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Abstract
Statistical models have been developed for the prediction or 
diagnosis of a wide range of outcomes. However, to our 
knowledge, only 7 published studies have reported models 
to specifically predict overweight and/or obesity in early 
childhood. These models were developed using known risk 
factors and vary greatly in terms of their discrimination and 
predictive capacities. There are currently no established 
guidelines on what constitutes an acceptable level of risk 
(i.e., risk threshold) for childhood obesity prediction models, 
but these should be set following consideration of the con-
sequences of false-positive and false-negative predictions, 
as well as any relevant clinical guidelines. To date, no studies 
have examined the impact of using early childhood obesity 
prediction models as intervention tools. While these are po-
tentially valuable to inform targeted interventions, the het-
erogeneity of the existing models and the lack of consensus 
on adequate thresholds limit their usefulness in practice.

© 2019 S. Karger AG, Basel

Introduction

Clinical prediction models are becoming increasingly 
prevalent in the medical literature [1]. These models be 
can either diagnostic or prognostic. Diagnostic models 
aim to estimate the likelihood of an individual currently 
having a disease/illness, whereas prognostic models aim 
to estimate the risk of an individual experiencing a par-
ticular outcome at a specified future time. Clinical predic-
tion models are commonly developed using regression 
modelling, but other approaches such as machine-learn-
ing techniques and decision trees have also been utilized 
[1–4]. 

Prediction models exist for a wide variety of health 
outcomes, such as cardiovascular disease [5], lung cancer 
[6], acute kidney injury [7], and infertility treatment suc-
cess [8]. There is an overwhelming number of models for 
the prediction of specific outcomes, with, for example, 
more than 350 prediction models developed for cardio-
vascular disease in the general population [5]. Converse-
ly, very few studies have focused on the prediction of 
overweight or obesity in early childhood (between 2 and 
8 years of age) [9–16], which is the focus of this review. 
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Childhood Obesity: Prevalence and Associated 
Health Risks

The prevalence of childhood obesity increased in every 
region of the world between 1975 and 2016 [17]. It is now 
estimated that, worldwide, 41 million children under the 
age of 5 years are overweight or obese [18]. In New Zea-
land, one third of 4- to 5-year-olds are overweight or 
obese [19]. Childhood obesity is associated with both 
long-term and immediate health risks. In the long term, 
it is predictive of diabetes risk [20, 21], and it is associated 
with premature mortality [22] and increased cardiovas-
cular risk [21, 22], predominantly as a result of a substan-
tially greater risk of adult obesity [20, 23–26]. In the short 
term, childhood overweight and obesity are associated 
with psychosocial distress [22, 27–29], a lower health-re-
lated quality of life [30], and a range of physical comor-
bidities [29, 31]. For example, even among preschool chil-
dren (aged 3–6 years), an increase in body mass index 
(BMI) of 1 kg/m2 has been associated with increased sys-
tolic and diastolic blood pressure [32]. Furthermore, con-
ditions that were previously considered restricted to 
adults (e.g., type 2 diabetes and sleep apnea) are now be-
ing diagnosed more and more frequently in obese youth 
[23, 29, 31]. 

Treatment versus Prevention

Prevention, rather than treatment, has been argued to 
be more successful in reducing childhood obesity [23], as 
obesity is difficult to reverse once established [23, 33]. In-
terventions to reduce obesity in adults have mostly fo-
cused on lifestyle changes alone, and they have struggled 
to maintain results 36 months after intervention [34]. 
Weight loss medication and bariatric surgery are associ-
ated with side effects and risks [34, 35]. In addition, as 
childhood obesity is associated with health risks even in 
very young children [32], it would be preferable to pre-
vent obesity from occurring in the first place. 

There are a number of potentially modifiable risk fac-
tors that are known to be associated with early childhood 
obesity, such as excessive gestational weight gain [36, 37], 
maternal pre-pregnancy BMI [36–38], maternal smoking 
during pregnancy [36–38], and rapid infant weight gain 
[36, 38–40]. However, despite the identification of these 
potentially modifiable risk factors, reviews of interven-
tions to prevent early childhood obesity have reported in-
consistent results [41–44]. 

Early Childhood Obesity Prediction Models

To our knowledge, 7 studies have been published re-
porting models for predicting overweight/obesity in 
young children aged ≤8 years [9–15]. Two studies report-
ing the prediction of childhood obesity and/or overweight 
beyond 8 years of age were excluded [40, 45]. The study 
by Morandi et al. [13] reported a number of models with 
the outcome at various ages, and only those falling within 
our age range criteria were considered. Additionally, we 
excluded certain models from 2 studies that predicted 
obesity and/or overweight within approximately 12 
months from the time of prediction [11, 15], but their 
other models were included in this review. 

The details of the derived prediction models included 
in this review are examined in Table 1, while Table 2 out-
lines the respective validation models. These models are 
all prognostic, aiming to calculate the risk of an infant or 
toddler becoming overweight or obese at a future time 
point. Six of these studies used regression modelling [9, 
10, 12–15], while the remaining study used data-mining 
methods [11]. The models used a variety of modifiable 
predictors, including maternal prepregnancy BMI [10, 
12–15], paternal BMI [10, 12, 13], and maternal smoking 
during pregnancy [10, 13] (Table 3; online suppl. Table 1; 
see www.karger.com/doi/10.1159/000496563 for all on-
line suppl. material). Conversely, non-modifiable risk 
predictors included infant birth weight [10, 12–14], in-
fant weight gain [10, 11], and sex [10–12, 15] (Table 3; 
online suppl. Table 1). Table 3 outlines the various pre-
dictor variables used in the derivation models, as well as 
their respective OR where available. Additionally, online 
supplementary Table 1 describes the predictor variables 
used in each derivation model. In general, the models fo-
cused on predictor variables that can be routinely col-
lected in clinical practice, although 3 models also includ-
ed paternal BMI [10, 12, 13], and that may not be consis-
tently available. While external validation is strongly 
recommended following development and internal vali-
dation of a prediction model [2, 46], this was only done 
for 3 of the 7 models [13, 15, 47]. 

Area under the Receiver Operating Characteristic 
Curve

The area under the receiver operating characteristic 
curve (AUROC) is a useful indicator of a model’s ability 
to discriminate between those at high risk and those at 
lower risk of a given outcome [48]. The following are gen-
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Table 1. Summary of published prediction models for early childhood overweight or obesity derived from data collected before 2 years 
of age

Study Validation Participants Prediction age Outcome predicted Risk threshold
and/or model

AUROC1 Sensitivity, % Specificity, % PPV, % NPV, %

Levine 
et al. [9]

none UK: ALSPAC 
(n = 14,000) and 
Millennium 
Cohort Study
(n = 18,000)

infancy overweight/obesity 
at 5 years

0.022 unreported 92 21 6 98
0.032 unreported 79 51 8 98

0.042 unreported 71 61 9 98

0.052 unreported 63 72 11 97

0.102 unreported 42 91 20 97

0.202 unreported 12 98 25 96

Morandi 
et al. [13]

external 
(model A only)

Finland: 
Northern Finland 
Birth Cohort
(n = 4,032)

at birth obesity at age 
7 years (model A)

0.753 0.78 
(0.74–0.82)

72 77 9 99

overweight/obesity 
at 7 years (model B)

0.753 0.67 
(0.65–0.69)

45 79 29 88

Robson 
et al. [14]

internal US: Latino 
mother-child 
pairs
(n = 166)

infancy obesity at 5 years 
(reduced model)

0.253 0.82 
(0.74–0.89)

96 37 41 95

0.503 0.82 
(0.74–0.89)

80 64 51 88

0.753 0.82 
(0.74–0.89)

46 84 57 77

0.903 0.82 
(0.74–0.89)

24 97 79 73

obesity at 5 years 
(full model)

0.253 0.84 
(0.77–0.91)

95 35 40 94

0.503 0.84
(0.77–0.91)

86 66 54 91

0.753 0.84 
(0.77–0.91)

51 85 61 79

0.903 0.84 
(0.77–0.91)

30 99 93 76

Santorelli 
et al. [15]

internal4 UK: Born in 
Bradford 
birth cohort
(n = 1,868)

6±1.5 
months

obesity at 2 years unreported 0.87 
(0.83–0.90)

unreported unreported unreported unreported

Steur 
et al. [12]

internal The Netherlands: 
PIAMA birth 
cohort study
(n = 1,687)

at birth overweight/obesity 
at 8 years

≥5%5 0.78 97 20 16 97
≥10%5 0.78 82 55 23 95

≥15%5 0.78 67 75 30 93

≥20%5 0.78 50 85 35 91

Weng 
et al. [10]

internal and 
external

UK: Millennium 
Cohort Study
(n = 13,513)

6–12 
months

overweight/obesity 
at 3 years

Risk score 
≥256

0.72 70 68 38 87

Zhang 
et al. [11]

none UK: Wirral child 
database
(n = 16,523)

6 weeks, 
8 months

overweight/obesity 
at 3 years from data
by 6 weeks

unreported7 0.82 11 96 36 84
unreported8 0.83 2 100 54 83

overweight/obesity 
at 3 years from data
by 8 months

unreported7 0.82 36 92 46 88

unreported8 0.68 46 73 25 87

overweight/obesity 
at 3 years from data
by 8 months

unreported9 0.84 12 98 unreported unreported

unreported10 0.84 18 97 unreported unreported

unreported11 0.84 13 98 unreported unreported

unreported12 0.84 10 98 unreported unreported

unreported13 0.82 15 96 unreported unreported

unreported14 0.68 46 73 unreported unreported

unreported15 0.82 36 92 unreported unreported

unreported16 0.82 36 92 unreported unreported

AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value. 1 95% confidence intervals are reported in parentheses (where available). 2 Values 
represent the predicted probability decision point. 3 Values represent the percentile threshold of obesity risk. 4 Only the results for equation 1 are presented here, as the findings for equation 2 were nearly identical 
and equation 1 is more clinically useful due to an earlier prediction age. Note that equation 1 was not externally validated due to insufficient numbers. 5 Values represent the estimated risk of overweight at 8 years of 
age. 6 A risk score algorithm was created with a range of 0–59. 7 Model derived using naïve Bayes. 8 Model derived using support vector machines (SVM). 9 Model derived using decision tree. 10 Model derived using 
association rules. 11 Model derived using logistic regression. 12 Model derived using neural networks. 13 Model derived using linear SVM.  14°Model derived using radial basis function SVM. 15 Model derived using 
Bayesian network. 16 Model derived using naive Bayesian.
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erally accepted interpretations of AUROC values: poor  
(< 0.60), possibly helpful (≥0.60 but < 0.70), acceptable 
(≥0.70 but < 0.80), excellent (≥0.80 but < 0.90), and out-
standing (≥0.90) [48, 49]. 

None of the models reported here had a poor AUROC, 
although they did vary considerably (Table 1). The mod-
el with the lowest AUROC (i.e., 0.67) predicted over-
weight/obesity at 7 years, but the authors did not validate 
it, as they did not deem it clinically useful [13] (Table 1). 

The highest reported AUROC (i.e., 0.87) was for a model 
to predict overweight at 2 years based on data gathered at 
4.5–6.5 months [15] (Table 1). It is possible that the short 
time between the prediction age and the outcome age 
partly explains this high AUROC value. In general, re-
gression models that were supplemented by data on in-
fant weight gain [14, 15] produced higher AUROC values 
than those that used birth data alone [12, 13], with one 
exception [10]. These findings suggest that the inclusion 

Table 2. Internal and/or external validations of childhood overweight/obesity prediction models based on data recorded before 2 years 
of age

Study Validation type Participants Prediction age Outcome predicted Risk threshold/and or 
model

AUROC Sensitivity, % Specificity, % PPV, % NPV, %

Morandi 
et al. [13]

external US: Project 
Viva cohort 
(n = 1,032)

birth obesity at 7 years unreported 
(model A)1

0.73 
(0.67–0.80)

unreported unreported unreported unreported

Robson 
et al. [14]

internal bootstrap 
with 1,000 
samples

infancy obesity at 5 years unreported 
(full model)

0.78 unreported unreported unreported unreported

unreported 
(reduced model)

0.76 unreported unreported unreported unreported

Santorelli 
et al. [15]

internal bootstrap 
with 1,000 
samples

6±1.5 
months2

obesity at 2 years unreported 0.86 
(0.82–0.90)

unreported unreported unreported unreported

unclear2 unclear phone 
model A: 
6±1.5 
months3

obesity at 2 years 0.104 (model A) 0.85 
(0.81–0.90)

51 94 41 96

0.204 (model A) 0.85 
(0.81–0.90)

70 84 28 97

0.304 (model A) 0.85 
(0.81–0.90)

78 74 21 98

phone 
model B: 
6±1.5 
months3

obesity at 2 years 0.104 (model B) 0.86 
(0.82–0.90)

51 94 41 96

0.204 (model B) 0.86 
(0.82–0.90)

71 85 29 97

0.304 (model B) 0.86 
(0.82–0.90)

82 75 22 98

Steur 
et al. [12]

internal bootstrap 
with 200 
samples

birth overweight/obesity 
at 8 years

unreported 0.75 unreported unreported unreported unreported

Weng 
et al. [10]

internal UK: Millennium 
Cohort Study, 
20% of the total
(n = 13,513)

6–12 months overweight/obesity 
at 3 years

risk score ≥255 0.76 77 67 37 89

Redsell 
et al. [46] 
(validation 
of Weng 
et al. [10])

external UK: 10% 
sample from 
ALSPAC – 
Children in 
Focus (CiF)
(n = 1,432)

4–12 months overweight/obesity 
at 5 years using IOTF 
criteria [63]6 

unreported7 0.67 
(0.62–0.72)

unreported unreported unreported unreported

unreported8 0.70 
(0.65–0.74)

unreported unreported unreported unreported

unreported9 0.79
(0.72–0.86)

unreported unreported unreported unreported

2.5%10 0.93 
(0.88–0.98)

99 5 unreported unreported

5%10 0.93
(0.88–0.98)

90 24 unreported unreported

10%10 0.93 
(0.88–0.98)

53 71 unreported unreported

15%10 0.93 
(0.88–0.98)

24 92 unreported unreported

20%10 0.93 
(0.88–0.98)

12 98 unreported unreported

25%10 0.93 
(0.88–0.98)

4 99 unreported unreported

30%10 0.93 
(0.88–0.98)

3 100 unreported unreported

AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value. 1 Also externally validated on the Veneto cohort (Italy), but the age range is outside 
the scope of this review (4–12 years). 2 Only the results for equation 1 are presented here, as the findings for equation 2 were nearly identical and equation 1 is more clinically useful due to an earlier prediction age.  
3 These are the models used in the phone application Healthy Infant Weight?; it is unclear whether this is a validation model and what population was used in its development. Phone model A consisted of sex, 
birthweight z score, and weight z score gain from birth, while phone model B also included maternal BMI. 4 Values represent the percentile threshold of obesity risk. 5 A risk score algorithm was created with a range 
of 0–59. 6 Results were also reported for UK 1990 (Cole et al. [64])-defined overweight. Only the IOTF (International Obesity Task Force) [63] is reported here as results were similar, and the IOTF was considered 
more internationally relevant. 7 Clinical model. 8 Recalibrated model. 9 Imputed model.  10 Recalibrated imputed model.
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Table 3. Predictors used in derivation models for obesity and/or overweight in early childhood

Level Predictors Study Notes/comment OR (95% CI) 

Maternal age (years) Robson et al. [14] 0.90 (0.82–0.99)1

0.92 (0.83–1.26)2

education Levine et al. [9] nonuniversity vs. university unreported
English proficiency Robson et al. [14] no vs. yes 1.73 (0.60–5.00)1

ethnicity Santorelli et al. [15] South Asian ethnicity vs. white British 1.80 (1.05–3.11)3

gestational weight gain (%) Morandi et al. [13] 1.02 (1.01–1.03)4

occupation Morandi et al. [13] ranked employment categories 1–4 0.50 (0.31–0.79)5

parity Robson et al. [14] first child vs. later children 0.61 (0.23–1.62)2

prepregnancy BMI (kg/m2) Morandi et al. [13] 1.13 (1.08–1.17)5

1.13 (1.10–1.16)4

Robson et al. [14] 1.11 (1.02–1.20)1

1.12 (1.02–1.22)2

Steur et al. [12] unreported
Santorelli et al. [15] 1.05 (1.00–1.09)3

Weng et al. [10] 18.5 to <25 kg/m2 (reference: <18.5) 1.76 (1.21–2.56)
25 to <30 kg/m2 (reference: <18.5) 2.35 (1.60–3.47)
≥30 kg/m2 (reference: <18.5) 2.98 (1.98–4.47)

smoking during 
pregnancy

Morandi et al. [13] yes vs. no 1.84 (1.20–2.81)5

yes vs. no 1.28 (1.05–1.57)4

Weng et al. [10] yes vs. no 1.33 (1.15–1.55)

Paternal BMI (kg/m2) Morandi et al. [13] 1.19 (1.13–1.27)5

1.11 (1.08–1.15)4

Steur et al. [12] unreported
Weng et al. [10] 18.5 to <25 kg/m2 (reference: <18.5) 1.09 (0.55–2.15)

25 to <30 kg/m2 (reference: <18.5) 1.57 (0.79–3.10)
≥30 kg/m2 (reference: <18.5) 1.98 (1.00–3.96)

Family household smoking Steur et al. [12] yes vs. no unreported
household members (n) Morandi et al. [13] 0.73 (0.63–0.84)5

0.88 (0.84–0.93)4

parental obesity Levine et al. [9] unreported

Birth birth weight (kg) Morandi et al. [13] 2.12 (1.48–3.04)5

1.45 (1.22–1.73)4

Steur et al. [12] unreported
Weng et al. [10] 2.93 to <3.24 kg (reference: <2.93 kg) 1.08 (0.87–1.33)

3.24 to <3.49 kg (reference: <2.93 kg) 1.24 (1.01–1.51)
3.49 to <3.81 kg (reference: <2.93 kg) 1.44 (1.18–1.75)
≥3.81 kg (reference: <2.93 kg) 1.63 (1.33–1.98)

birth weight >4 kg Levine et al. [9] unreported
birth weight z score Robson et al. [14] 4.02 (2.01–8.03)1

5.47 (2.47–12.1)2

Santorelli et al. [15] 2.09 (1.59–2.75)3

Zhang et al. [11] unreported6, 7

ethnicity Levine et al. [9] unreported
gestational age <37 weeks Santorelli et al. [15] 0.26 (0.07–0.96)3

time of gestation Zhang et al. [11] unreported7

sex Robson et al. [14] male vs. female 1.76 (0.67–4.60)2

Steur et al. [12] female vs. male unreported
Weng et al. [10] female vs. male 1.15 (1.02–1.29)
Zhang et al. [11] unreported6, 7
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of infancy weight gain could increase a model’s discrimi-
native ability. However, this would occur at the cost of 
delaying the model prediction and consequently any in-
tervention, which might affect potential success.

Sensitivity, Specificity, and Risk Thresholds

Sensitivity and specificity are key determinants of a 
model’s predictive ability. Sensitivity refers to a model’s 
ability to correctly predict the individuals who either have 
or will develop the outcome of interest [1]. Specificity re-
fers to a model’s ability to correctly rule out the individu-
als who do not have or will not develop the condition of 
interest [1]. The ideal model would produce 100% sensi-
tivity and 100% specificity, but this is considered to be 
unrealistic [48]. 

The choice of where to set the model’s risk threshold 
(i.e., the level of risk at or above which an individual will 
be classified as having an outcome) will impact on the 
sensitivity and specificity levels produced by the model 
[1]. Some models (e.g., the Framingham risk prediction 
tool for cardiovascular disease) use thresholds that are 

supported by clinical guidelines [50], but there are no 
similar guidelines for the prediction of early childhood 
obesity [16]. Indeed, some researchers have reported 
their results at a variety of risk thresholds without any 
discussion as to the most appropriate one to use [16]. In 
this context, the model reported by Robson et al. [14] il-
lustrates the impact of varying risk thresholds can have 
on sensitivity and specificity. At the 25th percentile risk 
threshold, their model produced 95% sensitivity and 35% 
specificity, while at the 90th percentile the sensitivity was 
30% and the specificity 99% [14]. Decision curve analysis, 
relative utility curves, and net benefits are methods for 
determining both risk thresholds and the clinical useful-
ness of prediction models [51–53]. However, to date, 
none of these methods have been utilized in the develop-
ment or evaluation of early childhood obesity prediction 
models. 

Importantly, the characteristics of the proposed in-
tervention and the prevalence of obesity in the target 
population should also influence the choice of risk 
threshold. A model that gives a high sensitivity but a low 
specificity will potentially identify most, if not all, in-
fants likely to develop obesity, but it will also mistak-

Level Predictors Study Notes/comment OR (95% CI) 

Infancy BMI Zhang et al. [11] unreported6, 7

height z score Zhang et al. [11] unreported6

length z score Zhang et al. [11] unreported6, 7

rapid weight gain Weng et al. [10] Δ z score ≥0.67 vs. <0.67 4.15 (3.64–4.73)
weight gain z score Robson et al. [14] 3.15 (1.82–5.46)1

3.85 (2.04–7.28)2

Santorelli et al. [15] 4.45 (3.28–6.04)3

Levine et al. [9] unreported
Zhang et al. [11] unreported6, 7

Other age at introduction of solids
breastfeeding

Robson et al. [14] >6 vs <6 months 0.50 (0.18–1.37)2

Robson et al. [14] exclusive vs. not exclusive breastfeeding 0.47 (0.19–1.15)1

exclusive vs. not exclusive breastfeeding 0.48 (0.18–1.26)2 
any breastfeeding vs. no breastfeeding 0.72 (0.27–1.94)2

Weng et al. [10] no breastfeeding vs. any breastfeeding 1.25 (1.09–1.42)
hospital delivery Steur et al. [12] hospital vs. home delivery unreported

BMI, body mass index; OR, odds ratio. 1 Robson et al.’s reduced model. 2 Robson et al.’s full model. 3 Santorelli et al. developed 3 
models, i.e., one for use at 6±1.5 months (equation 1), a second for use at 9±1.5 months (equation 2), and the third for use at 12±1.5 
months (equation 3). Only equation 1 is reported here, as results for equation 1 and equation 2 were very similar, and equation 1 was 
considered clinically more useful because of the earlier prediction age. Equation 3 is not reported because a prediction age of approximately 
12 months before the outcome was not considered clinically helpful. 4 Morandi et al.’s model with overweight and/or obesity as the 
outcome. 5 Morandi et al.’s model with obesity as the outcome. 6 Models developed from data before 6 weeks or 8 months of age, using 
support vector machines (SVM) or naive Bayes. 7 Models developed from data before 8 months of age, using decision tree, association 
rules, logistic regression, neural network, linear SVM, radial basis function SVM, naive Bayesian, or Bayesian network. 

Table 3 (continued)
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enly identify lots of infants as being at risk when they are 
not (i.e., a high false-positive rate). Such a scenario may 
be considered acceptable for early childhood obesity in-
terventions that encourage healthy lifestyle behaviors 
that would not be physically harmful to participants, 
such as breastfeeding, which is widely accepted as ben-
eficial for the health of infants and mothers alike [16, 
54]. On the other hand, such models (i.e., with a high 
sensitivity and a low specificity) would generally be no 
different from non-targeted community-wide interven-
tions, yet parents may experience avoidable stigmatiza-
tion if they are unnecessarily invited to participate in an 
intervention based on the assumption that their infant 
will become an obese child. When interviewed about the 
use of interventions resulting from early childhood obe-
sity risk prediction models, parents were receptive to the 
concept, but also expressed fears of judgement and con-
cerns about feeling upset, ashamed, and guilty [55]. 
However, a pilot study of lifestyle counselling to prevent 
early childhood obesity showed that the intervention 
was generally acceptable [56], suggesting that any anxi-
ety may be a function of the initial prediction rather than 
the intervention itself. 

Conversely, while a model that produces a low sensi-
tivity and a high specificity will be unlikely to misclassify 
infants as being at risk of obesity, it will likely fail to iden-
tify a large number of infants who will eventually become 
obese children. This would mean that, although fewer 
families are at risk of unnecessary stigmatization, more 
infants would potentially go on to experience known 
physical and psychosocial obesity comorbidities, includ-
ing psychological distress due to weight-related stigmati-
zation [20–22, 27–32]. 

The availability of resources for intervention should 
also influence the choice of risk threshold. If resources are 
scarce, a higher risk threshold may be preferable, thereby 
ensuring that those at a greater risk of developing obesity 
are prioritized. Alternatively, a low-cost and easily re-
sourced intervention may warrant a lower risk threshold 
[16]. Lastly, the prevalence of obesity in the target popu-
lation should also be considered when setting the risk 
threshold. For populations with a high prevalence of obe-
sity, prediction models would be more useful to identify 
those at the highest level of obesity risk. On the other 
hand, in populations where the prevalence of obesity is 
low, prediction models would likely be more useful, aim-
ing to identify infants across a wider range of the obesity 
risk spectrum.

Practical Applications and Implications

Prediction models are primarily developed to improve 
healthcare-related decision making and therefore patient 
health [57]. In the case of early childhood obesity models, 
their purpose is to predict an infant’s likelihood of being 
obese by a specified future point that is still early in the 
individual’s life so that preventative measures can be tak-
en to maximize long-term health benefits. As prediction 
models invariably have a less-than-perfect performance 
(i.e., sensitivity and specificity levels below 100%), Moons 
et al. [57] suggested that only impact analysis studies can 
truly determine their true clinical value. Such studies are 
generally developed using a comparative intervention ap-
proach to assess health outcomes obtained by using the 
prediction model versus not using it (i.e., standard care) 
[2]. Although all early childhood obesity prediction mod-
els display a less-than-perfect performance, as of yet, 
none have been subjected to an impact analysis study. 

Nonetheless, 2 models have been developed into tools 
for use by clinicians or parents [16]. Firstly, Santorelli et 
al. [15] developed their model into a smartphone applica-
tion called “Healthy Infant Weight?”. The application al-
lowed parents to obtain their baby’s risk of obesity at 2 
years by entering their baby’s sex, birthweight, and weight 
change between birth and 6, 9, or 12 months. Adding ma-
ternal BMI was optional but, as can be seen in Table 2, this 
made little difference to the sensitivity or specificity of the 
model [15]. Unfortunately, this mobile application was 
withdrawn due to funding issues [Santorelli, pers. com-
mun.] and no research has been published regarding any 
outcomes achieved through its use [16].

The second tool is the Proactive Assessment of Obe-
sity Risk during Infancy (ProAsk) [58], which was devel-
oped using the prediction model derived by Weng et al. 
[10] and later externally validated by Redsell et al. [47]. It 
should be noted that the name of the tool is somewhat 
misleading given that it does not actually predict the risk 
of obesity in particular, but instead the risk of overweight. 
It is also unclear what outcome age was used by ProAsk, 
although the development and validation models used 
ages 3 and 5 years, respectively [10, 47, 58]. ProAsk was 
designed to be used on tablets and adopted the following 
predictors: birth weight and length, infant’s current 
weight, maternal and paternal weight, maternal smoking 
during pregnancy, and breastfeeding. The tool also incor-
porated a therapeutic wheel of suggested behavioral 
changes to reduce the infant’s risk [58]. A feasibility study 
into the use of ProAsk by UK public health nurses with 
parents of infants aged 3 months produced disappointing 
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results: the recruitment target was not achieved and attri-
tion rates were high [58]. There were also methodological 
issues identified, such as public health nurses not fully 
adhering to the study protocols. On a positive note, 8 out 
of 12 parents interviewed at follow-up found ProAsk to 
be engaging. However, on balance, the researchers con-
cluded that it would require significant additional re-
sources for the delivery of ProAsk to be a feasible part of 
the public health nurses’ role [58]. 

Both of the above mentioned practical applications of 
early childhood obesity prediction models utilized digital 
technology. The relentless increase in worldwide smart-
phone ownership rates [59] makes them attractive tools 
for delivering public health interventions. A review of 23 
studies on mobile phone applications aimed at changing 
health behaviors found that 19 reported statistically sig-
nificant improvements in the behavior of interest [60]. 
Applications that were more effective utilized behavior 
change theory, were user friendly, had personalized fea-
tures or feedback, and had involvement of health profes-
sionals [60]. These findings were echoed by Litterbach et 
al. [61], who found that participant engagement with 
their infant feeding application was increased by tailored 
content, user friendliness, and credible information 
sources. Breastfeeding mothers reported more confi-
dence to continue breastfeeding, while formula-feeding 
mothers reported more confidence to feed in response to 
infant hunger cues [61]. These findings suggest that there 
may be potential for mobile phone applications based on 
early childhood obesity prediction models (such as 
Healthy Infant Weight? [15]) to be successfully imple-
mented. However, it should also be noted that sole reli-
ance on smartphone applications for early childhood 
obesity interventions may further alienate populations 
that are already traditionally difficult to engage. World-
wide, people with lower incomes and less education re-
port less smartphone ownership and Internet access [59]. 

The development of tools such as ProAsk [58], which 
was designed to be used by health professionals on hand-
held devices, may serve to increase engagement with dif-
ficult-to-reach populations as they are easily portable. In-
deed, despite the overall disappointing results, 33% of the 
participants recruited by the ProAsk study were from ar-
eas of increased social deprivation. In addition, Salvy et 
al. [62] identified the US home visitation program for at-
risk families as an ideal opportunity for interventions to 
prevent early childhood obesity, as these programs are 
already engaging with high-risk families in the home en-
vironment where the obesity-promoting behaviors are 
likely to occur. Thus, it may be that future research could 

learn from the methodological issues identified in the 
ProAsk feasibility study [58] and successfully utilize risk 
prediction models for early childhood obesity prevention 
in the home setting. However, without any kind of impact 
analysis study, it is not possible to determine the true clin-
ical value of any early childhood obesity risk prediction 
model, irrespectively of the use or not of digital technol-
ogy. This may not be possible until clinically relevant risk 
thresholds and sensitivity and specificity levels have been 
agreed upon for early childhood obesity prediction [16].

The rationale for obesity prediction models is to iden-
tify young children at risk of obesity for whom targeted 
interventions can be implemented. In addition, these pre-
diction models could be even more useful if they con-
tained modifiable factors that relate to the preconception 
and pregnancy phases. This means that early interven-
tions could be put in place to improve the outcome for 
children born from subsequent pregnancies within a giv-
en family. Further, the focus of interventions could also 
be extended to young women who may become pregnant, 
to ensure the best possible weight-related outcomes for 
their offspring. Healthcare professionals communicating 
the risk of early childhood obesity to families may need 
specific training regarding the discussion of a potentially 
distressing topic, and the provision of accurate informa-
tion about lifestyle changes that can reduce the risk.

Conclusions

To date, 7 studies have been published reporting  
early childhood obesity prediction models [9–15]. The 
AUROC, sensitivity, and specificity produced by the 
models varied greatly, as did the risk thresholds applied 
to them. Risk thresholds in particular should be defined 
after careful weighing of the consequences of false-posi-
tive versus false-negative predictions in the context of ex-
isting (if any) clinically relevant guidelines [16]. Although 
there are no such guidelines for obesity prediction, meth-
ods to assist with the identification of appropriate risk 
thresholds do exist. However, these have not been utilized 
in the development of any of the previously published 
models for the prediction of early childhood obesity. Im-
pact analysis studies of these models are currently absent 
from the literature, even though 2 models have been de-
veloped into tools to be used by parents and healthcare 
providers [15, 58]. In this context, digital technology may 
be a promising avenue for the practical application of 
obesity prediction models. Considering that many of the 
variables found to be important in published models are 
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modifiable, they could be useful tools to inform targeted 
interventions. Nonetheless, it is essential that clinically 
relevant risk thresholds be determined for early child-
hood obesity prediction.
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