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ABSTRACT 

Three methods are described for predicting a random vector that cannot be 

observed from a realized value of one that can: best prediction, best linear 

prediction, and Henderson's mixed model prediction. Derivation and properties 

of the latter are given, and a relationship to Bayes estimation is shown. The 

need for estimating variance components is emphasized and a summary account given 

of 8 ~ethods of estimation. 
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1. INTRODUCTION 

There are many situations in biology of having a vector (or scalar value) of 

observations on some random variables from which we wish to predict the value of 

some other random variable or variables that cannot be observed. Similar situa

tions also occur outside of biology. A biological example is that of predicting 

the genetic merit of a dairy bull from the milk yields of his daughters and 

female records. A non-biological example is that of predicting instrument bias 

in a micrometer selected randomly out of a manufacturer's lot, using measurements 

made on a number of objects. And an example in psychology is the one of predict

ing a person's intelligence from his scores on a battery of tests. 

A general statement of the problem is easy. Suppose ~ and ~ are jointly 

distributed vectors of random variables with those in ! being observable, but 

those in U not being observable. The problem is to predict ~ from s~1e realized, 

observed value of ! 1 say ¥. • Usually ~ contains more elements than ~' and indeed 

U is often scalar. In the I.Q. example, ~ is the scalar, unknowable true value 

of a person's intelligence, and¥. is the vector of his test scores. 

2. PREDICTION 

Three methods of prediction are of interest: best prediction, best linear 

prediction, and mixed model prediction. The description which follows draws 

heavily on the work of C. R. Henderson, who for more than 18 years has sustained 
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my interest in the prediction problem in the context of animal breeding. Numer-

ous discussions and occasional papers during that time, on mixed models (Henderson 

et al. [1959]), on variance components (Searle and Henderson [1961], and Henderson 

et al. [1973]) and on dairy breeding problems themselves (Searle and Henderson 

[1959, 1960]) have been of invaluable assistance to me, for which I am most 

grateful. In particular, the opening paragraphs of Henderson [1973a] have been 

of especial assistance in preparing this account of prediction. 

2.1 Best prediction 

Suppose for the moment that U is scalar. The criterion of the predictor 

being "best" is taken to be that of minimizing the mean squared error of predic

tion. When f(u, ~) is the joint density function of the random variables U and 

~at the point u,¥ then with the predictor being denoted by u, the mean square 

error of prediction is 

(1) 

where E represents expectation. A generalization of this to a vector of random 

variables is 

(2) 

where A is any positive definite symmetric w~trix. Clearly, for A being scalar 

and unity (2) is identical to (1). 

The best predictor u is that which minimizes (2). As shown in the appendix 

it turns out to be 

best predictor (3) 

i.e., the best predictor of u is the conditional mean of u given~ • Two 
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features of this result are w·orthy of note: first, it holds for all density 

functions f(~, ~), and second, as noted in Solomon [1971], it does not depend 

on A of (2). 

Certain properties of this predictor are important and apply to other pre-

dieters. They are discussed in Cochran [1951] and in Rao [1965, PP• 79 and 

220-222] for the case of scalar U • First, the predictor is unbiased for sampling 

over Y : for Ey representing expectation over Y 

(4) 

Second, prediction errors u - u have a covariance matrix that is the mean value, 

over sampling on ~' of that of ~~~ : 

(5) 

Also, 

cov(~, ~ 1 ) ~ v~(~) (6) 

and 

cov(~, ~') = cov(~, ¥') (7) 

Derivation of these results is given in the appendix. 

For scalar u there are 2 further properties of interest. The first is that 

the correlation between any element u of ~ and any predictor of it that is a func-

tion of y is maximum for the best predictor, that maximum value being 

p(u, u) = a- I a 
u u 

Second, selecting any upper fraction of the population on the basis of values 

of u insures that for that selected proportion 

E(u) is maximized 

Rao [1965] suggests a proof. 

(8) 

(9) 
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It is to be emphasized that ~ = E(~!~) is a random variable, a function of 

~ • Thus the problem of estimating the predictor r5nains, and demands some 

knowledge of the joint density f(~, ~) • Should this be normal, 

GJ 
N [~] , [~u 2Jt 

\!y 9' y_ J 

then, as is well known, 

Properties (5)--(9) of u still hold. In (5), we now have from (10) that 

var(~\~) = Yu - 2Y-12', so that in (5) itself 

var(u - u) = v - cv-1c• 
- - -U 

And using (11) in (6) gives 

cov(~, ~') = var(~) = cv-;Lc, 

Then in (8) 

p(u. ,u.) 
J. J. 

where c! is the ith row of C 
-J. 

j -1 
c!V c. 
-J.- -J. 

a2 

ut 

(10) 

(11) 

(12) 

(13) 

(14) 

The estimation problem is clearly visible in these results. The predictor 

is given in (11) but it and its succeeding properties cannot be estimated until 

the 4 parameters ~~ ~~ 9 and V have been estimated. 

2.2 Best linear prediction 

The best predictor (3) is not necessarily linear in~ • Suppose attention 

is now confined to predictors of u that are linear in ~' of the form 
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for some vector~ and matrix~ • Minimizing (2) for~ of (15), in order to 

obtain the next linear predictor, leads (see appendix) to 

where ~U' ~' 2 and V are as defined in (10) but without assuming normality 

as there. 

An immediate observation on (16) is that it is identical to (11). This 

(15) 

(16) 

shows that the best linear predictor (16), derivation of which derr~nds no knowl-

edge of the form of f{u, ~), is identical to the best predictor under normality, 

{11). Properties (12)--(14) therefore apply equally to (16) as the,v do to (11). 

Problems of estimation still remain. 

2.3 Pairwise rankin~ 

In establishing (9), that selection on the basis of the best predictor u 

maximizes E(u) of the selected proportion of the population, Cochran's [1951] 

development implicitly relies on each scalar u having the same variance and 

being derived from a l that is independent of other l's . Sampling is over 

repeated samples of u (scalar) and l . However, these conditions are not met 

for the elements of~ derived in (11). Each such element is derived from the 

whole vector r, their variances are not equal, and the elements of ~ used in 

one element of ~ are not necessarily independent of those used for another ele

ment of u . Maximization of E(u) for individuals selected on the basis of ele-

... 
ments in u is therefore not assured. In place of this we have a property about 

pairwise ranking. 

In the language of dair,y cattle breeding a salient problem is this: having 
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predicted the geneticmerit of several bulls from available records (on daughters 

and/or female ancestors), and ranked the bulls from highest to lowest according 

to those predictions, what is the probability that that is the correct ranking? 

(By correct ranking is meant the ranking according to the bulls' true genetic 

merits.) When the predicted values U have the properties of the Cochran devel-

opment, namely equal variances and independent ~'s, this question is answered 

by the property of maximized E(u) for the selected fraction. But for u's that 

are elements of ~ the question in this form cannot be answered. What can be 

said is this: under certain assumptions which shall be specified, using the 

elements of u = E(~l~) for ranking maximizes the probability that pairwise 

rankings utilizing ¥ are correct. A proof of this, based on Henderson [1963] 

f ollo,·rs • Y 

Consider predicting two elements of ~~ u1 and u2, from a vector of observa-

"' "' tions ¥' using predictors u1 and ~ respectively. Write 

and d == u - u 
1 2 

A ~ A A 

(17) 

Then ranking on u1 and ~ will be correct if d > 0 when d > 0 and if d < 0 when 

d < 0 • The probabilities we seek to maximize are therefore 

Pr(d >old > o) and Pr(d < O\d < o) 

Consider the first of these and note that it can be expressed as 

A A 

Pr(d > old > o) = Pr(d > o, d > o)/Pr(d > o) 

.., 

= I Pr(d > Old = k)g(k)dk/Pr(d > 0) 

0 

where g(d) is the marginal density of d • From this it is clear that 

Pr(d > O\d > 0) can be maximized if we can maximize 

Yniscussions with R. R. Davidson are gratefully acknowledged. 

(18) 
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A 

Pr(d >Old = k) for all k > 0 (19) 

using the same rule for all k > 0 • 

"' Now assume that d and d have a bivariate normal distribution 

(20) 

Then we know that 

(21) 

A 

If the mean in (21) is positive, maximizing Pr(d > Ojd = k) is achieved by maxi-

mizing 
pO'l 

Tl + -- (k - -r2 ) 
0'2 

e = . (22) 
cr1..j1 - p2 ' 

but if the mean is negative -9 has to be minimized. Far all positive k it is 

clearly impossible to simultaneously achieve this maximizing and minimizing. 

A 

Hovrever, if E(d) = T1 = 0 and E(d) = -r2 = 0 then the mean in (21) is pc\k/cr2 

Since p is the correlation between d and its predictor it can be taken as posi-

tive so that for positive k the mean pcr1k/cr2 is positive. Then 9 of (22) becomes 

which has to be maximized. Because cr~ is the variance of d it is constant so 

far as ~ is concerned. Hence, for each positive k, ~ is maximized by making 

p/~1 - p2 as large as possible, i.e., by maximizing p . This is the common 

rule for all k > 0 • A converse argument for maximizing the second probability 

(23) 
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in (18) by consieering Pr(d < O!d = k) for negative k leads to the same result. 

A 

Hence, on assuming d and d to have a bivariate normal distribution with zero 

A A 

means, we have shown that the probability of the ranking by u1, u~ being correct 

A A 

is maximized when d is chosen so as to maximize p, the correlation of d and d • 

A 

But d is the predictor of d, and by sections 2.1 and 2.2, particularly equation 

(8), we know that d = E(d\~) maximizes pdd" Under the normality assumption, 

and with the zero means already referred to, (11) and equivalently (16) then 

give 

A -1 
d = ~·y (~ - ~) 

where c' = cov(d,~ 1 ) • But by (17) d = u1 - u2 and so c' = c' - c' where c' 
- -1 -2 -1 

and ~2 are the rows of~ corresponding to u1 and u2 in ~ = cov(~,~·) of (10). 

Hence (24) is 

equivalent to 

This is identical to elements of (11), the best predictor under normality, with 

(24) 

(25) 

the only proviso that~= kl for some constant k, i.e., all elements of~ must 

have the same mean, h say. With this not very restrictive condition we therefore 

see that under normality the best predictors (which are then also best linear 

predictors) maximize the probability of correct pairwise rankings. 

2.4 Mixed model prediction 

The preceding discussion is concerned with the prediction of random varia-

bles. Through maximizing the probability of correct pairwise rankings the 

predictors are appropriate values upon which to base selection; e.g., in genet-

ics, selecting the animals with highest predictions to be parents of the next 
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generation. (One apparently unanswered problem, though, is to find conditions 

under which maximizing the probability of correct pairwise rankings for all 

pairs also maximizes the probability of a correct overall ranking.) Since we 

are concerned here with the prediction (and selection) of random variables, the 

procedure might be called Model II prediction corresponding to Model II, the 

random effects model, in analysis of variance. In this connection Lehman [1961) 

has discussed r-iodel I prediction, corresponding to the fixed effects model. Con

sideration is now given to mixed model prediction, corresponding to mixed models 

in analysis of variance in which some factors are of fixed effects and others 

are of random effects. 

The model we initially use for ~ is the familiar 

for ~ being some vector of unknmm constants (fixed effects); and to retain the 

ranking property we take 

E(~) = 0 

Then we consider the problem of predicting 

w =IS'~ + u 

(26) 

(27) 

(28) 

for some known 1natrix K' • Since w involves both fixed effects and random 

variables there might be debate as to whether we should 'estimate' ! or 'predict' 

w • We will 'predict' !' and will choose ! as a predictor to have 3 properties: 

"best" in the sense of (2): minimizing E(! ',!)'A(! !) 

linear in y: w = a + ~ 

unbiased: E(¥) = E(!) 

(29) 

The resulting predictor is a best linear unbiased prediction. Note that unbias-
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edness is now a criterion of the prediction procedure and not just a byproduct of 

it as in section 2. Introducing it as a criterion arises from the presence of ~ • 

It is clear from (27) and (28) that E(!) = ~~~ We then have 

[ ~ covariance matrix 
C' ~] (30) 

similar to (10), although without yet assuming normality. The unbiasedness re

quired of ~ in (30) demands that ~ + ~~~ = ~~~ for all ~ and so a = 0 and BX = K' . 

-Consequently the predictor is ~ = ~' and in ! = ~~~ + ~ the term~~~ is an esti-

mable function of ~ in the modelE(~) = ~ . This limits the form of K' in !' 

but it is obviously a reasonable limitation. 

N 

Details of the derivation of B for w = ~¥ satisfying all 3 criteria of (29) 

are shown in the appendix. The result is that 

B = cv-1 + (~' (31) 

so that 

(32) 

where (X'V-1X)- is a generalized inverse of X'V-~ satisfying X'V-~(X'V-~)-X'V-~ 
- - - - - - - - - - - - - - -

= X'V-~ . Note in (32) the occurrence of (~·~-~)-~·~- 1 r, and observe that for 

the linear model E(r) =~with var(¥) = ~' as in (26) and (30), this is a solution 

to the generalized least squares equations 

with 

Hence the predictor is 

(33) 
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The form of this predictor is of interest. It is the sum of t>·TO parts: 

(i) K 1 ~ 0 the best linear unbiased estimator of the estimable function K'~ in the - - - -
model E(y) =X~, for var(y) = V known, and (ii) ~ = cv-1(y- ~ 0 ) of (16), the - -- - - - -- - --
best linear predictor of ~~ with ~ = 0 and with ~ = ~ replaced by its best 

linear unbiased estimator ~ 0 • To emphasize this we rewrite (33) as 

- 0 -o ( "llo) 
w = ~'12 + u :r-

-o -1( o) 
for u = ~Y ~ - ~ 

-w is thus the sum of >"That one might call the liodel I predictor of ~' 12 and the 

r.fodel II predictor of ~~ using 12° • Result (30) is given in Henderson [1973a] and 

that part of it not involving ~'12 is also in Henderson [1963] in a slightly diff-

erent context. 

A variety of variances and covariances can be derived: 

var(~'l2°) = ~·(~·y-~)-~ 

var{~ 0 ) = cv-1c• - ~y-~(~·y-~)-~'Y- 1 9' 

( o -ot) 
cov ~~~ ~~ = 0 

-o o 
cov(~ ,~') = var(~) 

var(~ 0 
- ~) = Yu - var(~ 0 ) 

cov(~@ 0 ,~ 1 ) = ~(~'y-~)-~·y- 1 ~ 

All of the preceding results involve no assumption of normality. On intro-

ducing that assumption, as in (10) with ~ = Q and ~y = ~~ we have 

(35) 

(39) 

(40) 

(41) 

(42) 
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(43) e 

Then ~ 0 is the maximum likelihood (as well as the best linear unbiased) estimator 

of ~~' for y assumed known, and since from (43) 

it follows that for y known, ! of (34) is the maximum likelihood estimator of 

( I ) -o -1( o) o 
E ! ~ . Furthermore, l'lith ~ = 9Y ~ - ~ , u and u are normally distributed 

with zero means and because of (39) 

and 

( \-o) (-o ) ( o) -1-o -o 
E ~ ~ = cov ~ ,~ 1 [var ~ ] ~ = u 

( 1-o) ( "'0 ) · · ( o) -1 -o . ) 
var ~ ~ = Yu - cov ~ ,~' [var ~ ] cov(~ ,~' 

= V - var(u_0 ) 
-U 

= var(~ 0 ~) as in (40). 

"'0 
And, of course, as has already been shown, the elements of u have the property of 

maximizing the probability of correct pairwise rankings. But this property does 

not hold for elements of !, unless E(~) = ~~~ is of the form ~1 . 

3 • THE MIXED MODEL 

Consonant with mixed model prediction just discussed we now consider the 

mixed model of analysis of variance, namely a linear model involving both fixed 

effects and random effects. It can be typified as 

¥. = ~~ + Xu + e (44) e 
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where ~ is a vector of observations, ~ is a vector whose elements are the effects 

of one or more fixed effects factors (including a general mean), and ~ is a vector 

of the effects of the random effects factors. ~ and ~ are knmm matrices, 

often design or incidence matrices with elements 0 and 1, and e is a vector of 

random error terms. Although ~ is usually a design matrix it can include regressor 

varial)les, in ''~hich case the corresponding elements of ~ are regression coefficients. 

~ and ~ are generally of less than full column rank. 

Distributional properties of u and e are assumed to be as follows: 

E(~) = 0 and E(e) = 0 

(45) 

In this v7e are rewriting Yu of the earlier discussion as ~' 

var(~) = Yu = D, (46) 

and from (44) we then have 

var(~) = V = ZDZ' + R (47) 

Also, from (44) 

cov( ~'~ 1
) = c = DZ' (48) 

Hence the predictor ~ of (34) is 

- ~~~0 + uo w = (49) 

where for 

(50) 
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we have 

(51) 

Similar small changes involving C = DZ occur in the variances and covariances of 

( 35) - (42). 

3.1 Calculatipg the Eredictor 

On the assumption that ~and~ of (45) are known, calculation of §0 and ~ 0 

of (50) and 
-1 -1 

(51) involves y = (~~~· + ~) • Since y has order equal to the 

number of observations, which in many applications is very large because the model 

-1 
includes random effects, calculation of y can be a mean task even for to-day's 

computers; for example, y of order 10,000: However, this inversion can be avoided. 

Assume temporarily that u in the mixed model (44) represents fixed and not 

random effects. Then var(:z) lTOUld be R and not v and the generalised least squares e 
equations would be 

[ (52) 

Suppose these equations are amended by adding D-l to the lov1er right-hand sub

matrix Z'R-1Z on the left-hand side, to give 

[ ] (53) 

Then ~ 0 and u0 of these equations are exactly ~ 0 and ~ 0 of (50) and (51). Proof 

of this for X of full column rank was first given in Henderson et al [1959) and 
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is also available in Searle [197la, p. 460]. Although the proof for ~ of less 

than full rank involves only minor changes it is given in the appendix for the 

sake of completeness. The proof involves verifying that 

(54) 

the identity which Kempthorne [1972] refers to in discussing Lindley and Smith 

[1972 ]. 

It is interesting to note that although there are many solutions to (53), 

all of them have the same 
0 

u • This is not obvious from the form of (53) but it 

is, of course, evident from (51) because ~~ 0 , being the best linear unbiased 

0 
estimator of ~~' is invariant to ~ • 

The advantage of (53) is a computational one, that the matrix on the left has 

order equal to the total number of fiJ~ed and random effects in the model, which 

is usually very much less than the total number of observations, which is the 

order of V whose inverse is needed in (50) and (51). 

In most applications ~ = var(~) = cr2 I so that (54) becomes 

This involves inverses of order equal to just the number of random effects 

model, and since ~ = var(~) is often diagonal of the form 1 cr~!a 0 J- , 

0 cr2 I 
13:::1) 

-1 
example, ~ is easily calculated and the only computed inverse required is 

(55) 

in the 

for 

(~'~ + cr 2 ~-l)-l • Through (55), (50) and (51) the values ~ 0 and ~ 0 are then 

available. 
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3.2 ~amples 

2~~ay_~~~~-~~el 
~~---~ ... ...,..... 

Consider a 2-l'lay classification, with a rows and b columns, and one 

observation per cell, for which the model is 

fori= 1,2, ••• ,a and j = 1,2, ••• ,b • (56) 

If the a.'s are taken as random variables, independently distributed with zero 
~ 

means and variance a2 , and the error ter.ms similar~ distributed with E(e .. ) = 0 
a ~J 

and v(e .. ) = o2e' then in the mixed model notation of (44) and (45) 
~J 

X= 

where 1 is a vector of m unities, and L+ represents the operation of a Kronecker 
-m 

(direct) sum of matrices. Making these substitutions in (55), (50) and (51) 

leads after a little simplification to 

and 

for j = 1,2, ••• ,b 

bcr2 

11 = Sa~} = __ a: ____ G. - Y ) . 
l .... cr2 + bo2 ~ • • • 

e a 

vlhen the ~.'s are also taken as random variables, independently 
J 

(57) 

distributed with zero means and variances o~, then ~ is the only fixed effect in 

the model and we have for (44) and (45) 



X = 1 , 
- -ab [ ~:!-oo] , 

-17-

0 

R = cr2 I and D = 
e-ab 

0 

Substitution in and simplification of (50) and (51) then give 

acr2 bcr2 
0 0 a 

IJ. = y a. = 
l. 

(y. -
- y 

J.. 
) and ~~ = S (y . - y ) (58) 

J cr2 +acr2 ·J 
e f3 

.. 0'2 + bcr2 
e a 

Although this model is not of as much practical interest as a mixed model as is 

that in t-lhich the f3. 's are fixed, it is of theoretical interest because the re
J 

sults (58) are identical to the Bayes estimates of Lindley and Smith [1972]. One 

difference is that no assumption has been made here about the for.m of distribution 

of the a's and f3' s l'lhereas Lindley and Smith's results demand nor.mality. 

1-~-Ja~ random model ,.,._,..., __ .... ~,~-,.._, 

Results of the form (57) and (58) have been familiar to animal breeders 

for many years. A simple use of them is in the case o£ the 1-way classification 

with unequal numbers of observations in the subclasses: 

i = 1,2, ••• ,a 

j = 1, 2, ••• , ni 

Treating the a.'s as random the te1~ of (44) and (45) are 
l. 

X = •i I 

- =n' . 
Ia + 

z = 1 
- :.;;.n ' 

i=l 1 

After substitution in (50) and (51) simplification gives 

l. l.. !-n.y. ~~ 
+ n.cr2 

l.a 

(59) 

(60) 
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and 
n cr2 

-o i a: (- o) a:].. = --=--=-- y . - 1-l • 
cr2 + n . 0'2 J. • 

(61) 

e J. a: 

It is noticeable that 1-lo is the generalized least squares estimator of 1-l and, 

under normality, the maximum likelihood estimator. (61), which is akin to similar 

expressions in (57) and (58), is more recognizable to animal breeders in forms 

such as 

n.r 
... o = ]. (- 0) 
a:i 1 + (n. - l)r Yi. - 1-l 

]. 

where in certain contexts the ratio r = cr~(cr~ + cr!) is the animal breeding para

meter repeatability; or as 

n h 
0:0 = i (y- 0) 

i 4 + (n. - l)h i. - 1-l 
]. 

where in other contexts h = 4cr21(cr2 + cr2 ) is the parameter heritability. Practical ~ 
d a: e 

uses of these kind of formulae, used as "estimated producing ability" and as 

"estimated breeding value" respectively, or of precursors of them, are to be found 

in dairy science literature in such early references as Lush [1931, 1933, 1948] 

and Hright [1931]. In this setting Lush was an enthusiastic promoter of their 

use in developing breeding plans for the improvement of agricultural livestock. 

In practice, deriving (57) and (60) through the use of (55) is unnecessarily 

a+ 
tedious because in both these cases V has the form ~ (p.I + q.J ), a form 

- i=l J.-nt J.-ni 

of whose inverse is well known. (I is an identity matrix of order n., and J 
-ni J. -n1 

is a square matrix of order n. with every element unity.) 
l. 

4. ESTIMATING VARIANCE COMPONENTS 

The different predictors in Section 2 demand knowledge of different things. 

The best predictor u = E(~!~) requires f(~l~), whereas the best linear predictor 
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(best ~~der normality) ~ = ~U + ~?-l(~ - ~) requires just first and second mo

ments. The mixed model predictor ! = ~~~ 0 + ~y- 1 (~ - ~~ 0 ) for §0 = (~'Y-~)-~'Y-l~ 

demands knowing second moments, y = var(~) and ~ = cov(~,~· ); and when the mixed 

model ~ = ~~ + ~~ + e is used this requires knowledge of var(~) = ~ and var(~) = ~ 

vTi th ~ = ZDZ 1 + ~ and C = DZ 1 • It is clear, therefore, in the face of not know-

ing true values of the needed second moments that ,.,e need to estimate them, al-

though ideally it might be preferable to estimate predictors directly in same 

optimum manner. Nevertheless, the usual practice is to estimate the components 

of variance that make up the elements of y, and in y replace those components by 

~ A 

their estimates to derive an estimate V • In the predictor, V is then used in 

place of V • For example, in the 1-way classification model of (59) 

and after estimates cr~ and cr~ have been obtained 

a 

v = " + (cr2 I + cr2 J ) L "e-n1 · a-n1 

i=l 

replaces V in the predictor. 

A 

It is customary to estimate the variance components needed for V from data 

different from those from which predictors are to be derived. In some applica-

tions repeated estimates have been gathered so often over the years that subject-

.. 
matter research workers are prepared to give ~ priori values to 9 and y and use 

them as if they -vrere population values. The variances and covariances of ( 35)- ( 42) 

then apply, whereas they would be considerably more complicated were the sampling 

A A 

nature of C and V taken more correctly into account. 

Estimating variance components is therefore a problem very pertinent to pre-

diction. Since le~reviews of this subject have recently appeared, e.g., Searle 
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[197la, b], only a thumbnail outline is given here in the form of comments on sev

eral estimation methods available, together with some updating. For detailed 

accounts of most of the methods and extensive literature references thereto the 

reader is referred to the sources just cited. 

4.0 Balanced and unbalanced data 

Balanced data means data in which there are the same number of observations 

in every sub-most cell of the data. Unbalanced data are those having unequal 

numbers of observations in such cells, including the possibility of none at all 

in some cells (i.e., empty cells). Survey data, biological and otherwise, are 

often unbalanced with many empty cells; e.g., in certain dairy breeding data as 

many as 90% of the cells of a 2-way crossed classification may be empty. 

There is one universally accepted method of est~ating variance components 

from balanced data. It involves calculating an analysis of variance as if the 

model were a fixed effects model. Each mean square is then equated to its expected 

value under the mixed model appropriate to the data. Since the resulting expecta

tions are linear ~ombinations of the unknown variance components, the equations 

so formed can be solved for these components. The solutions are the estimated 

components. Generally speaking they are known as analysis of variance estimators. 

They have several desirable properties: 

(i) They are unbiased. 

(ii) Under normality, sampling variances are available. 

(iii) They are easy to compute. 

(iv) They have minimum variance among all quadratic unbiased estimators. 

(v) Under normality they have minimum variance among all unbiased 

estimators. 

Apart from the estimated error variance {which, under normality, is distributed as 
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a multiple of a chi-square distribution) there is no closed form for the sampling 

distribution of these estimators. In some cases, the distributions can be ex-

pressed as an infinite sum of vleighted chi-square variables, although the weights 

involve the unknown components. 

Estimating variance components from unbalanced data is considerably more 

complex than from balanced data, becl'l.use there is no universal method of estima-

tion. Consider, for exa.mpJ.e, tryi:1g to adapt the me·chod just described for bal-

anced data. Immediately there arises the question crf ''-tvhat analysis of variance?". 

For ex&}).:ple in fitting a rovrs-and-col-:mm.s model, w-hich analysis of variance is 

to be used: that for fitting rows before colt1m'1S, or the one for fitting colwnns 

before rows? Even apart fJ~om. this problem the resulting estimato~s have only the 

first two of the proper·~ies ( i)- ( v) listed above, and of those not always the 

second. Nevertheless 7 there has been widespread adoption of the underlying tech-

nique of that method, namGly of equating calculated mean squares to their ex-

pected values. The difficulty is in the choice of i~-b.at are to be used as mean 

squares, or more generally as quadratic forms. It is the wide choice of quadratic 

forms avails.ble that has given rise to there being a number of' methods of estima-

tion. 

We may note in passing that for any method of estimating variance components 

by quadratic forms, the corresponding bil:lnear form estimator of a cova=iance com-

ponent can be obtained by applying the familiar formula expressing a covariance 

in terms of variances, namely a ~ ~(cr 2 - cr2 - cr2 ) • This is discussed in 
ry x+y x y 

Searle and Rounsaville [1973]. 

4.1 F--:;::Jd-:::rscn'R I't:ethod J. (Analysis of variance) 

This uses sums of squares that are unbalanced-data analogies of those used 
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in the analysis of variance of balanced data. In some cases these analogies turn 

out not to be positive semi-definite, since they are not actually sums of squares. 

Nevertheless, being quadratic forms, they constitute a legitimate basis for esti

mating variance components. The resulting estimators are relatively easy to cal

culate and are unbiased, and for many random effects models their sampling vari

ances, under normaltiy, are known. 

Method 1 cannot be used for mixed models. The only way its use for mixed 

models can be forced is either by ignoring the fixed effects or by assuming they 

are random. Either way, the resulting estimators for the variances of the random 

effects of the mixed model are biased. 

4.2 Henderson's Method 2 

The inappropriateness of Method 1 for mixed models is the motive for Method 

2. Capitalizing on the easy computations of Method 1, the procedure of Method 2 

is to correct the data (of a mixed model) according to some estimates of the fixed 

effects and then use Method 1 on the data so corrected. Some minor adjustments 

to Method 1 are needed. The method cannot be used when the model contains inter

actions between fixed and random effects. 

First proposed in Henderson [1953], this method has undoubtedly been wrongly 

used in succeeding years because of its subtleties. In re-describing it in matrix 

terminology (and proving the impossibility of using it when there are interactions 

between fixed and random effects), Searle [1968] strongly asserted that the Method 

was not uniquely specifiable, an assertion repeated in Searle [197la, b). It is 

a pleasure to report that this assertion is false: lf~thod 2 is well-defined. 

Proof of this is given in Henderson~~· [1973]. The limitation on not being 

able to use the method in the presence of interactions between fixed and random 
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effects does, however, still stand. Computationally it is in most cases a viable 

method provided the number of fixed effects in the model is not large. 

4.3 Henderson's Method 3 (Fitting constants) 

This method uses the sums of squares due to fitting the model as if it were 

a fixed effects model. Expectations are taken over the true model for the data. 

The method is particularly suited to mixed models because it yields variance com

ponents estimators unaffected by the fixed effects. Furthermore, it is not sub

ject to the limitation of Method 2 concerning interactions between fixed and 

random effects. However, with large data sets it may be impractical or exceed

ingly expensive to compute the needed sums of squares, due to the necessity of 

inverting matrices that may be of very large order. Also, the method can yield 

more equations to solve than there are components to estimate, which presents a 

problem. Nevertheless, the resulting estimators are unbiased and in some cases 

their sampling variances and covariances, under normality, are known. A recent 

application of this method to models that include covariates is made by Mount and 

Searle [1972]. It is interesting that their results reduce to calculating sums 

of sums of squares of residuals. 

4.4 Analysis of means 

When all cells of the model contain at least one datum, sums of squares 

arising in analyses of variance of cell means can be used for estimating variance 

components. The calculations are easy, the estimators are unbiased and certain 

other properties are available. 

4.5 Symmetric sums 

This is a method which has not received much attention since its development 



-24-

by Koch [1968]. The quadratic forms it uses are based on symmetric sums of 

squares of differences between observations rather than analysis-of-variance 

style quadratics. For example, in the 1-way classification model of (59) it 

uses 
n. ni' a a ~ 

E 
'\"'I I \' \' 

(yij - yi'j')2 
\' \'nn (o2 +a2) 

L /_, '- = /_, L i i' a e 
i=l i' l=i j=l j'=l i=l i'~i 

4.6 Synthesis 

The method of synthesis provided by Hartley [1967] gives no new methodology 

for estimating variance components. It is a computational procedure that avoids 

much of the algebra involved in the previous methods. It requires using, in 

turn, each column of the design matrix of the model as the ~ vector in each 

quadratic form¥'~ on which any particular method is based. Even though these 4lt 
columns contain many zeros, there may be a large number of columns involved, and 

the method can thus be very consuming of computer time. 

4.7 Maximum likelihood 

An iterative procedure for solving the maximum likelihood equations for the 

mixed model under normality is given in Hartley and Rao [1967], and a computer 

program for the procedure is discussed in Hartley and Vaughan [1973]. Algorithms 

for improving this program are available in Hemmerle [1972]. 

Alternative suggestions for solving the max~ likelihood equations are 

made by Patterson and Thompson [1971], ·and similarly by Henderson [1973b]. Gen-

eral expressions for sampling variances of the large sample maximum likelihood 

estimators are given in Searle [1970], with specific applications to the 2-way 

nested classification in the same paper, and to the 3-way nested classification 
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in Rudan and Searle [1971]. These expressions utilize an analytical (as dis

tinct from numerical) form of v-l in each case. The apparent impossibility of 

deriving this for the 2-way crossed classification random model, with unbal-

anced data, is discussed by Searle and Rudan [1973]. 

4.8 An iterative procedure 

Reductions in sums of squares arising in a natural way from the mixed model 

equations (53) are the basis for an iterative estimation procedure suggested by 

Cunningham and Henderson [1968]. Corrected by Thompson [1969], computing formu-

lae for this method for the 2-way crossed classification mixed model, unbalanced 

data are now available in Searle [1973] for the no interaction case and in 

Corbeil and Searle [1973] for the interaction case. 

4.9 MJ}IQUE and BQUE procedures 

Best quadratic unbiased estimators (BQUE's) summarized in Townsend and Searle 

[1971] have been generalized by Rao [1970, 1971a, b and 1972] in procedures he 

calls MINQUE and MIVQUE, To s'UliiDlB.l"ize them we rewrite the _lixed model (44) as 

k 

y=Xf'·+ "z.u. 
- -- !..A -J-J 

j=l 

where u. is the vector of N. effects for the j 1 th random effects factor in the 
-J J 

model (a main effects or interaction factor). Also, the k'th of such factors is 

defined as the error terms,~ = e_ and z_k =!. Then with E(u.) = o, E(u.u~,) = 0 
~K -J - -J-J -

for j ~ j 1 , and E(u.u~) = a~L- , except that ak2 = a2 and Nj = N for N being the 
. -J-J J~J e 

number of observations, we define the following terms. 

vj = z .Zj' , v* ::: ~ v. 
- -J- - ~ -J 

j 

and V_ = var{v) = \ a~V. 
II. '- J -J 

j 
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[Rao uses the symbol y for y'~ andy* for y, but the above notation is mere com

patible with using y for var(¥).]. Rao then estimates a variance component by 

¥'~¥ choosing ~' symmetric, so that the estimator is both unbiased and invariant 

to changes in ~ • He suggests two different estimators. One minimizes the 

# 
Euclidian norm tr(y ~) 2 and is called the Minimum !orm ~uadratic ~nbiased ~sti-

mator, or MINQUE. (See e.g. Rao [197la, p. 268 and 1972 pp. 112-3].) Swallow 

and Searle [1973] have named this Basic MINQUE to distinguish it from what they 

call Alternative MINQUE, which minimizes tr(y~) 2 • This too is suggested by Rao 

[197la, p. 268 and 1972, p. 113] although he does not use distinguishing names. 

The second estimator suggested by Rao [1972, pp. 447, 453] is one which has mini-

mum variance, the Minimum Variance ~uadratic ~biased !stimator, MIVQUE, which 

is derived as ¥'~¥ by minimizing 

var(¥'~¥) = 2tr(y~) 2 +a term in A and kurtosis parameters. 

Under normality assumptions kurtosis parameters are zero and MIVQUE is then 

equivalent to alternative MINQUE. Rao's papers show that for 

and 

for i,j = 1,2,···,k + 1, the vector of MIVQUE's under normality (alternative 

MINQUE's) is 82 = 51w • * The same procedure used with y of ~ replaced by y gives 

the basic MINQUE's. This summary is given in Swallow and Searle [1973], whose 

main results are explicit expressions for these estimators and their sampling 

variances for unbalanced data in the 1-way classification, one model with non-

zero ~ and the other with ~ = 0 • In the latter case the MIVQUE procedure under ~ 

normality gives, as it should, the BQUE (best quadratic unbiased estimation) 

results of Townsend and Searle [1971]. 
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Suggestions by Henderson [1973c] connect the MIN~UE procedure to expressions 

-o-o -o ( ) u.u. derived from the mixed model predictor ~ of 51 • 
-J-J 

A similar expression 

is also seen in Patterson and Thompson [1971]. Additional estimators of a simi-

lar nature are given in Lal<iotte [1973a, b]. 

As indicated in Section 2, grateful acknowledgment is made to C. R. Henderson 

for his inspiration over many years in the topics of this paper. Preparation of 

this pe..per was partially supported by Grant GJ 31746 from the National Science 

Foundation, Washington, D. C. 
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APPEI\'DIX 

Detailed derivations are given here of certain results stated in Sections 

2 and 3· Although several are l'rell lmown, they are given for the sake of 

completeness. 

2.1A Best prediction 

Derivation 
~ 

Minimize, for A positive definite and symmetric, 

rr(~ _ ~)~~(~ _ ~)f(~,~) d~ d~ 

" r [ Jci! - ~) ·~(~ - ~)f(~!:r:) o~) f(;r.) d:[ 

where f(~l~) and f(~) are conditional and marginal densities respectively. 

~~Iinimizing with respect to 'Q. only requires minimizing of the integral over ~ and 

gives 

Hence, since ~ is positive definite, 

t1 = 

Expectation 
,.....,....,._~~~ 

r~_f(~~~) 

Jr<~l~) 

du 

du 
= s~(~~~) du = E(~~~) • 

E(u) = :~Y:sul Y [E( uj y)] '" ~!: [E( ui y) J 
- - - y - -

(4) 
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Variances and covariances 

var(ti - u) = 3(t1 - u)(u - u) '. because E(ff ·• u) = 0 from (4) 
- - ·- - ·- -- .., ~- -· - ' '7 

= E :~ [;s(u!y):ii::(uly)' + uu'- uE(u!y)'- E(ujy)u'] 
~U!Y - - - - -- - - - - - -

= Ey[E(~~~)E(~!~)' + E(~~~~~)- 2E(~!:~:)E(~!;z)'] 

= E [ var ( u I y) J • 
y ··'-

(5) 

= ii:.,)~ I [E(uly)u']- E(u)E(u') 
~ u y - - - - -

(6) 

= E.__E I (uy')- E(u)E(y') 
-y u y -- - -

= cov(~,~·) (7) 

J.~um correla.tio.tl 
~ 

As a function of ~ let p be any predictor of u, an element of u. Then 

cov(p,u) = E[[p- E(p)][u- E(u)]} 

= E[ [p - E(p)]u} 
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= ~:I:ujy( [p - Z(p)]u} 

= Ey{[p- E(p)]E(uj~)} because pis a function of l 

= Eyf [p - E(p) JuJ 

= cov(p,u). 

~llien p = u, cov(u,u) = cov(u,u) =a§ 
u 

and 

Hence in general 

(- ) _ cov(U.,u) 
P u,u - a_a 

u u 

(J_ 
u 

=-
a 

u 

For choice of p this is maximum when p 2 (p, u) = 1, i.e., 

maximum p (u, u). This proof follows Rao [1965, p. 221]. 

2.2A Best linear prediction 

Matrix results 
~· .. ~ 

When tr(~) exists its value is LEx.jP ..• 
~ J~ 

and so 

Also, because tr(XP) = tr(PX) -- --

~~r(~) = ~r(~~) = P' . 

- -
And since tr(~'~) = tr(~~·) 

~r(X'P) = ..2..tr(PX') = P • 
a~r - - o~ -- -

-p = u • Hence (8) is 

Hence ~r(XP) = pJ.~ ax.. -- ... 
lJ 

(8) 

(Al) 

(A2) 
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Hence 

Also 

and 

... ~rtr(~,X'0)~,..,) = Q,.,'CP P + Q 'XP'P' 
0~ ~- ==-~ ===2~1 - --1-2 

= P'rs'Q. - -- -

Minimization 
,.,.....~~ 

For ~ = ~ + £l we minimize, for positive definite symmetric ~' 

+ (~ ~)r -~ 
-D'A - -

-~~] [ ~1 + tr [ -A 

~~~ ~ -~·~ ... 

= ~~~~ + 2~~~~~ - 2~~~~u 
y 

- I:J{/JJu - 2~if-~t:.'y + ~~ '~l:!y 

-AD 

B'A:B 

(A3) 

(A4) 

(A5) 

(A6) 
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Using (Al) - (A5) to differentiate this with respect to the elements of B 

gives 

~~~~ - 2~,~~ + ~~~~ + ~~~~~ - A'C - AC + ~y + A'BV' = 0 • 

The symmetry of ~ and y and the non-singularity of ~ reduce this to 

( ':: - l:u + ~~) ~ + ~y = s . 

Differentiating (A6) with respect to ~ gives ~ = ~ - ~l±y so that (A7) gives 

B = CV-l and hence 

-1 ) tl = ~ + ~ = ~ + SY (~ - l!y 

2.4A Mi.xed model prediction 

vlith ~ = ~·e + ~ and ~ = ~~ for ~~ = !f' 1-1e have 

(A7) 

(16) 

and seek to minimize E(~ - ~)'~(~ - ~) for 4 being positive definite symmetric. 

We minimize 

where T is a matrix of Lagrange multipliers. Since ~ is positive definite there 

is no loss of generality in l-7riting T = 2MA for some matrix M • Then - -- -



[ -; ] ~'-! )!) [ ~ ] + 2tr[J~(!;'i ~I)] 

= (~'~ ~·~') [ -.~ -AB -A -AB + 2tr[~(~~- K')] 

-B'A B'AB -B'A B'A::J 

Using the matrix results (Al) through (A5) gives ~A.k ~ = ~ as (using f!. = ~') 

And oA./Qli = 2 gives BX = K' because A is non-singular. Using these results in 

(A7) gives 

i.e. BV + M'X' = C 

This and 

= K' 

are the equations to be solved for B. From (A9) 

and substitution in (AlO) gives 

so that in (All) 

B = cv-1 + -- ( T,. I 
i\. 

(A9) 

(AlO) 

(All) 

(31) 
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Variances and covariances 

-1- -1)-' --*-z~ = ~(~'Y ~) ~'Y'~(~'Y ~ X'V y~ because y is positive definite, 

K' = DX 

- rr I (v'V-1")" - l\. A. .t:~ l\. (35) 
- - - - -

_ '{(v'V-1'r)-'{' 
- .J. .L-.. l~ .J. - - - - -

= 0 (37) 
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var{~) 

(39) 

(40) 

_ J3v(~rtv-lv)-,rrv-lc I 
- .i\. A .L!... A -- - - - - - - (41) 

var(~ - ~) = var(~'~ 0 + ~ 0 - ~~~ - ~) 

= var(!S r~o) + var(~ 0 - u) + cov[K'13° - - - ' 
(~0 - ~)I] 

+ cov[(';:0 - ~), (~·~0)'] 

= var(~'~ 0 ) + var( 1::0 - ~) - cov(~'~ 0 , ~I) - COV (~,~o'~) (42) 

3.1A Calculating the predictor (in th~ mixed model) 

From the second equation of 

[ 
X'R-lX X1R-l_o l [ ~0 ] = [ 

t!!-\] - - - - - - (Al2) 
Z'R-~ 1 -1 1 

0 Z'R-1 Z 'R- Z + :Q u 
- - "!. - - - -

·He get 

(Z'R-lz + D-l)-1Z'R-l(y- xa0 ) 

e 
0 

(Al3) u = - - - - - - - --
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( -1 -, -, 
So long as ~ = var(::) is non-singular ~ '~ ~ + ~ ~) - ah1ays exists, because 

-l -l t · d 1 t P'P and ~-l'~-l d ~ and £ are symme r1c, an equa o _ _ _ say, an so 

is non-singular (Searle [1971, p. 24, lemma 8]). (Al3) always holds, therefore, 

and substituting it into the first equation of (Al2) gives, after a little reduction, 

(Al4) 

where 

It remains to shm1 that WV = I which it does: 

= I 

..... th b · t · th · · 1· v-1 vii th \1 and ~ uo el.Dg symme nc 1s 1mp J.e s Ff = • Hence (Al4) is 

:ty- 1 ~§ 0 = ~ 'y- 1 ~ for vlhich ~ 0 = (ty- 1 ~) -~ ';(\~ is a familiar solution, as in 

(50). It remains to show that u0 of (Al3) is u0 = ~?i 'y- 1 (~ - :;~13°) of (51). It 

is, because in (A13) 

= (Z'R-1~ + ~-1)-1~,~-1(~~~· + ~)~-1 

= (Z'R-1Z + ~-1)-1(~'~-1~ + ~-1)~~·y-1 

= D~,~-1-


