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Abstract

The aims of our study were to examine whether a gravity-removal physical activity classification algorithm (GRPACA) is
applicable for discrimination between nonlocomotive and locomotive activities for various physical activities (PAs) of
children and to prove that this approach improves the estimation accuracy of a prediction model for children using an
accelerometer. Japanese children (42 boys and 26 girls) attending primary school were invited to participate in this study.
We used a triaxial accelerometer with a sampling interval of 32 Hz and within a measurement range of 66 G. Participants
were asked to perform 6 nonlocomotive and 5 locomotive activities. We measured raw synthetic acceleration with the
triaxial accelerometer and monitored oxygen consumption and carbon dioxide production during each activity with the
Douglas bag method. In addition, the resting metabolic rate (RMR) was measured with the subject sitting on a chair to
calculate metabolic equivalents (METs). When the ratio of unfiltered synthetic acceleration (USA) and filtered synthetic
acceleration (FSA) was 1.12, the rate of correct discrimination between nonlocomotive and locomotive activities was
excellent, at 99.1% on average. As a result, a strong linear relationship was found for both nonlocomotive
(METs = 0.0136synthetic acceleration +1.220, R2 = 0.772) and locomotive (METs = 0.0056synthetic acceleration +0.944,
R2 = 0.880) activities, except for climbing down and up. The mean differences between the values predicted by our model
and measured METs were 20.50 to 0.23 for moderate to vigorous intensity (.3.5 METs) PAs like running, ball throwing and
washing the floor, which were regarded as unpredictable PAs. In addition, the difference was within 0.25 METs for sedentary
to mild moderate PAs (,3.5 METs). Our specific calibration model that discriminates between nonlocomotive and
locomotive activities for children can be useful to evaluate the sedentary to vigorous PAs intensity of both nonlocomotive
and locomotive activities.
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Introduction

Much research has shown that there is a positive relationship

between physical activity (PA) and both physical and mental health

outcomes in children [1,2]. It is currently recommended that

children should be engaged in moderate to vigorous intensity

physical activity (MVPA) for at least 60 minutes each day [2,3].

Therefore, it is important to evaluate the exact PA intensity

needed to improve and maintain an individual’s physical and

emotional health.

Estimation of PA in children is particularly difficult, since

children show PA of varying intensity with short duration [4,5].

PA is generally estimated in units of activity energy expenditure or

time engaged in MVPA. To date, a variety of methods has been

used to measure PA in children and adolescents. Although

questionnaires and self-report activity diaries are effective methods

in population-based research, they have the limitations of being

less valid and reliable, particularly in children [6].

Accelerometers have recently come into wide use as monitors of

PA. Accelerometers have the advantages of being objective, cost

effective, and minimally invasive [7]. Previous studies proposed

prediction models of metabolic equivalents (METs) for children

with accelerometers [8–16]. These prediction models were based

on the linear relationship between oxygen uptake and acceleration

during several typical activities that reflect daily lifestyle activities

of children. Typically, the selected activities are of low (,
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3 METs), moderate (3–5.9 METs) and vigorous intensity ($

6 METs). The slope and intercept of a predictive model of

locomotive activities, such as walking and running, are different

from those of nonlocomotive activities, like playing games,

cleaning, playing with blocks, tossing a ball, and aerobic dance

[9–11,15]. Interestingly, Crouter et al. [17] proposed a new child-

specific, two-regression model (2 RM), which is able to discrim-

inate between locomotive activities, such as continuous walking or

jogging, and nonlocomotive activities, including lifestyle activity,

on the basis of the variability in the accelerometer count. The

estimation accuracy of PA with the 2 RM depends on the

sensitivity of discriminating between locomotive and nonlocomo-

tive activities [18,19]. We also suggested a new calibration model

that could discriminate locomotive activities from nonlocomotive

activities in adults with a triaxial accelerometer based on the ratio

of raw synthetic acceleration to filtered synthetic acceleration

without gravity acceleration (gravity-removal physical activity

classification algorithm [GRPACA]) [20,21]. The rate of correct

discrimination between nonlocomotive (household) and locomo-

tive activities was 98.7% for 11 selected activities in adults [21].

Our initial aim was to examine whether the GRPACA is able to

discriminate between locomotive and nonlocomotive activities for

various PAs of children. Our second aim was to prove that this

discrimination method improves the estimation accuracy of the

prediction model for children using an accelerometer.

Materials and Methods

Participants
Healthy Japanese children (42 boys: 15 who were 6–9 years of

age, and 27 who were 10–12 years of age and 26 girls: 14 who

were 6–9 years of age, and 12 who were 10–12 years of age)

attending primary school were invited to participate in this study

via a public advertisement. None of the participants had physical

impairments that could affect daily life activity or took any

medications that could affect metabolism. All participants and

parents were fully informed of the purpose of the study, and

written informed consent was obtained from parents on behalf of

the participants prior to the start of the study. This study was

conducted according to the guidelines of the Declaration of

Helsinki, and all procedures involving human participants were

approved by the Ethical Committee of the National Institute of

Health and Nutrition.

Anthropometry
Body weight was measured to the nearest 0.1 kg with a digital

balance (YL-65S, YAGAMI Inc., Nagoya, Japan), and height was

measured on a stadiometer to the nearest 0.1 cm (YK-150D,

YAGAMI Inc., Nagoya, Japan). Body mass index (kg/m2) was

calculated as body weight divided by the square of body height.

Procedures
To avoid diet-induced thermogenesis, the children visited the

laboratory in the morning, three hours after breakfast. After the

study protocol was fully explained, anthropometric measurements

were taken. Next, participants were asked to rest for 30 minutes,

and then the resting (in the seated position on a chair) metabolic

rate was measured for 7 minutes; in children, it was measured

while the child was viewing a video (e.g. Disney movie) to avoid

fidgeting [22]. In addition, we asked the participants to put their

hands on their thighs and to keep their feet on the floor during the

measurement. Next, the children performed 11 PA for approxi-

mately 3 to 7 minutes, in addition to 3 minutes to obtain steady

state (Table 1). First, nonlocomotive activities excluding throwing

a ball were performed in order of PA intensity (lower to higher)

with a few minutes of recovery between tasks, and after an

approximately 10-minute break, climbing down and up activities

were performed sequentially. Next, participants performed the

throwing a ball activity. Locomotive activities were also conducted

in order of PA intensity (lower to higher) with a few minutes of

recovery between activities. All participants wore a triaxial

accelerometer on the waist, tightly attached with a belt, during

each activity. Before the experiment started, the accelerometers

were synchronized using a wave clock for reference. Measurement

of each activity began after a preliminary period that was needed

to reach a steady-state condition with 3 minutes, based on our pilot

study and previous studies [17,20,23]. The steady-state durations

for climbing down and up were 2 minutes, because participants

were moving to the implementation site on foot within a few

minutes of the measurement of climbing down, and climbing up

was performed after climbing down for 3 minutes. The energy

expenditure (EE) of each activity was calculated from oxygen

consumption (VO2) and carbon dioxide production (VCO2) with

Weir’s equation [24]. To calculate the METs, we divided the EE

during each activity by the measured value of the metabolic rate of

the participant when seated on a chair.

Triaxial Accelerometer
We used a triaxial accelerometer with 4 GB of memory (Omron

Healthcare, Kyoto, Japan) consisting of a Micro electro-mechan-

ical system-based accelerometer (LIS3LV02DQ; ST-Microelec-

tronics), which responds to both acceleration due to movement

and gravitational acceleration. The device for children measured

74 mm646 mm634 mm and weighed 60 g, including batteries. It

was designed to detect accelerations in the vertical (x), anteropos-

terior (y), and mediolateral (z) axes with each activity at a rate of

32 Hz to 12-bit accuracy. The acceleration obtained from these

specifications was passed through a high-pass filter with a cut-off of

0.7 Hz to exclude gravitational acceleration. We calculated the

integral of the absolute value of the accelerometer value (synthetic

acceleration), the square root of the sum of the square of the

absolute acceleration from three axes (synthetic acceleration =

(X2+ Y2+ Z2)0.5). Finally, this device could record the synthetic

acceleration of a 10-s epoch length within a measurement range of

66 G and with a resolution of 3 mG. We analysed the

acceleration data converted into a 10-s epoch length when

collecting the expired gas for each activity. The reliability of this

device was validated by the manufacturer, and is reported in

technical reports (unpublished). The reliability test referred to the

procedures of Japanese Industrial Standards (JIS7200:1993),

according to which a pedometer is validated with a vibration

exciter.

Indirect Calorimetry
Respiratory gas samples were analysed with the Douglas bag

method, in which each participant was fitted with a facemask

(No.09759, YAGAMI Inc., Nagoya, Japan) and breathed into a

Douglas bag (No.35060, YAGAMI Inc., Nagoya, Japan). Partic-

ipants performed calibration tasks person-to-person with an

assistant who was holding the 50 L or 100 L-sized Douglas bag.

The assistant opened a cock of the Douglas bag to collect the

expired gas at the same time as the steady-state period finished,

and then closed it when measurement finished without hindrance.

The bag concentrations of oxygen and carbon dioxide were

analyzed by a mass spectrometer (ARCO-1000; Arco System Inc.,

Kashiwa, Japan) that has recently come into wide use in several

countries, in particular, Japan [20,25]. The precision of the

expired gas measurement was 0.02% for oxygen and 0.06% for
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carbon dioxide. The expired gas volume was measured with a

certified dry gas meter (DC-5; Shinagawa Co., Ltd., Tokyo,

Japan), the accuracy and precision of which were maintained

within 1% of the coefficient of variation.

Selection of Physical Activity for Calibration Models
We gathered information about the children’s habitual PA

behavior at school and after school from direct interviews of

another group of children and public reports of an education

committee. Based on those sources of information, we selected

11 PAs for children that consisted of sedentary and light (,

3 METs), moderate (3–5.9 METs), and vigorous activity ($

6 METs), according to the compendium of PAs [26,27], to

produce a calibration model.

Discriminative Method
In our previous study, we reported an algorithm for the

classification of nonlocomotive (household) and locomotive activ-

ities based on the ratio (e.g. cut-off value for adults, 1.16) of

unfiltered synthetic acceleration (USA) to filtered synthetic

acceleration (FSA) [21]. FSA was defined as the integrated

acceleration ((X2+ Y2+ Z2)0.5) after the gravitational acceleration

was removed from each dimensional acceleration (X, Y, Z) by

passing through a second-order Butterworth high-pass filter [21].

Thus, the most important difference between USA and FSA is that

FSA is not affected by a change in gravitational acceleration, while

USA is. In adults, the rate of correct discrimination of

nonlocomotive (e.g. household) from locomotive activities was

98.7% for 11 selected activities with the ratio (USA/FSA) [21].

Therefore, in this study, this discriminative procedure was applied

to the children’s calibration model, and we aimed to determine a

cut-off value for children.

Statistical Analysis
Statistical analysis was performed with JMP version 8.0 for

Windows (SAS Institute, Tokyo, Japan). All results are shown as

mean 6 standard deviation (SD). In the present study, we carried

out multiple regression analysis with a stepwise method to examine

the effects of weight, age and sex, and then analysis of covariance

(ANCOVA) to assess the interaction (age6sex) on the measured

METs prior to statistical analyses. The determination coefficient

(R2) was used to evaluate the relationships between variables. One-

way analysis of variance (ANOVA) was used to compare measured

METs with predicted METs. Mean differences and limits of

agreement between predicted METs and measured METs were

determined by Bland and Altman plots [28]. Receiver-operating

characteristic (ROC) curve analysis was applied to the acceleration

data to assess the cut-off value for classification of nonlocomotive

and locomotive activities. P,0.05 was considered statistically

significant.

Results

First, we divided the children into two groups: a development

group and a cross-validation group. We randomly selected

participants stratified by sex and age (6–9 yrs and 10–12 yrs).

Table 1. Description of performed calibration tasks.

Tasks Content of activity Intensity
Steady state
(min) Gathering expired gas (min)*

Nonlocomotive

desk work handwriting letters at a desk light 3.0 4.0

Nintendo DS playing Nintendo DS with
sitting on the floor

light 3.0 3.0

sweeping up sweeping floor (about 17 m2)
while moving

light 3.0 3.0

clearing away placing books from floor onto a
bookshelf

light 3.0 3.0

washing the floor wiping down the floor with a
cloth in a squatting position

moderate 3.0 2.0

throwing a ball playing catch with a large ball
with a partner

moderate 3.0 3.0

Locomotive

climbing down climbing down stairs according
to a pace leader

moderate 2.0 1.0

climbing up climbing up stairs according
to a pace leader

vigorous 2.0 1.0

normal walking normal walking speed according
to a pace leader (60 m/min)
on the ground

moderate 3.0 2.0

brisk walking brisk walking speed according
to a pace leader (80 m/min)
on the ground

moderate 3.0 2.0

Jogging jogging according to a pace
leader (early grades:
100 m/min,
late grades: 120 m/min)

vigorous 3.0 2.0

*We collected expired gas for 1 to 4 min after steady state for 2 or 3 min.
doi:10.1371/journal.pone.0094940.t001
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Characteristics of all children, the development group and the

cross-validation group are shown in Table 2.

Discrimination with the ratio of USA/FSA provided the highest

rate of correct discrimination, 99.8%, when the value of the ratio

was 1.12 (Figure 1, Table 3). Therefore, we calculated the

estimated METs through standard equations according to the

results of discrimination with the ratio of 1.12, and then compared

these values with the measured METs. The relationship between

synthetic acceleration and METs is shown in Figure 2 (develop-

ment group: n = 48). Plots of nonlocomotive activities were

different from those of locomotive activities. In addition, plots of

climbing down and up were located above and below the line,

respectively. The linear regression equation is as follows:

Nonlocomotive Activities Equation (Development Group:
n = 48)

METs = 0.0136synthetic acceleration +1.235, R2 = 0.752,

RSME = 0.694 (standard equation)

Locomotive Activities Equation (Development Group:
n = 48)

METs = 0.0056synthetic acceleration +0.878, R2 = 0.884,

RMSE = 0.651 (standard equation)

Next, we examined the cross-validation of the new calibration

model in the cross-validation group (n = 20). The rate of correct

discrimination was 99.1% when the cut-off value of 1.12 was used

to discriminate PAs in cross-validation group. The absolute

differences were less than or equal to 0.50 METs, excluding

climbing down and up (Table 4). Finally, we proposed an equation

from the data of all participants (the development group combined

with the cross-validation group).
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Figure 1. Probability of correctly detecting locomotive and
nonlocomotive activities in the development group (n = 48).
doi:10.1371/journal.pone.0094940.g001
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Nonlocomotive Activities Equation (Total Participants:
n = 68)

METs = 0.0136synthetic acceleration +1.220, R2 = 0.772,

RMSE = 0.664 (standard equation)

Locomotive Activities Equation (Total Participants: n = 68)
METs = 0.0056synthetic acceleration +0.944, R2 = 0.880,

RMSE = 0.639 (standard equation)

Furthermore, the inclusion of weight, chronological age and sex

significantly improved the prediction accuracy of the locomotive

equation. Chronological age and sex were significant variables in

the nonlocomotive equation. However, the interaction term

between chronological age and sex was not significant in either

equation (Table 5).

We compared each MET value obtained from the standard

equation and the multiple regression equation with the METs

measured during each PA (Table 6). Although a slight improve-

ment in the predictive equation (R2 and RMSE) was observed in

both nonlocomotive and locomotive activities, we could not find

significant improvements in the predictive ability for each activity

(Table 6).

The predicted values from standard equation for washing the

floor (20.6560.88; METs, 211.4618.8%) and climbing up

(22.9160.74; METs, 254.269.1%) were significantly underesti-

mated compared with the measured values. The predicted values

of desk work (0.1760.11; METs, 15.7611.2%), Nintendo DS

(0.1860.10, METs, 17.1610.4%), throwing a ball (0.5360.60,

METs, 15.7618.1%) and climbing down (0.6760.42; METs,

30.9620.2%) were significantly overestimated. However, we did

not observe significant differences between the predicted values

and the measured values for sweeping up, clearing away, or brisk

walking and jogging (Table 6).

In addition, the differences between the measured METs and

the predicted METs from each equation were determined by

Bland-Altman analysis (Figure 3). The standard equation showed a

mean difference of 20.13 METs and limits of agreement (62 SD)

from +2.06 to 22.33 METs. The multiple regression equation

showed a mean difference of 20.17 METs and limits of

agreement (62 SD) from +1.91 to 22.26 METs.

Discussion

Many studies have reported that accelerometers are excellent

devices for the estimation of locomotive activities, such as walking

and jogging on a treadmill or on the ground [29,30]. However,

recently, several studies reported that it was difficult to estimate PA

intensity for children using the existing predictive model

[10,11,14–17], because the habitual PA behaviors of children

are more complex and poorer economically [31,32], and they

change more frequently than those of adults [4,5]. To be precise, a

predictive equation based on locomotive activities led to an

underestimation of PA intensity during nonlocomotive activities,

such as household tasks [11]. This might mean that discriminating

locomotive from nonlocomotive activities contributes to the

estimation accuracy of PA intensity in children. Therefore, in

Figure 2. Relationship of synthetic acceleration to measured METs in nonlocomotive and locomotive activities in the development
group (n = 48).
doi:10.1371/journal.pone.0094940.g002
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the current study, we tried to examine whether the GRPACA,

which was developed in our calibration model for adults, is able to

discriminate various PAs in children, and to prove that this

discrimination method improves the estimation accuracy of the

prediction model for children using an accelerometer.

Our first key finding was that it might be possible to apply the

discrimination procedures developed in adults to any participant

with various activity components and patterns. In our previous

study, we found that the percentage of correct discrimination with

the GRPACA in adults was remarkable, 98.7%, when the ratio of

USA/FSA was 1.16 [21]. In the present study, when the threshold

of discrimination, which was similar to that in the previous study,

was 1.12, the rate of correct discrimination was excellent, at 99.1%

on average (Figure 1, Table 3). As the discrimination method that

used the coefficient of variation in a previous study was 97% for

locomotive activities and 89.5% for nonlocomotive activities [17],

our discrimination procedure had a better rate of correct

discrimination. It follows that our specific calibration model could

evaluate the PA intensity of children with an estimation accuracy

of a mean difference of 20.13 METs and limits of agreement

(62 SD) from +2.06 to 22.33 METs, similar to the success we

obtained with the adult model in our previous study for adults

[20,21]. This finding was supported by a strong linear relationship

in the two prediction formulas and a cross-validation trial with

another group of children (Table 4). These results suggested that

our specific model, established according to the procedure of the

adult model, was well suited to evaluate the PA of children.

We did not simultaneously compare our device with major

devices, such as ActiGraph. However, our calibration procedures

followed the procedures used in several calibration studies [11–

17], which enabled comparison of the results in the present study

with previous studies that used a common device. For example, a

proposed single equation using a common device such as

ActiGraph, Actical or RT3 provides average prediction errors of

more than about 20% for nonlocomotive activities, calculated

from average published values like VO2 (ml/kg0.75/min), activity

energy expenditure (kcal/kg/min) and METs [14,33,34,35].

Moreover, when our model was compared with the 2 RM with

ActiGraph proposed recently, the differences between the

predicted METs and the measured METs in the current study

were slightly smaller than those of the previous study [17]. To be

more precise, the differences with ActiGraph for vigorous intensity

PAs, such as sportwall and running, were 21.8 to METs and

21.1 METs [17], respectively, while the differences with our

model were 0.23 METs for similar-intensity PAs like jogging.

Furthermore, the difference with our model, which was within

0.50 METs for all PAs including sedentary to vigorous intensities,

except for climbing up and down, was slightly smaller than in the

previous study (within 0.6 METs) [17]. Actually, another study

also indicated that the 2 RM with ActiGraph had a disadvantage

for sedentary and high intensity PAs [36]. In the current study,

although there were significant differences between the measured

METs and the predicted values from standard equations in

washing the floor, throwing a ball, and climbing down and

climbing up, mean differences compared to the measured METs

in overall activities were small (20.1361.09 METs). Mean

differences between the predicted METs and the measured METs

only in sedentary behaviors to light intensity PAs (,3.0 METs),

which consumed the highest percentage of time per day [37], were

still minimal (20.2060.33 METs) in the current study.

The finding that our procedure could lead to comparable

estimation accuracy in both nonlocomotive and locomotive

activities was also significant. The cause might depend on the

fact that our model could assess upper-body activities such as

sweeping up, clearing away, and throwing a ball accurately.

Oshima et al. [21] indicated that when the acceleration sensor was

attached to the waist of the individual, the USA/FSA ratio

reflected dynamic changes in body posture. The waist is not in the

upper body, but the inclination of the upper body accompanies

that of the waist in most instances. Therefore, the gravitational

acceleration signal at the waist reflects postural changes of the

upper body during nonlocomotive activities, like household

activities, to some degree.

Table 5. Effect of weight, age and sex on predictive ability by multiple regression analysis.

Independent variable Intercept Regression coefficient P value Adjusted R2 RMSE

Nonlocomotive

Model 1

synthetic acceleration (mg) 1.220 0.013 ,0.001 0.772 0.664

Model 2

synthetic acceleration (mg) 20.537 0.013 ,0.001 0.816 0.596

weight NS

age 0.170 ,0.001

sex (boys:0, girls:1) 0.076 ,0.05

Locomotive

Model 1

synthetic acceleration (mg) 0.944 0.005 ,0.001 0.880 0.639

Model 2

synthetic acceleration (mg) 20.925 0.005 ,0.001 0.925 0.508

weight 0.032 ,0.001

age 0.085 ,0.01

sex (boys:0, girls:1) 0.092 ,0.05

RMSE; root mean square error, NS; not significant.
doi:10.1371/journal.pone.0094940.t005
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In the present study, we also found that the adjusted

determination coefficient (R2) and the root mean square error

(RMSE) were slightly better when weight, chronological age, and

sex were added as independent variables into the standard

predictive equations when combining the development group

with the cross-validation group (Table 5). However, we did not

observe significant differences between the multiple regression

equation and the standard equation (not controlled) when looking

at the average prediction error for each activity (Table 6). As this

would mean that the integrated acceleration from the three

dimensions associated with a child’s motion includes the effects of

biological factors, it might not be necessary to control for weight,

age, and sex, similar to several other calibration studies [15,16].

Limitations
Given the limitations of this study, we must be very careful

when interpreting our results. We cannot conclude that this

predictive model is superior to previous calibration models

proposed using common devices, because we did not directly

compare our model to other models using the same experimental

conditions (i.e. device, ethnic group, targeted activities, and

calculation of energy expenditure in the resting state). To truly

prove superiority, it would be necessary to compare the different

methods under free-living conditions. Furthermore, in the future,

we must determine whether our developed model is applicable for

estimating PAs not including calibration tasks, because the

predictive accuracy of the existing model is significantly reduced

when applied to non-calibration activities [17,35].

Conclusions

The results of this study indicate that a specific calibration

model that discriminates between nonlocomotive and locomotive

activities for children can be useful to evaluate the sedentary to

vigorous PAs of both nonlocomotive and locomotive activities.

One of the main reasons why the differences between predicted

and measured METs with our model were smaller than those

reported in previous calibration studies using common devices

may be the model’s high rate of correct discrimination between

locomotive and nonlocomotive activities.
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