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ABSTRACT This paper proposes a new computational model to predict the earth pressure balance (EPB)

shield performance during tunnelling. The proposed model integrates an improved particle swarm opti-

mization (PSO) with adaptive neurofuzzy inference system (ANFIS) based on the fuzzy C-mean (FCM)

clustering method. In particular, the proposed model uses shield operational parameters as inputs and

computes the advance rate as the output. Prior to modeling, critical operational parameters are identified

through principle component analysis (PCA). The hybrid model is applied to the prediction of the shield

performance in the tunnel section of Guangzhou Metro Line 9 in China. The prediction results indicate

that the improved PSO-ANFIS model shows high accuracy in predicting the EPB shield performance in

terms of the multiobjective fitness function [i.e. root mean square error (RMSE) = 0.07, coefficient of

determination (R2) = 0.88, variance account (VA) = 0.84 for testing datasets, respectively]. The good

agreement between the actual measurements and predicted values demonstrates that the proposed model is

promising for predicting the EPB shield tunnel performance with good accuracy.

INDEX TERMS Earth pressure balance shield, principle component analysis, improved PSO-ANFIS, fuzzy

C-mean, advance rate.

I. INTRODUCTION

With the progress of manufacturing technology, larger and

increasingly complex tunnel projects are being constructed

in many Chinese cities [1]–[4]. In tunnel excavation projects,

one of the main aims is to optimise the performance of

the drilling system. Therefore, accurate performance of the

tunnel boring machine (TBM) can be employed to reduce

the risks associated with high costs and time consumed

during the tunnelling process [5]. Conversely, overestimat-

ing can be a negative effect for the utilization of project

resources [6]. Thus, if the tunnelling process is addressed in

an appropriate manner, the risks related to tunnelling projects

will be decreased considerably [7]–[12]. In general, the

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

TBM performance can be represented by the penetration rate

and advance rate. The penetration rate is the linear distance

between the excavation faces per unit time when the machine

is in production. The advance rate is the rate of the machine

face advancing forward, including both the production time

and downtime [13]. As the advance rate determines the total

construction time and the overall cost of a tunnelling project,

one of the most essential efforts in tunnel construction design

is to estimate the advance rate.

The performance analysis of the TBMand the development

of accurate prediction models have been the ultimate goal and

are still under development in several studies. In most of the

previous studies, both empirical and theoretical approaches

were developed for predicting the TBM performance. Typical

input parameters can be categorised as follows: i) geological

conditions [e.g. uniaxial compression strength (UCS) and
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geological strength index (GSI)], and ii) operational parame-

ters [e.g. thrust force (TF), cutterhead torque (CT), and tunnel

diameter (D)] [14]–[17]. Owing to large uncertainties in geo-

logical environments and construction processes, empirical

and theoretical approaches cannot display the nonlinear and

dynamic behaviour of the TBM performance. By utilizing a

large amount of field data, artificial intelligence (AI) models

may overcome this limitation.

AI-based models emerged two decades ago to serve as an

acceptable solution to several geotechnical problems; many

comprehensive reviews have summarised the effectiveness of

using AI models in widespread applications. To estimate the

TBM performance, some AI models have been developed,

including artificial neural networks (ANN) [18]–[20], fuzzy

logic (FL) [21], and adaptive neurofuzzy inference systems

(ANFIS) [22], [37]. ANN and non-linear multiple regression

models have been used for estimating tunnel boring machine

performance as a function of rock properties. However, to

date, studies have mostly used only geological data in the

prediction of TBM performance. Yin et al. [20] conducted

a comparative study for identifying the soil parameters using

different optimisation techniques such as genetic algorithms,

particle swarm optimization, simulated annealing, differen-

tial evolution, and the artificial bee colony. Results showed

that the differential evolution had the highest search ability

but the slowest convergence speed.

On the other hand, the dynamic features of construction

make the tunnelling process a nonlinear problem with large

uncertainties, which challenges construction management

andmakes accurate predictions difficult. In this respect, ANN

and FL can be used to address such challenges. However,

there has been an argument as to whether AI models can

yield reasonable solutions with robustness when addressing

nonlinear problems with uncertainties [23], [24]. The other

argument is that AI models may give distorted and/or inad-

equate explanations for problems owing to problems with

the local minima and inferior generalization. As a result,

hybridmodels have been developed by incorporating the opti-

mization algorithms with AI-based models. Salimi et al. [11]

discussed the applicability of artificial intelligence to design

sewage transfer system. The obtained results illustrated that

the ANFIS had better performance for estimating water ham-

mer phenomenon in the UPVC pipes while the PSO-ANFIS

was found to be more suitable in metal pipes. Azad et al. [8]

performed a comparative study for optimizing the perfor-

mance of ANFIS model in simulating monthly rainfall mag-

nitudes using different algorithms such as genetic algorithms,

particle swarm optimization, differential evolution, and the

artificial bee colony. The results showed that the hybrid

models had better accuracy than the simple ANFIS model in

escaping local optima [15]. So far, the basic idea of the hybrid

approaches is to address the shortcomings of single approach

and generate the effect of synergy in prediction, which have

become the predominant approaches in recent years. For

example, Elbaz et al. [25] proposed a hybrid model of a mul-

tiobjective genetic algorithm with ANFIS for predicting the

shield performance, demonstrating better prediction accuracy

than that from the traditional ANFIS technique. In spite of

available hybrid optimization techniques, attempts to propose

new ones are still ongoing.

This study aims to propose a hybrid multiobjective opti-

misation model for the prediction of shield machine perfor-

mance during the tunnelling process. The proposed model is

constructed using a fuzzy rule-based system optimised by an

improved PSO algorithm, which simultaneously adjusts both

antecedent and consequent variables. Principal component

analysis is applied to examine the effect of different parame-

ters on the advancement rate of the shield machine. To eval-

uate the performance of the proposed model, the prediction

results are compared with the results of the ANFIS-FCM

model.

The remaining content is organised as follows. Section II

presents the AI technique and the proposed model. To verify

the effectiveness of the proposed model, it is applied for

predicting the tunnelling performance of a tunnel section

in Guangzhou. Section III presents the real-time field

monitoring data. Section IV describes a shield tunnelling

performance database and presents the principal component

analysis. Section V presents prediction results with a techni-

cal discussion. The last section concludes the study.

FIGURE 1. Structure of ANFIS model with two input parameters.

II. ARTIFICIAL-INTELLIGENCE BASED MODELING

A. ANFIS MODEL

ANFIS, developed by Jang [26], is a multilayer adaptive

network-based fuzzy inference that maps relations between

inputs and outputs. ANFIS is useful for solving com-

plex problems with large uncertainties by creating a fuzzy

inference system (FIS) with adjusted parameters of the mem-

bership function (MF). In particular, it uses neuro-adaptive

learning methods to adjust membership function parame-

ters until reaching the optimal solution. In this way, ANFIS

combines the reasoning capacities of fuzzy logic principles

with the learning capabilities of the ANN system to solve

complicated and nonlinear issues. Fig. 1 shows the ANFIS

architecture, with two input parameters (x, y) and one out-

put parameter (f ), using the Takagi-Sugeno fuzzy inference

system.

The following content briefly describes the five layers of

the ANFIS model. Further details of ANFIS can be found in
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other literature such as [26]. In Layer 1, each node (i) has

an MF of a linguistic variable. The output of each node is

calculated according to the following equation:

Q1
i = µAi (x) =

1

1 +

[

(

x−vi
σi

)2
]bi

(1)

where x is the input value of node i, Ai is the linguistic

variable associated with this node, and σi, νi, and bi are

function parameters with bi > 0. The parameters in this layer

are defined as premise parameters.

In Layer 2, every node computes the firing strength for each

rule by multiplying the received signals:

Q2
i = wi = µAi(x)µBi(y), i = 1, 2 (2)

In Layer 3, every node computes the ratio of the ith rule’s

firing strength to its sum for all rules. The outputs are nor-

malized firing strengths.

Q3
i = wi =

wi

w1 + w2
, i = 1, 2 (3)

Layer 4 contains the adaptive node:

Q4
i = wifi = wi(pix + qiy+ ri), i = 1, 2 (4)

where wi is the output of layer 3; pi, qi, and ri are the

consequent parameters.

Layer 5 calculates the summation of all input signals as the

overall output:

Q5
i = overall output =

∑

i
wifi =

∑

i wifi
∑

i wi
(5)

B. FUZZY C-MEANS CLUSTERING

By assigning a set of data into groups, fast and robust data

clustering is essential to extract beneficial structures from

large data. Fuzzy C-means (FCM) clustering is a power-

ful algorithm for clustering overlapped datasets. In FCM,

the grade of a data point belonging to a cluster is identified

by a membership. The membership shows a large value for

data near the cluster centre and a small value for data far away

from the cluster centre. FCMdivides the selection of n vectors

xi (i = 1, 2, . . . , n) into fuzzy sets and determines the cluster

centre for each set to minimise the fitness function.

The FCM clustering method works in the following proce-

dure. Given n data points (x1, x2, x3, . . . , xn), the centre of the

ith cluster is randomly chosen as ci (i = 1, 2, . . . ,C), where

C is the total number of clusters (C ≤ n).

The membership matrix U can be calculated as follows:

µij =
1

C
∑

k=1

(
dij
dkj
)

2
m−1

(6)

where dij = ||ci − xj|| is the Euclidean distance between the

ith cluster centre and the jth data point, µij is the coefficient

of membership matrix U , and m is the fuzziness index.

The objective function can be computed as follows:

J (U , c1, . . . , c2) =

c
∑

i=1

Ji =

c
∑

i=1

.

n
∑

j=1

µm
ij d

2
ij (7)

Finally, a novel c fuzzy cluster centre Ci (i = 1, 2, . . . ,C)

can be calculated by utilizing the following equation:

Ci =

n
∑

j=1

µm
ij xj

n
∑

j=1

µm
ij

(8)

C. IMPROVED PSO

The PSO algorithm initialises a set of particles randomly scat-

tered in the space of the objective function. Then, it updates

generations to find the optima of all possible solutions

(so-called particles). Each particle is defined by two positions

and velocity values based on the two best fitness values: pbest

and gbest. pbest is the best fitness solution of each particle

fulfilled so far, whereas gbest is the global best solution

gained by any particle in the population tracking by PSO.

According to pbest and gbest values, all particles update their

velocities and positions until the optimal solution is reached.

As an optimization method, PSO is easy to understand and

implement. It is computationally efficient and maintains the

diversity of the swarm.

Assuming the position x ti = (x ti1, x
t
i2, . . . , x

t
in) and the

velocity vti = (vti1, v
t
i2, . . . , v

t
in) of the i

th particle in the t th

iteration, the particle optimises its location in the (t + 1)th

iteration by utilizing the following equation [27]:

vt+1
i = w. vti + c1.r1.

(

pti − x ti
)

+ c2.r2.
(

gt − x ti
)

(9)

with − vmax ≤ vt+1
i ≤ vmax

x t+1
i =

(

x ti + vt+1
i

)

(10)

where pti is the best location of particle i
th in iteration t th, gt is

the global best location up to the t th iteration, r1 and r2 are

random values in the range of [0, 1], w is the inertia weight

where 0 ≤ w ≤ 1, and parameters c1, and c2 are the cognitive

acceleration rate and social coefficient, respectively.

Inertia weight w greatly influences the contribution rate of

the velocity from the previous step to the velocity at the next

step. A traditional strategy of improving the inertia weight is

applied as follows:

w = wfinal + (winitial − wfinal)(1 −
T

Gmax
) if gt 6= x ti

w = wfinal if gt = x ti (11)

where T is the iteration number, T ∈ [0,Gmax]; Gmax is the

maximum number of iterations; winitial is the initial inertia

weight; and wfinal is the development value at the maximum

iteration.

Because the feature vector usually has high dimensions,

PSO particles may easily be trapped in local optima rather

than reach global optima [28]. Therefore, Clerc [29] added
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a constriction factor k into PSO to verify the best convergence

as follows:

vt+1
i = k

[

vti + c1r1(p
t
i − x ti ) + c2r2(g

t − x ti )
]

(12)

A rule of thumb is that the constriction factor should be

a convex function in precocious iterations to avoid the early

convergence to local minima, and a concave function in late

iterations to change slowly until reaching a global optimum.

Based on this rule, the constriction factor function is built as

follows [30]:

k =
cos ((π/Gmax) × T ) + 2.5

4
(13)

Because the inertia weight influences the degree of the

particle velocity and the constriction factor affects the con-

vergence performance of PSO, the following content explains

the improvement of synchronously using the inertia weight

and the constriction factor.

The improved PSO has both the inertia weight and con-

striction factor varying synchronously. Integrating equations

(12) and (13), we get the following equation:

vt+1
i =

(

cos(π × T/Gmax) + 2.5

4

)

×
[

w×vti+c1.r1.
(

pti−x
t
i

)

+c2.r2.
(

gt−x ti
)]

(14)

After a number of iterations, the particlemay be close to the

global optima; the inertia weight becomes smaller to allow the

particle to retain its original speed and search for the optima

in a smaller range. If the particle does not reach the accurate

minima, then the inertia weight becomes greater to retain its

original velocity for the global optima search.

Derivation details of this approach can be found in

Lu et al. [44]. By solving these derivations, we can get the

equation

w ≥
c1 + c2

2
−

1

k
(15)

According to this equation, the inertia weight w should be no

less than the maximum value of the right-hand side. On the

right-hand side of Eq. (15),−1/k reaches themaximum value

of −1/[(cos(π/Gmax × 0) + 2.5)/4] when T = 0, based on

Eq. (13). Therefore, the inertia weight wfinal = (c1 + c2)/2−

1/[(cos(π/Gmax × 0) + 2.5]/4]. When the values of c1 and

c2 are equal to 2, then wfinal = 2 − (1/(3.5/4)) ⊔ 0.857.

As the inertia weight w ranges from [0, 1], this study sets

the initial value of the inertia weight winitial = 1. Thus, the

inertia weights can be presented as follows:

w = 0.857 + (1 − 0.857)

(

1 −
T

Gmax

)

if gti 6= x ti

w = 0.857 if gti = x ti (16)

D. STOPPING CRITERIA

Stopping criteria are specified as the conditions required to

terminate the iterative search algorithm when there is no

obvious improvement over the number of iterations. As usual,

termination criteria include the expected value of accuracy

and the maximum iteration number. To determine the appro-

priate number of iterations, a useful approach suggested by

Zielinski and Rainier [24], which is based on comparing the

results of various iteration numbers, is applied. In this work,

the maximum number of iterations is set as a termination

criterion. To determine an appropriate iteration number, we

conducted trial computations by varying the population size

of the improved PSO model based on the root mean square

error (RMSE) [49].

To control the overfitting, a global validation strategy was

implemented according to the definition by Mitchell [45].

We assume that c∗j and c
∗ι

j are the best-performing candidate

groups found by computing the error rate ε for every element

of P(c) in the optimization set (op) and in the validation set

(ν), respectively. P(c) represents the powerset of classifiers

c = {c1, c2, . . . , cn} determining the population of all poten-

tial candidates cj. The ranking error of the optimization set

is denoted by ε(v, c∗j ), and the ranking error of the validation

set is denoted by ε(v, c∗
ι

j ). c
∗
j is considered as overfitting on

op if there is an alternate candidate c∗
ι

j ∈ P(c) that can be

found such that ε(v, c∗j ) > ε(v, c∗
ι

j ). In this way, overfitting is

defined as

Overfitting = ε(v, c∗j ) − ε(v, c∗
ι

j ) (17)

E. HYBRID MODEL OF IMPROVED PSO-ANFIS

In order to predict the tunnelling performance with good

accuracy, this study introduces an improved PSO-ANFIS

model. In this hybrid model, the aforementioned improved

PSO helps to tune and achieve the optimal values of ANFIS

parameters through training. Fig. 2 shows a flowchart of the

improved PSO-ANFIS model.

The improved PSO-ANFIS model works using the follow-

ing procedure. Initially, all datasets are reprocessed for the

training model, including the operational shield parameters

and the corresponding advance rate. With postprocessed data,

the initial ANFISmethod is producedwith all parameters ran-

domly initialised. To achieve accurate prediction, the ANFIS

model needs to be supported by an appropriate number of

clusters. The initial ANFIS method utilises the FCM clus-

tering approach to optimise the result by extracting a set of

rules that model the datasets and form the FIS. Then, premise

parameters (σi, νi, bi) and consequent parameters (pi, qi, ri)

of the ANFIS method are extracted in this step to estimate the

dimensions of every particle for setting up the PSO algorithm

in the next step.

The corresponding parameters for each MF are extracted

iteratively to form a vector. In this vector, the parameters

constitute the variables to be optimised by PSO; therefore,

the length of every particle in PSO can be determined. Once

the PSO parameters are specified, the initial population is

generated. After initializing all particles, the improved PSO

updates the velocity and the position of each particle in the

swarm until a convergence is obtained to get the optimal

values of the variables. The objective function of each particle

is computed, and the best new values are updated accordingly.
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FIGURE 2. Workflow of improved PSO-ANFIS model.

The last step assigns these optimal values as antecedent and

consequent parameters to the final ANFIS model.

III. PROJECT DESCRIPTION

As one type of TBM, an earth pressure balance (EPB) shield

machine is suitable for digging tunnels in unstable ground

such as clay, silt, and sand. In EPB shield tunnelling, there

are an increasing number of computational models for pre-

dicting the cutting rate [31], torque and thrust [32], and

advance speed [11], [25]. However, no studies have inte-

grated improved PSO with ANFIS to predict the EPB shield

performance.

This study completes this work by applying the proposed

model of improved PSO-ANFIS to a field tunnelling project

in Guangzhou, China [33], [34]. In the Guangzhou metro

tunnels, an EPB shield machine with a diameter of 6.25 m

was used to excavate the tunnel section between Maanshan

Park Station and Liantang Station for Guangzhou Metro Line

No. 9 [35], [36]. This case study is selected to verify the

applicability of the proposedmodel. Also, this case represents

a new project in the urban area of Guangzhou city, which

needs to be carefully considered based on the existing infras-

tructures. The main specifications of the utilised machine are

summarised in Table 1.

Fig. 3 shows a plan view of the construction site. The tunnel

alignment is approximately 1280 m in length, with a burial

TABLE 1. Main features of utilised machine.

FIGURE 3. Location map of study area.

depth varying from 7.0 to 10.0 m, as shown in Fig. 4. This

study collects inputs of operational parameters and geological

conditions from the monitoring and testing results along the

tunnel alignment.

The advancement of the shield machine usually encoun-

tered silt clay soil at the studied section. The properties are

listed in Table 2.

Field investigations showed that the void ratio ranges

between 0.7 and 0.85, and the maximum cohesion value is

40 kPa. The silty clay soils have a plasticity of over 10 and

a uniaxial compressive strength (UCS) of less than 2. The

soils have a consistency index of less than 1.0, categorised as

low-plasticity clay (CL) according to Casagrande’s plasticity

chart. In a standard penetration test (SPT), N values of the

soils are over 10.

IV. DATA PREPROCESSING

In this project, the EPB shield machine has a built-in data

acquisition system in which the actual data are collected

by the sensors of every subsystem. The collected data are

stored in the shield machine computer and transferred to the

laboratory server over a fibre-optic network. This system is
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FIGURE 4. Longitudinal profile of guangzhou tunnel alignment.

TABLE 2. Geotechnical properties of encountered soil during tunnelling.

provided to simplify data collection during the tunnelling

process and serves as a decision-making tool for tunnel engi-

neers. Prior to the data analysis, raw data from the shield

tunnelling are preprocessed based on the dimensional data.

It is noteworthy that the data acquisition system records a

wide diversity of shield operating data related to the tunnel

performance, including the thrust force, cutterhead torque,

and soil and grouting pressure. To adjust the dimensions of

the monitoring data for the selection of shield parameter data,

the following two criteria are adopted:

(1) The monitoring data should have meaningful values

and be collected in the daily reports. Engineers refer

to the daily reports to analyse the shield performance

during the tunnelling process.

(2) The shield tunnelling parameters are examined and

selected by tunnel experts so that the selected

parameters can reflect the actual relationship of the

shield tunnelling performance between different tunnel

parameters.

Operation data usually include a certain amount of outliers,

which affect the quality of the data [48]. Zhao et al. find

that the K-nearest neighbour (KNN)-based outlier detec-

tion method is appropriate for detecting the outliers from

a large amount of data [47]. Inappropriate raw databases

were screened as outliers based on the K-nearest neigh-

bour algorithm proposed by [46]. This study adopted the

distance-based method of the KNN technique summarised

in Algorithm 1 to detect outliers. The reason is that the

operating data usually include a certain number of outliers,

Algorithm 1 K-Nearest-Neighbour-Based Model [43]

Input: sample set {xn}
N
n=1 ⊂ RM , and outlier percentage

s% = 6%;

Output: A list of outliers;

1: For sample x1 ,. . . , xN in the process; do

2: Find the nearest neighbour K by setting ND(xn,K ) of

the sample xn, the set of K points ∈ {xn}
N
n=1 are the

nearest points to xn based on the metric D;

3: Calculate the outlier score T for the neighbour K of

xn:

T (xn,K ) =

∑

y∈ND(xn ,K ) D(xn,y)

K
;

4: end for

5: Sort the samples {xn}
N
n=1 in the ascending order of

{T (xn,K )}Nn=1, and then choose the last outlier sam-

ples s%.

6: Return

which normally affect the quality of the data [48]. In this

manner, a total of 200 operating datasets were selected for

the prediction of tunnel performance.

A. SHIELD TUNNELLING PERFORMANCE DATABASE

Following the aforementioned data preprocessing, this study

established databases of the shield tunnelling performance,

focusing on shield machine specifications and operational

parameters. The shield machine specifications were col-

lected from manufacturer’s documents. Operational parame-

ters were directly extracted from a built-in data acquisition

system in the EBP shield machine. In total, there are nine

parameters: cutterhead torque (CT), thrust force (TF), soil

pressure (SP), rotational speed of the screw rate (SC), cutter-

head rotation speed (CR), grouting pressure (GP), grouting

amount (GA), excavation depth (H), and advance rate (AR).

Among them, AR is closely interrelated with the other eight

parameters.

Fig. 5 presents frequency histograms of eight EPB shield-

tunnelling parameters of the selected 200 datasets. Most

of the operating parameters have wide distributions, which
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FIGURE 5. Histograms of different operating parameters in database.

result from frequent changes of the machine status dur-

ing construction. Table 3 displays statistics of the nine

parameters.

TABLE 3. Statistics of nine parameters in database.

B. PRINCIPLE COMPONENT ANALYSIS

Principle component analysis (PCA) is a conventional multi-

variate statistical approach used for classification and regres-

sion in various fields of study [37]–[39]. PCA can be applied

to decrease the complex data form of forecasting variables

to a lower dimension. During the analysis, the PCA can

provide a few linear collections of the parameters that can

be adjusted to summarize the data without losing much

information. This method uses the orthogonal transformation

to transform observations of possibly correlated variables

to linearly uncorrelated variables. It reduces the dimension-

ality and keeps the informational value of the input data

intact. PCA has been widely used for selecting independent

variables and eliminating duplicate or highly associated vari-

ables. Fig. 6 shows a two-variable dataset, originally mea-

sured in the X-Y coordinate system.

In another coordinate system, the U axis refers to the

principal direction of this dataset, and the V axis refers to

FIGURE 6. Principle components for data representation [38].

the second most important direction. Usually, the V axis is

orthogonal to the U axis; therefore, the covariance between

the U andV variables is equal to zero. That means that all data

are decorrelated by transforming from (X, Y) coordinates

to (U, V) coordinates though an orthogonal transformation.

PCA computes new variables as a linear combination of the

original variables by calculating the covariance/correlation

matrix of the data. When the variation of a dataset is caused

by a natural property or a random experimental error, the vari-

ables are likely to follow normal distributions.

Linear transmutation transforms the input data into a set

of components that are arranged according to their variance.

The first principal component is the direction along which the

data has the most variance. PCA projects the input data on a

k-dimension eigenspace of k eigenvectors that are computed

from a covariance matrix 6 of the data N = [N1, . . . ,Nn].

Ni is i
th d-dimension data sample, and N refers to the number

of samples. PCA chooses k , with k < d , eigenvectors having

the largest eigenvalues that represent the main components
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of the dataset. The selected eigenvectors are projected in a

matrix and arranged into columns, where the first column

corresponds to the largest eigenvalue. Eventually, PCA com-

putes and determines the feature vector v from the data in the

matrix [37].

Given the inputs of several parameters, this study uses PCA

to identify critical input parameters that have the greatest

impact on the advance rate (Fig. 7). This figure shows that the

three inputs of CT, SC, and CR (i.e. the cases of 2, 3, and 4)

are the most critical parameters, with the highest variance

ratio of 93%. Therefore, CT, SC, and CR are selected as input

parameters for developing the predictive model in this study,

and the advance rate is considered as a function of these three

parameters.

FIGURE 7. Principle components analysis for some parameters in this
study.

V. RESULTS AND DISCUSSION

As previouslymentioned regarding PCA, this study uses three

input parameters (CT, SC, and CR) to predict AR within

the hybrid improved PSO-ANFIS model. Additionally,

an ANFIS model is established to compare the predic-

tion accuracy of the hybrid model. For general computa-

tion procedures of the ANFIS-based FCM model and the

PSO-ANFIS model, please refer to section II. Both ANFIS

and PSO-ANFIS are implemented in MATLAB. This study

has a total of 200 datasets, randomly divided into two subsets,

of which 80% of the datasets are the training set and the other

20% are the testing set, following the recommendation of

Swingler [40].

A. ANFIS-FCM MODEL

In the ANFIS model, all datasets are normalised to sim-

plify the computational procedure using the following

equation [41]:

Xn =
(X − Xmin)

(Xmax − Xmin)
(18)

where X and Xn are the measured and normalised data,

respectively; Xmin and Xmax are the minimum and maximum

data of X , respectively.

The ANFIS model in MATLAB requires users to deter-

mine the number and the type of membership functions

(MFs). As there is no explicit method or formula to predict the

necessary MF numbers [42], this study estimates the number

of MFs by trial and error. The best estimates are obtained

when using three Gaussian MFs. Table 4 lists the employed

parameters in the developed model.

TABLE 4. Main parameters of ANFIS and improved PSO-ANFIS models.

The Takagi-Sugeno method is applied as FIS owing to its

high accuracy and good computational effectiveness in devel-

oping a systematic approach for constructing fuzzy rules from

the input-output dataset. MATLAB with the genfis3 function

is implemented to construct the initial FIS structure of the

model. More ANFIS settings based on the FCM clustering

are listed in Table 4.

To improve the model accuracy, four different cases were

designed to evaluate the impact of using different numbers

of clusters in the FIS function on the computational results

with ANFIS. The four cases use 5, 7, 10, and 14 clusters,

respectively.

Table 5 presents the computational results from different

cases for the training set and the testing set in terms of the

coefficient of determination (R2), root mean square error

(RMSE), and variance account (VA).

The variations in the statistics can quantify the impact

of changing the cluster number on the network result for

the ANFIS model. Small variations of R2, RMSE, and VA

indicate that the number of clusters in the ANFIS model

only slightly affects the prediction accuracy. Among the four

cases, the third case of the ANFISmodel using 10 clusters has

the best prediction accuracy. Therefore, the following ANFIS

model uses 10 clusters in the FIS function to predict the tunnel

performance.

Fig. 8 shows the correlations between the measured and

predicted advance rates for the training set and the testing set.

This figure shows a better correlation in the training set than

in the testing set for the ANFIS model.
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TABLE 5. Statistical analysis of different ANFIS models.

FIGURE 8. Comparison between measured and predicted AR from
ANFIS-FCM model: (a) training set and (b) testing set.

FIGURE 9. Comparison between measured and predicted AR from
ANFIS-FCM model.

FIGURE 10. Absolute and relative error plots of ANFIS-FCM model.

In Fig. 9, it can be seen that the predicted values of

the advance rate are relatively close to the measured val-

ues. In addition, the absolute and relative error indicators

in Fig. 10 show that the predicted data can successfully

follow the measured data with small discrepancies in the

range of ±25%.

B. IMPROVED PSO-ANFIS MODEL

To develop the ANFIS model, the improved PSO is used to

obtain optimum parameters for the ANFIS model. In this

study, a Gaussian is applied as membership functions (MFs),

as suggested by several researchers [14], [25]. In this

hybrid model, PSO helps to establish closer relationships

between the input and output. To determine the optimal

PSO parameters, a trial-and-error approach is applied to

FIGURE 11. Convergence behaviour of improved PSO used to train ANFIS
model.

find the maximum iteration numbers c1 and c2 [48]. These

three parameters are eventually 300, 2, and 2, respectively

(Table 4). As indicated in Fig. 11, the PSO algorithm

converged the optimal fitness function after approximately

55 iterations, and then it settled at a constant level. This shows

that PSO reached the optimal solution and that the search

operation could be stopped.

The network performance results with the improved

PSO-ANFIS model with different population sizes are dis-

played in Table 6. From this table, it can be concluded that

the improved PSO-ANFISmodel with a population size equal

to 100 leads to the best prediction capacity. In the present

study, the architecture of the fourth model (No. 4) was cho-

sen as the best model to predict the tunnel performance,

as shown in Table 6. In this study, the convergence speed of

proposed model is considered [16]. Results showed that the

300 iterations required about 20 minutes to train the system.

Otherwise, the computational volume of the proposed model

is satisfied to achieve the accuracy from the predicted results.

TABLE 6. Comparison of analysis results from improved PSO-ANFIS
model by varying the population size.

The comparison results in the estimation of the advance

rate for the improved PSO-ANFIS model in the training set

and the testing set are displayed in Fig. 12.

Scattered data in both plots are close to the line of equality

(shown as a dashed line), demonstrating the good accuracy

of the improved PSO-ANFIS model. To give a visual sense

for the improved PSO-ANFIS model, Fig. 13 has been added
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FIGURE 12. Comparison between measured AR and predicted AR from
improved PSO-ANFIS model: (a) training set and (b) testing set.

FIGURE 13. Comparison between measured AR and predicted AR from
improved PSO-ANFIS model.

FIGURE 14. Absolute error and relative error of improved PSO-ANFIS
model.

to show the relation between the measured and predicted AR

for all databases. From Fig. 13, it can be seen that the AR

predicted values are close to the measured values for almost

all of the data. Formore clarification, the absolute and relative

errors of the outputs for the improved PSO-ANFIS model are

plotted against the advance rate measured data, as depicted

in Fig. 14.

The relative error of AR varies around zero, mostly in a

smaller range (±15%) than the range (±25%) of the ANFIS-

FCM model. This indicates that the improved PSO-ANFIS

model has better accuracy in the prediction of tunnel boring

machine performance when compared to the ANFIS-FCM

model.

C. DISCUSSION

Applying computational techniques such as AI to the pre-

diction of tunnelling performance has become increasingly

popular. Previous studies on the prediction of TBM per-

formance have mostly performed structural analyses under

static load conditions far from actual working conditions [3].

Furthermore, predicting the TBM performance is a nonlinear

and multivariable complex problem that cannot be accurately

predicted using simple models.

In this respect, this study presented a hybrid multiob-

jective optimization technique to enhance the performance

of TBM based mainly on dynamic operational factors. The

dynamic operational factors, unlike the geological conditions,

are controllable and thus can be manipulated by changing

the machine orientation functions and optimal subsystems.

Theoretically, the perfect prediction model is expected to

have RMSE = 0, R2 = 1, and VA = 1. A small value of

the RMSE and great values of the coefficient of determination

R2 and VA indicate a good prediction accuracy of the model.

To assess the performance of the proposed model, this study

uses a multiobjective fitness function with the objective of

decreasing the RMSE and increasing the coefficient of deter-

mination R2 with a VA.

Minimize Fit = Z1 × RMSE − Z2 × R2 + Z3 × VA (19)

RMSE =

√

∑

(xmea − xpre)
2

n
(20)

R2 = 1 −

n
∑

i=1

(xmea − xpre)
2

n
∑

i=1

(xmea − xm)2
(21)

VA =

[

1 −
var(xmea − xpre)

var(xmea)

]

(22)

where xmea, xpre, and xm are the measured, predicted, and

mean of the x values, respectively; and n is the total number of

datasets. Z1, Z2, and Z3 ∈ [0, 1], satisfying Z1 +Z2 +Z3 = 1.

To reach the optimal model, the values of Z1, Z2, and Z3 are

determined as 0.4, 0.31, and 0.29, respectively.

To understand the impact of the input parameters (CT, SC,

and CR) on the response (AR) more fully, three-dimensional

surface graphs are studied. Fig. 15 shows a surface graph

of the improved PSO-ANFIS model to predict the advance-

ment rate along with two input parameters while holding

the third input parameter constant. As expected, the AR

mainly follows a linear increasing trend with an increase

in the SC, CT, and CR. However, there is a sharp decrease

and a sudden increase in a local region (0.4 < SC < 0.6,

0 < CT < 0.2). The fluctuations of AR values in the local

region probably indicate either a sudden instability at the

tunnel face or sudden changes in the geological features of

this local region. This was validated by the TBM operator

based on our discussion with him. The operator said that

he clearly noticed sudden changes in local regions when

operating the TBM machine. For instance, when finding

an obvious variation of the extracted soil from the screw

conveyor system or when the amount of soil extracted from

the machine was very different from the estimated quantity,

the TBM machine performed differently, presenting imme-

diate changes in the operation parameters. Therefore, while

the developed AI-based models should always find a good

trade-off between the complexity of the model and the data
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FIGURE 15. Surface graph of AR related to different parameters.

FIGURE 16. Comparison of performance indices for ANFIS-FCM, improved
PSO-ANFIS, GA-ANFIS: (a) training set and (b) testing set.

dimensionality, we should also consider how to address the

challenge of representing unexpected operations when oper-

ating the machine under different field conditions.

It can clearly be realised that the variation of the AR with

CT, SC, and CR is found to be intuitive and in agreement

with previous research. For instance, a similar model for

the prediction of shield machine performance was developed

by the author and his colleagues [12], [25] based on data

from the Ma-Lian section of Guangzhou Metro Line No. 9.

Their model integrates a genetic algorithm (GA) with the

adaptive neurofuzzy inference system (ANFIS) based on a

multiobjective fitness function. The results of their model

are compared with the improved PSO-ANFIS, as shown

in Fig. 16. This figure displays the assessment results from the

ANFIS-FCM, improved PSO-ANFIS, and proposed model

by [25]. Because of a smaller RMSE and greater values of

R2 and VA, the improved PSO-ANFIS model outperforms the

GA-ANFIS and ANFIS-FCM models. The above analyses

elucidate that the proposed model of PSO-ANFIS can predict

the advance rate and represent their statistical features with

reasonable accuracy.

In practical applications, the EPB shield machine can use

shield parameters such as CT, CR, and SC as inputs to

predict the shield tunnelling performance. It is noteworthy

to mention that the proposed model can provide initial esti-

mations of shield performance, especially for estimating the

advance rate of the shield machine at the project planning

stage. With the advance rate determined from the proposed

model, project durations can be estimated, thus facilitating

time allocations when developing construction plans. Briefly,

the improved model in this research is expected to provide

insightful suggestions to support engineers in the prediction

of shield-tunnelling advancement, and can be used as intel-

ligent selection to achieve an acceptable prediction for TBM

performance.

VI. CONCLUSION

This study presented an AI-based model to predict the

shield machine performance during the tunnelling process.

In this regard, the most influential parameters were identi-

fied through PCA, and an improved PSO-ANFIS model was

established to predict the advance rate of the EPB shield

tunnelling. The proposedmodel was applied to a case study of

the Guangzhou Metro Line 9 tunnelling project. For valida-

tion, prediction results from the improved PSO-ANFISmodel

were compared with the prediction results from an ANFIS-

FCM model. Major conclusions were obtained as follows:

• The improved PSO-ANFIS model can predict the shield

performance in terms of the advance rate, in good agree-

ment with the measured advance rate for both the train-

ing and testing sets. The improved PSO-ANFIS model

uses computation parameters tailored to the studied tun-

nel section for predicting the advance rate. Based on a

multiobjective fitness function, the values of R2, RMSE,

and VA of 0.88, 0.07, and 0.84 for the testing datasets

indicate that the proposed model is accurate.

• The proposed model demonstrates better prediction

accuracy than the ANFIS and GA-ANFIS [25] models

based on a multiobjective fitness function. Prediction

results from this study can facilitate decision-makers in

predicting the project duration and construction cost of

EPB shield tunnels. This supports efficient construction

management, particularly when developing construction

plans.

• The absolute error of the improved PSO-ANFIS method

was in an adequate range of±15%, whereas the ANFIS-

FCM showed a wider error range of±0.25. This demon-

strated the precise prediction of the improved model in

the prediction of tunnel boring machine performance.

Therefore, the improved model can be utilised to guide

construction practices in a more meaningful way.

• The proposed model is general and can be used for

analysing different tunnelling systems in other types of

geological conditions. To improve the robustness, more

tunnelling data should be collected for calibration and

validation of the proposed model.
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