a + b)c � ac + bc for a, b � 0 and 0 � c � 1

(recall that p � 2 implying 0 � 2/p � 1). Let I = {i : Ri,n > 1}. Because of the

boundedness of the loss function, we have Ri,n−1 > 0 for each i 2 I. Since both vectors
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(Ri,n−1)i2I and (Ri,n)i2I lie in the positive orthant of R| I |, we can apply Theorem 2.1 and

obtain

0
@∑
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+ (p − 1)|I |2/p � Φp(Rn−1) + (p − 1)N2/p

where we used again the boundedness of the loss. We can then write

Φp(Rn) � N2/p + Φp(Rn−1) + (p − 1)N2/p � Φp(Rn−1) + pN2/p .

Iterating this argument n times gives Φp(Rn) � pnN2/p. The proof is then concluded in

the same way as the proof of Corollary 2.1.

Page 41, Lemma 3.1. The statement of Lemma 3.1 should read as follows:

For each t = 1, 2, . . . let E�t = argmin
E2E

t∑
s=1

`(fE,s, ys). Then for any sequence y1, . . . , yn of

outcomes,
n∑

t=1

`(p�t , yt) �
n∑

t=1

`(fE�

n,t, yt) = inf
E2E

LE,n .

The notation in the proof should be changed accordingly. (Pointed out by Giovanni

Cavallanti.)

Page 274, Exercise 9.16. �Markov� with capital M.

Page 328, lines 2�3. �Minimization the Kullback-Leibler divergence� should be replaced

by �Minimization of the Kullback-Leibler divergence�

Page 336, line -14. Missing �)�

Page 339, Proof of Theorem 12.2. Replace the �rst two sentences in the proof by the

following:

Recall the normalized exponential potential update wi,t = wi,t−1 e−zi

.�∑d
j=1 wj,t−1 e−zj

�
for i = 1, . . . , d, where z = λr`γ,t(wt−1). By combining the argument that leads to (12.1)

with the proof of Theorem 11.3 we obtain

λ
�
γ − `γ,t(u)

�
I{ŷt 6=yt} � λ(u − wt−1) � (−z)

= DΦ�(u,wt−1) − DΦ�(u,wt) + ln

0
@ d∑

j=1

wj,t−1 exp
�
wt−1 � z − zj

�1A

� DΦ�(u,wt−1) − DΦ�(u,wt) +
λ2

2
X2∞
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where in the last step we have applied Hoe�ding inequality (Lemma A.1) to the random

variable with range {z1, . . . , zd} � [−X∞, X∞] and distribution wt−1.

Page 344, boxed �gure. Two consecutive steps have the same label �(2)�

Page 344, statement of Theorem 12.4. The sentence �Then the number of mistakes

m =
∑∞

t=1 I{ŷt 6=y 0

t} is �nite and satis�es. . . � should be replaced by �Then m is �nite and

satis�es. . . �.
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