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Simple Summary: The prediction of pre-eclampsia (PE) is a crucial task both medically and socioe-
conomically. Recently, several biomarkers have been developed with clinically promising results.
However, the currently identified markers face the challenges of their applicability in the clinical
settings due to factors such as cost and measurement platform. According to our study, incorporating
serum creatinine (SCr) levels that can be easily derived from a real-world hospital database along with
prior knowledge of hyperfiltration, which is a kidney-specific physiological adaptation in pregnancy,
improved PE prediction significantly. The model developed in this study is practical and can be easily
applied in primary care settings without requiring significant hospital database upgrades.

Abstract: Pre-eclampsia (PE) is a pregnancy-related disease, causing significant threats to both moth-
ers and babies. Numerous studies have identified the association between PE and renal dysfunction.
However, in clinical practice, kidney problems in pregnant women are often overlooked due to
physiologic adaptations during pregnancy, including renal hyperfiltration. Recent studies have
reported serum creatinine (SCr) level distribution based on gestational age (GA) and demonstrated
that deviations from the expected patterns can predict adverse pregnancy outcomes, including PE.
This study aimed to establish a PE prediction model using expert knowledge and by considering renal
physiologic adaptation during pregnancy. This retrospective study included pregnant women who
delivered at the Wonju Severance Christian Hospital. Input variables, such as age, gestational weeks,
chronic diseases, and SCr levels, were used to establish the PE prediction model. By integrating SCr,
GA, GA-specific SCr distribution, and quartile groups of GA-specific SCr (GAQ) were made. To
provide generalized performance, a random sampling method was used. As a result, GAQ improved
the predictive performance for any cases of PE and triple cases, including PE, preterm birth, and fetal
growth restriction. We propose a prediction model for PE consolidating readily available clinical
blood test information and pregnancy-related renal physiologic adaptations.
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1. Introduction

Pre-eclampsia (PE) is defined as new-onset hypertension (HTN) and multiorgan
damage, including proteinuria, diagnosed after 20 weeks of gestation [1]. PE is a significant
pregnancy-related complication that contributes considerably to maternal and neonatal
morbidity and mortality. It is the second most important cause of maternal death [2]. Each
year, it causes over 70,000 maternal deaths, over 500,000 preterm births (PTB) and is related
to 2% to 8% of all pregnancies worldwide [3,4]. PE has non-negligible incidence and causes
further systemic complications and lifelong sequelae for mothers and their fetuses [5].
Severe PE is a leading cause of maternal morbidity (e.g., stroke and renal failure) and
adverse pregnancy outcomes, such as PTB, fetal growth restriction (FGR), and intrauterine
fetal death [6].

Prediction or early detection of PE is crucial for ensuring the safety of both preg-
nant women and their babies. In actual clinical practice, pharmacological interventions
(e.g., low-dose aspirin at ≤16 weeks of gestation) to pregnant women categorized as high-
risk for PE have been shown to prevent progression to severe and preterm PE [7]. The
development of a prediction model to screen for high-risk PE pregnant women has signif-
icant medical utility in facilitating targeted surveillance and timely delivery [8]. Recent
studies have identified biomarkers to predict or detect PE status and develop predic-
tion model using combinations of clinical and laboratory variables [8,9]. However, the
application of the aforementioned achievements (biomarkers and prediction models) is
challenging in the primary clinical setting, due to the scarcity of diagnostic equipment and
cost-related issues.

PE presents with HTN and multiple variable forms of organ failures, including dys-
functions of the kidney, brain, liver, and lungs, and abnormalities of hematologic clotting
system [6,10]. Moreover, proteinuria, the cornerstone of the disease, results from increased
renal tubular permeability [4]. PE is the most common glomerular-based kidney disease
worldwide [11]. There is a widely established consensus regarding the association between
kidney disease and PE [11,12]. However, there is a lack of detailed research analyzing
the relationship between serum creatinine (SCr) levels and the prevalence and incidence
of PE [13,14]. Furthermore, an Iranian study analyzed serum markers in approximately
450 patients with PE and demonstrated that SCr was a predictive marker of PE severity [15].

The renal physiologic alteration is critical for a favorable pregnancy outcome. PE
shows variable degrees of renal dysfunction, and normal physiologic accommodation is
not being conducted adequately. Harel et al. [16] collected approximately 362,000 measure-
ments of SCr from 243,534 women and established the gestational age (GA)-specific SCr
distribution embracing the renal physiologic adaptation in normal pregnancy. Moreover,
they suggested that the dysregulation of pregnancy-related hyperfiltration, referred to as
blunted glomerular hyperfiltration, was related to subsequent adverse maternal outcomes,
including severe maternal morbidity [17]. Multidisciplinary expert groups at the Seoul
National University suggested that a decrease in kidney function based on the midterm
estimated glomerular filtration rate (GFR) was related to high-risk adverse pregnancy
outcomes [14]. Based on these previous studies, our team found that the GA-specific SCr
distribution can reflect adverse pregnancy outcomes [18]. The current study aimed to
establish the PE prediction model using kidney function. Moreover, we evaluated whether
the GA-specific SCr distribution proposed by Harel et al. [16] improves the predictive
performance of PE status.

2. Materials and Methods
2.1. Study Participants

The initial dataset was constructed using patients’ medical records and included
women who delivered at the Department of Obstetrics, Wonju Severance Christian Hospi-
tal (WSCH) since 2002 [18]. This automatic platform was implemented to supplement the
initially constructed dataset with medical and laboratory data [18,19]. In detail, candidate
pregnancy cases were curated as the initial dataset (i.e., the patients’ case note). Then, the
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automatic platform was processed to add the SCr levels and their measurement times to
the initial dataset by a database administrator team (Figure S1). Next, a domain expert
team, including an obstetrician and a family medicine physician, manually added the
chronic disease status (e.g., HTN and diabetes (DM)) and adverse pregnancy outcomes
(Section S1 in Supplementary Materials). Blood tests such as SCr were conducted during
early, mid-, and late periods of pregnancy. The timing of initial visits for pregnant women
varies individually. In cases that are referred from a primary local clinic, the first blood test
is conducted during the second or third trimester. Most pregnant women undergo a sys-
tematic blood test during the third trimester of pregnancy before childbirth. Data regarding
the gestational weeks (GWs) of expectant mothers were recorded in both electronic medical
records (EMRs) and manually curated pregnancy case notes. Moreover, during every single
medical visit, information about each patient’s pregnancy was recorded individually in
the EMR. Patients’ case notes, manually collected by obstetricians, contained information
on the delivery dates of mothers and their corresponding GWs. By cross-referencing the
delivery data with the timing of SCr measurements, it was possible to accurately estimate
the GW at the time of the blood test. Finally, data scientists preprocessed the raw dataset
(i.e., the initial dataset constructed manually and the automatic platform) into a normalized
dataset to construct the prediction model. A previous study implemented a sample-based
measurement of SCr and found that most pregnant women performed one or two labora-
tory examinations [18]. Moreover, in this study, we included all SCr examination results. In
other words, regardless of the SCr levels obtained from the same patient, if the test timing
was different, we considered them as different measurements.

The participants were pregnant women who delivered singleton pregnancies at more
than 20 weeks of gestation. Afterward, we excluded women who were aged less than
16 years or more than 50 years at delivery or had incomplete data on SCr levels and their
measurement times. Finally, 10,126 measurements of SCr levels were used to construct the
adverse pregnancy outcome prediction models.

This was an observational, retrospective study without an intervention or experiment;
therefore, the requirement of informed consent was waived. This study protocol and the
waiver of informed consent were approved by the Institutional Review Board of the WSCH
(CR321084). All analyses in this study were conducted in accordance with the principles of
the Declaration of Helsinki.

2.2. Selection of Predictors Related to PE Status

The feature selection is a crucial step for the establishment of the prediction model.
Several studies initially selected disease or phenotype-related features or predictors by
expert knowledge and literature-based search [20–22]. Based on the expert knowledge
and our previous study [18], we pinpointed predictors considering kidney function and its
pregnancy-related physiologic adaptation for the prediction of PE.

We analyzed the predictive usefulness of GA-specific SCr distribution by comparing
four combinations of feature sets. At first, SCr alone was included as an independent
variable with covariates, such as age, labor type, HTN, DM, week of gestation at birth,
and annotated as “SCr”. Secondly, SCr and its measured time (Mt) based on GA were
implemented to establish the prediction model for adverse pregnancy outcomes, defined
as “SCr + Mt”. We categorized the SCr levels into four categories (GAQ) based on the 25,
50, and 75 percentiles of SCr in each GW (GA-specific SCr distribution) [16,18], which were
used to build the prediction model with SCr, defined as “SCr + GAQ”. Finally, all variables
were included in the prediction model and defined as “SCr + Mt + GAQ”.

2.3. Establishment of the PE Prediction Model and Statistical Analysis

To validate the four combinations of feature sets, we conducted experimental tasks
considering a random sampling perspective [23–25]. In studies identifying molecular
signatures or clinical predictors related to disease or phenotype, comparative analyses
among several lists of candidate gene sets or predictors were conducted based on random
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sampling. Two main tasks for the random validation strategy were performed: one was
a random sample set [26] (e.g., iteration of random division of all data into training and
testing sets) and the other was a random feature set [27,28]. Several studies used both
random sample set and feature set to validate a disease-related signature [23,24]. For the
random feature set, numerous variables were needed; however, our data only included
finger-countable background features. Therefore, we only performed the random sampling
to validate the four combinations of feature sets as follows:

(Step 1) We randomly divided the dataset using ratios of 0.7 and 0.3 and categorized them
into training and testing sets, respectively.
(Step 2) Using the candidate feature set (one of four feature sets), the training dataset, and
logistic regression as the input variable, dataset, and classifier, respectively, we established
the prediction model and measured the classification performance of adverse pregnancy
outcomes in the testing dataset.
(Step 3) For the same feature set, dataset, and classifier, we simultaneously measured the
prediction performance of adverse pregnancy outcomes in the training dataset.
(Step 4) We iterated steps 1 to 3 100 times, resulting in 100 pairs of predictive performance
for the testing and training datasets.

For the comparative analysis of continuous variables (e.g., performance) according to
different groups, a Student t-test or one-way analysis of variance were used. Two-tailed sta-
tistical tests were conducted, and a p-value less than 0.05 was considered statistically significant.

3. Results
3.1. General Characteristics of Participants Included in the PE Prediction Model

The mean age of pregnant women was 33.36 years (Table 1). There were 41.5% and
58.5% nullipara and multipara women, respectively. Before pregnancy, 1.5% of the patients
were diagnosed with HTN while 4.0% had DM. Of the 1216 PE patients, 169, 114, 432,
and 501 had PE alone without FGR and PTB; had both PE and FGR; had PE and PTB;
and had PE, FGR, and PTB, respectively. The mean SCr level was 52.8 µmol/L (Table 1).
Correlational analysis was applied to the anthropometric and laboratory markers, resulting
SCr had direct or indirect relationships with blood urea nitrogen, liver profiles, and LDH
(Figure S2).

Harel et al. [16] reported the GA-specific SCr distribution considering the pregnancy-
related physiologic change, such as hyperfiltration. Our research team previously found
that the GA-specific SCr distribution-based categorization of pregnant women could pre-
dict the adverse pregnancy outcomes [18]. Therefore, we described the demographic and
medical characteristics according to the GA-specific SCr distribution (Table S1). In line
with previous study categorization of SCr measurements based on GA-specific SCr dis-
tribution [18], the following differential characteristics were shown as increment of GAQ:
older age, higher ratios of multipara, HTN, DM, body mass index (BMI), and adverse
pregnancy outcomes (Table S1). These findings were consistent with those of our previous
sample-based study [18].

3.2. Prediction Performance for PE

In the expert panel including domain experts (i.e., an obstetrician), a database admin-
istrator, a laboratorian, and a data scientist, we agreed that the measurement period of
SCr of less than 38 weeks was clinically meaningful for predicting PE. Therefore, among
10,126 SCr measurements, cases measured at less than 38 GW were selected. As a result,
among 1126 (PE any) and 4189 (Control) SCr measurement cases, 571 and 2625 were se-
lected as PE and matched control groups, respectively. The 571 cases included participants
with PE alone and all cases with PE and other adverse pregnancy outcomes, therefore
annotated as “PE-any”. We compared performances of different feature sets (e.g., SCr,
SCr + Mt, SCr + GAQ, and SCr + Mt + GAQ) for predicting the PE in any case using the
random sampling method (Methods section). In classifying PE, the integration of Mt to SCr
outperformed the models using only SCr levels. When considering the GA-specific SCr
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distribution, the prediction performance of PE was significantly improved compared to
models using SCr only and SCr + Mt. The inclusion of all features (i.e., SCr + Mt + GAQ)
provided the most accurate results for predicting PE (Figure 1).

Table 1. General characteristics of participants according to trimester.

All
First

Trimester
GW < 14

Second
Trimester

14 ≤ GW < 28

Third
Trimester
GW ≥ 28

p-for
Trend

Number of
SCr measurements 10,126 1302 1255 7569

GW of SCr sampling, weeks
(mean ± SE) 32.2 ± 0.12 7.3 ± 0.11 21.4 ± 0.12 38.2 ± 0.07 <0.001

GW of SCr sampling, weeks
(median/IQR)

35.6
(27.7–40.1)

7.3
(4.1–10.6)

21.4
(17.7–25.3)

37.3
(34.7–40.3)

Age, years (mean ± SE) 33.36 ± 0.05 33.6 ± 0.12 33.3 ± 0.13 33.3 ± 0.06 0.081

Labor types, n

Nullipara 4205 (41.5) 430 (33) 506 (40.3) 3269 (43.2) <0.001

Multipara 5921 (58.5) 872 (67) 749 (59.7) 4300 (56.8) <0.001

Essential hypertension, n 153 (1.5) 12 (0.9) 28 (2.2) 113 (1.5) 0.024

Diabetes, n 407 (4.0) 70 (5.4) 71 (5.7) 266 (3.5) <0.001

PE, n 1216 (12.0) 53 (4.1) 94 (7.5) 1069 (14.1) <0.001

PE alone, n 169 (1.7) 17 (1.3) 9 (0.7) 143 (1.9) 0.006

PE + FGR, n 114 (1.1) 3 (0.2) 3 (0.2) 108 (1.4) <0.001 a

PE + PTB, n 432 (4.3) 15 (1.2) 27 (2.2) 390 (5.2) <0.001

PE + FGR + PTB, n 501 (4.9) 18 (1.4) 55 (4.4) 428 (5.7) <0.001

BMI, kg/m2 (mean ± SE) a 26.6 ± 0.13 23.2 ± 0.32 24.1 ± 0.38 27.1 ± 0.14 <0.001

SCr, µmol/L (mean ± SE) 52.8 ± 0.38 55.2 ± 0.77 48.9 ± 1.22 53 ± 0.45 0.605

BUN, mg/dL (mean ± SE) b 9.2 ± 0.05 9.8 ± 0.15 8.3 ± 0.17 9.2 ± 0.06 0.333

AST, U/L (mean ± SE) b 28.1 ± 0.51 26.5 ± 1.99 26.3 ± 1.29 28.8 ± 0.55 0.06

ALT, U/L (mean ± SE) b 22.4 ± 0.57 26.8 ± 2.94 21.5 ± 1.11 21.8 ± 0.52 0.009

ALP, U/L (mean ± SE) b 126.1 ± 0.87 62.8 ± 0.97 73.9 ± 1.17 142.8 ± 1 <0.001

GGT, U/L (mean ± SE) b 19.2 ± 0.41 24.9 ± 1.66 15.6 ± 0.59 18.9 ± 0.47 <0.001

LDH, U/L (mean ± SE) b 229.2 ± 3.36 180.2 ± 2.28 206.2 ± 5.81 265.6 ± 5.69 <0.001

Continuous and categorical variables are presented as mean ± SE and number (percent), respectively. To analyze
the linear trend in a continuous feature according to three GW groups, 1, 2, and 3 values were arranged as
the representative values for the first, second, and third trimester groups, respectively, then implemented as
independent variables in one-way analysis of variance. a p-value for PE + FGR was calculated using Fisher’
exact test, and others were measured using t-test or chi squared test. b The summary statistics were measured
based on cases less than number of all subjects (n = 10,126) due to some missing values. Abbreviations: GW,
gestational week; SCr, serum creatinine; SE, standard error; IQR, interquartile range; PE, pre-eclampsia; FGR,
fetal growth restriction; PTB, preterm birth; BMI, body mass index; BUN, blood urea nitrogen; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase;
LDH, lactate dehydrogenase.

Among 169 patients who exclusively had PE (PE-only) among the three adverse
pregnancy outcomes (PE, PTB, and FGR), participants (n = 84) having SCr examined at
less than 38 GW were selected to establish PE prediction model. As the matched control
group (n = 2625), the SCr measurement cases from pregnant women without a pregnancy
outcome were selected. The addition of GAQ did not improve the predictive performance
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for classifying PE, compared to models using only SCr levels. The inclusion of Mt did not
also improve the accuracy of the model for predicting PE-only cases (Figure 2).
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Figure 1. Prediction performances of all PE cases using the four feature sets. Any cases of PE (PE
only + PE with other adverse pregnancy outcomes) were determined as the disease group. Prediction
model was established using logistic regression. Boxplots include minimum, first quartile (25%),
median, third quartile, and maximum values. Points in the boxplot referred to as outliers indicate
cases showing more than 1.5 times the IQR, biased from the matched median value. Y-axis indicates
AUC for predicting PE-any, and the box plot summarizes 100 levels of AUCs. Green-, purple-, orange-,
and red-colored boxplots were obtained from the testing dataset, while grey-colored boxplots were
curated from the training dataset. Abbreviations: PE, pre-eclampsia; SCr, serum creatinine; Mt,
measured time; GAQ, quartile groups of gestational-age-specific SCr; IQR, interquartile range; AUC,
area under receiver operating characteristic curve.
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Figure 2. Prediction performances of PE-only case using the four feature sets. An exclusively
diagnosed PE type among the three adverse pregnancy outcomes was defined as the disease group.
Prediction model was established using logistic regression. Boxplots include minimum, first quartile
(25%), median, third quartile, and maximum values. Points in the boxplot referred to as outliers
indicate cases showing more than 1.5 times the IQR, biased from the matched median value. Y-axis
indicates AUC for predicting PE-only, and the box plot summarizes 100 levels of AUCs. Green-,
purple-, orange-, and red-colored boxplots were obtained from the testing dataset, while grey-colored
boxplots were curated from the training dataset. Abbreviations: PE, pre-eclampsia; SCr, serum
creatinine; Mt, measured time; GAQ, quartile of gestational-age-specific SCr; IQR, interquartile range;
AUC, area under receiver operating characteristic curve.
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Next, we categorized cases diagnosed as PE and early PTB into the disease group.
In this simulation, the multidisciplinary expert panel concluded that cases, including SCr
measured at less than 34 GWs, were clinically useful for predicting early PTB. Therefore,
86 (PE + early PTB) and 1263 cases were categorized as disease and matched control
groups, respectively. When predicting PE and early PTB, Mt was an important factor;
moreover, GAQ did not improve the predictive performance of the 86 PE plus early PTB
cases (Figure 3).
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Figure 3. Prediction performances of PE with early PTB using the four feature sets. Pregnant women
with PE and early PTB were categorized as the disease group. Prediction model was established
using logistic regression. Boxplots include minimum, first quartile (25%), median, third quartile,
and maximum values. Points in the boxplot referred to as outliers indicate cases showing more
than 1.5 times the IQR, biased from the matched median value. Y-axis indicates AUC for predicting
PE + PTBearly, and the box plot summarizes 100 levels of AUCs. Green-, purple-, orange-, and red-
colored boxplots were obtained from the testing dataset, while grey-colored boxplots were curated
from the training dataset. Abbreviations: PE, pre-eclampsia; PTB, preterm birth; SCr, serum creatinine;
Mt, measured time; GAQ, gestational-age-specific SCr quartile; IQR, interquartile range; AUC, area
under receiver operating characteristic curve.

Participants with PE and late PTB were grouped into the disease group. We determined
that SCr examinations at less than 37 GWs were eligible for this experiment, yielding 126
and 2218 cases as disease and matched control groups, respectively. The prediction of
pregnancies with PE and late PTB exhibited an improved performance using Mt information
(Figure S3), similar to that predicting PE and early PTB. When classifying cases with PE
and FGR, Mt information provided better performance than GAQ, similar to experiments
predicting PE plus early or late PTB (Figure S4).

Finally, we grouped pregnancies with PE and other adverse pregnancy outcomes
(i.e., PTB and FGR) into the disease group (n = 248). The matched control group
(n = 2625) was the same as that predicting the first simulation (Figure 1). Therefore, the Mt
did not improve the predictive performance for the triple adverse pregnancy outcomes.
Moreover, the GAQ ameliorated the classification performance for pregnancies with all
types of adverse pregnancy outcomes (Figure 4).
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3.3. Predictive Performance for PE According to GW

Varied simulations predicting PE were conducted according to the types of comor-
bidity, including PTB and FGR. It was considered that the GAQ provided augmented
performances for predicting any case of PE, as well as the triple adverse pregnancy out-
comes (PE + PTB + FGR). Therefore, we conducted a comparative analysis of the predictive
accuracy in the aforementioned two cases (any PE or triple cases of adverse pregnancy
outcomes), according to the GW. As a result, SCr examinations in the second trimester were
well predicted, compared to those in the first or third trimester (Figure 5). Specifically, SCr
measurements from 16 to 19 GWs suggest the best predictive performance for PE.

3.4. Final PE Prediction Model

We selected PEany as the dependent variable and set SCr, Mt, GAQ, labor type, and
chronic diseases as covariates in the final PE model. The parameters for each predictor were
determined using a logistic regression analysis. To select the generalized weight values,
we randomly sampled data from the entire dataset, corresponding to 70% of the data at
1000 iterations, thus creating 1000 training datasets. Using these training sets, 1000 lists
of beta coefficients were generated, signifying that each predictor exhibited a Gaussian
distribution with 1000 parameter values (following the central limit theorem). The mean
value from this distribution was set as the final parameter.

The output values of the logistic regression analysis were obtained using a linear
unit and a sigmoid function, which produced values between 0 and 1. To determine
a generalized cutoff value for the output from a logistic regression-based network, we
randomly sampled 70% of the entire dataset 1000 times to create 1000 test sets. By applying
the final model to these 1000 datasets, we obtained the F-score distribution and 1000 values
corresponding to the maximum F-score. Subsequently, by averaging these values, we
obtained an optimal cutoff value of 0.262.
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(A) and PE-triple (B) cases are summarized according to GWs. Prediction model was established
using logistic regression. Features for the model are SCr, Mt, and GAQ. Boxplots include minimum,
first quartile (25%), median, third quartile, and maximum values. Points in the boxplot referred to as
outliers indicate cases showing more than 1.5 times the IQR, biased from the matched median value.
Y-axis indicates AUC for predicting PE, and the box plot summarizes 100 levels of AUCs in each GW
category. Green-, purple-, orange-, and red-colored boxplots were obtained from the testing dataset,
while grey-colored boxplots were curated from the training dataset. The PE-triple case denotes
patients with PE, PTB, and FGR. Abbreviations: PE, pre-eclampsia; PTB, preterm birth; FGR, fetal
growth restriction; GW, gestational week; AUC, area under receiver operating characteristic curve.

We applied the final PE model and optimal cut-off obtained from the logistic regression
model (Figure 6) to the entire dataset, then analyzed the performance of classification
model by four indices (Table 2). The current PE model exhibited exceptional performance
in sensitivity and positive predictive value (PPV); however, it fell short in delivering
satisfactory results in specificity and negative PV (NPV). In the case of applying the
PE model to cases measured between 16.1 and 19 GWs, the sensitivity and PPV slightly
decreased; moreover, the specificity and NPV notably increased compared to those obtained
from all cases (Table 2).

Table 2. Performance of pre-eclampsia prediction model.

Group Sensitivity Specificity PPV NPV

All 0.79 0.51 0.881 0.346

GW (16.1–19) 0.745 0.619 0.837 0.481
The 0.262 (optimal cut-off) obtained from logistic regression model (Figure 6) was implemented to evaluate the
performance of PE prediction model based on four indices (sensitivity, specificity, PPV, and NPV). Abbreviations:
GW, gestational week; PPV, positive predictive value; NPV, negative predictive value.
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4. Discussion

The current study that predicted PE demonstrated that the incorporation of knowledge
domain (i.e., pregnancy-related renal hyperfiltration) improved the predictive accuracy.
Specifically, when predicting PE, any case and triple cases (PE + PTB + FGR), while adding
GA-specific SCr information, provided an enhanced predictive performance. Recent studies
demonstrated that the dysregulation of pregnancy-related physiologic adaptation could
predict adverse pregnancy outcomes based on statistical validation [17,18]. Our study
identified that the GA-specific SCr distribution has predictive utility for PE based on a
machine-learning-based method.

When predicting PE + PTB, the addition of GA-specific Cr information did not sig-
nificantly improve the predictive power for PE and early (PE + PTBearly) or late PTB
(PE + PTBlate). Moreover, the addition of Mt information still resulted in an improved
predictive accuracy for PE + PTB. PTB has multiple factors contributing to its pathogenesis
with progression beyond kidney-related biologic pathways, and our data may not have
sufficient information on all these risk factors [29].

In our research findings, when including physiologic alteration in pregnant women,
the significant improvement in predictive power was observed for the triple cases, which
clinically refer to PTB and FGR, accompanied by PE [30]. A triple case of PE with con-
comitant PTB occurring before 37 weeks and FGR could be considered as an early-onset
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phenotype, as well as a severe form of PE. Therefore, it is important that the predictive
power for the early and severe form of PE (triple case) be increased when incorporating
SCr levels and GA-specific SCr distribution.

The current study showed that the SCr value obtained from blood sampling during
the 2nd trimester of pregnancy, especially at 14–16 weeks of gestation, exhibited the
best predictive power, which has significant clinical implications. Pregnant women are
recommended to regularly visit the hospital for the antenatal check-up once every 4 weeks
until the GA of 28 weeks [31–33]. At every 4-weekly visit, a medical history review, such
as a review of system and physical examination, and ultrasound examination are usually
conducted; however, blood tests are not typically performed in these routine check-ups.
A blood test, which is included in the “integrated test” for screening fetal aneuploidy
and neural tube defects, is typically conducted in two time periods: 11 to 13 and 14 to
22 GWs [33]. Moreover, a GA of 15 weeks is the best timing for secondary test to screen
these diseases. When examining the integrated test, clinical, imaging, and laboratory
tests are performed. The current study reported the SCr levels measured between 14 and
16 GWs to provide the most accurate predictive values (Figure 5). This period overlapped
the secondary integrated test period. Our study is noteworthy in that the PE prediction
model can be applied without substantially modifying the antenatal care and routine
examination framework. Furthermore, the administration of aspirin to high-risk pregnant
women at 16 GWs or less has a preventive effect against PE and its progression to severe
PE [7,34,35]. Taken together, with the ease of the clinical application of our prediction model
in real-world clinical setting and the potential for additional drug therapy, this study could
contribute importantly to the preservation of the lives of pregnant women and fetuses.

In PE, glomerular endotheliosis gives rise to renal dysfunction due to the disruption of
the endothelium and injury to the podocytes [11,36]. Renal damage manifests as HTN, de-
creased GFR, proteinuria, and SCr elevation. The kidney is one of the organs most affected
by both normal pregnancy and PE. Normal accommodation includes a decreased systemic
vascular resistance and glomerular hyperfiltration in healthy pregnant women. Thus, dur-
ing pregnancy, as GA increases, GFR increases and SCr decreases. Recent molecular studies
identified CEBPB and GTF2B as the core PE-related genes, which might be involved in
extravillous trophoblast dysfunction in PE. Moreover, GTF2B was proposed as a potential
cohub gene in Alzheimer’s disease and DM [37]. Therefore, it could be cautiously argued
that PE is not just a uterine- and pregnancy-localized health issue, but a systemic disorder
related to insulin resistance, mitochondrial dysfunction, and chronic inflammation.

Recently, placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), and
placental protein 13 (PP13) have been considered crucial biomarkers for the prediction and
diagnosis of PE. PIGF, a member of the vascular endothelial growth factor (VEGF) family,
is encoded in the human PlGF gene located on chromosome 14q14. PIGF, predominantly
expressed in the placenta, is involved in angiogenesis, which is a crucial process for
the growth and development of the fetus and maintenance of pregnancy [38]. sFlt-1 is
produced by the splicing of FLT1 gene variant. Excess sFlt-1 is known to disturb the
action of VEGF, including angiogenesis, recruitment of endothelial progenitor cells, and
endothelial integrity [39]. PP13 is encoded in the placental gene, LGALS13, located in
chromosome 19 at loci q13.2, and is mainly expressed in the testicular and brain tissues [40].
PP13 is involved in placentation, immunoregulation, and regulation of blood pressure [41].
Individual levels of PlGF, sFlt-1, and PP13 are reliable markers for the prediction and
diagnosis of PE; however, their quantifications require immune-based techniques, such as
enzyme-linked immunosorbent assays. In clinical settings, the aforementioned in-depth
markers are difficult to measure, indicating the challenges to compare our PE model with
those using deep phenotypical features. Our study used easily obtainable clinical and blood
biomarkers, including SCr, its measured time, and the GW; therefore, it could provide a
practical model that can be easily applied in primary clinical settings.

Kidney function or kidney disease is influenced by numerous factors [42]. In case
of pregnancy, kidney function and its associated features form an intricate network with
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additional pregnancy-related factors [43,44]. Furthermore, the evaluation of kidney func-
tion using SCr is influenced by factors such as age and muscle mass, the measurement
of which requires diagnostic tools, such as dual-energy X-ray and computed tomography
scans. As cystatin C is less susceptible to other influences, it has been proposed as an
alternative biomarker for assessing renal function in pregnant women [45]. However, in
the clinical setting of obstetrics, including in university hospitals, collecting comprehensive
and in-depth information on blood biomarkers or radiologic features, referred to as deep
phenotyping [46], is a global challenge. This study aims to build a model based on easily
collectible information in primary care settings. Other blood markers also undergo the
adaptations related to pregnancy status [47]; therefore, adding extra blood markers to the
PE prediction model requires prior studies analyzing the GW-specific distributions of each
marker. Note that this study did not include several factors that affect kidney function;
therefore, our PE model only plays a role as a watchman over whether PE may occur, and
is meaningful as a supportive role for other validated diagnostic tools or markers.

The predictive performance for PE status decreased when using blood test results
in first trimester (Figure 5). Several reasons, such as the relatively low number of SCr
cases in the early stage of pregnancy and the early or transition stage of hyperfiltration,
could explain the low predictive power. The data collected from the blood tests of pregnant
women analyzed in the current study predominantly focused on the third trimester (Table 1).
Tertiary hospitals, such as WSCH, primarily cater to women in the mid- to later stages of
pregnancy who have been diagnosed with PE and referred from primary healthcare settings.
Therefore, to collect information on pregnant women in their first trimester, it is crucial
to implement the PE prediction model in primary healthcare settings. To facilitate the
application of the model in primary healthcare settings, we developed a computationally
efficient and highly interpretable model referred to as the shallow model (i.e., the logistic
regression model) [48]. Furthermore, we created a classification model that incorporated
the predictors readily available in primary care institutions (Figure 6). These efforts may
contribute to the establishment of a generalized PE prediction model.

Our study had several limitations. Due to the retrospective design, the current dataset
for the establishment of PE prediction model could not consist of crucial PE-related factors,
such as medical treatment, blood pressure, autoimmune disease status, and biomarkers for
diagnosing autoimmune disease, inflammatory markers, hemoglobin, and red and white
blood cell count. Second, a modest fraction of anthropometric and laboratory markers,
including liver profiles and body mass index (BMI), did not have complete data for all
subjects (Figure S1), which meant their implementation into the PE prediction model was
challenging. Furthermore, we could not fully dissect the correlational patterns among
candidate biomarkers (e.g., obesity indices and anthropometric and laboratory markers)
and the distributional changes based on gestational weeks (Figure S2). Therefore, in further
studies, it will be required to establish the PE prediction model including comprehensive
and in-depth biomarkers.

5. Conclusions

We demonstrated a significant improvement in the prediction of PE when SCr levels
derived from a real-world hospital database and prior knowledge (renal physiological adap-
tation during pregnancy) were integrated into the predictive model. The implementation of
both SCr and GAQ as predictors resulted in a substantial improvement in predicting PEany
and PEtriple. We established a highly explainable practical model (i.e., logistic regression
model) that can be easily applied in primary care settings without the need to modify the
hospital database. Moreover, by determining the optimal cut-off, the model performance
was comprehensively evaluated based on several performance indices, and high-risk PE
groups could be screened.
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