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Abstract

Background: Protein secondary structure can be regarded as an information bridge that links the primary sequence

and tertiary structure. Accurate 8-state secondary structure prediction can significantly give more precise and high

resolution on structure-based properties analysis.

Results: We present a novel deep learning architecture which exploits an integrative synergy of prediction by a

convolutional neural network, residual network, and bidirectional recurrent neural network to improve the

performance of protein secondary structure prediction. A local block comprised of convolutional filters and original

input is designed for capturing local sequence features. The subsequent bidirectional recurrent neural network

consisting of gated recurrent units can capture global context features. Furthermore, the residual network can

improve the information flow between the hidden layers and the cascaded recurrent neural network. Our proposed

deep network achieved 71.4% accuracy on the benchmark CB513 dataset for the 8-state prediction; and the

ensemble learning by our model achieved 74% accuracy. Our model generalization capability is also evaluated on

other three independent datasets CASP10, CASP11 and CASP12 for both 8- and 3-state prediction. These prediction

performances are superior to the state-of-the-art methods.

Conclusion: Our experiment demonstrates that it is a valuable method for predicting protein secondary structure,

and capturing local and global features concurrently is very useful in deep learning.
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Background
A protein is a linear chain of amino acids connected by
peptide bonds. The primary structure of a protein is just
the amino acid sequence ordered in the polypeptide chain.
Repeated regular conformations on the polypeptide chain
are called the secondary structures of proteins. From
the secondary structures, a protein can be folded into
a stable three-dimensional structure, which is called the
tertiary structure of a protein. Although a protein’s struc-
ture is largely determined by its amino acid sequence [1],
advanced studies show that accurate prediction of tertiary
structures from sequences is a challenging problem cur-
rently with poor performance. The prediction of protein
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secondary structures from sequences is then considered
as an intermediate problem bridging the gap between the
primary sequences and tertiary structure prediction.
Protein secondary structures are traditionally charac-

terized as 3 general states: helix (H), strand (E), and coil
(C). From these general three states, the DSSP program
[2] proposed a finer characterization of the secondary
structures by extending the three states into eight states:
310 helix (G), α-helix (H), π-helix (I), β-stand (E), bridge
(B), turn (T), bend (S), and others (C). Prediction of the
three states from protein sequences (i.e., the Q3 pre-
diction problem) has been intensively investigated for
decades using many machine learning methods, includ-
ing the probability graph models [3, 4], support vector
machines [5, 6], hidden Markov models [7, 8], artificial
neural network [9–12], and bidirectional recurrent neural
network(BRNN) [13–16].
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Recently, the focus of secondary structure prediction
has been shifted from Q3 prediction to the prediction of
8-state secondary structures, due to the fact that a chain
of 8-state secondary structures contains more precise
structural information for a variety of applications. The
prediction of the 8 states of secondary structures from
protein sequences is called a Q8 prediction problem.
The Q8 problem is much more complicated than the Q3
problem. Because it is considerably more complicated
than Q3 prediction, deep learning methods have been
applied. For example, SC-GSN network [17], the bidi-
rectional long short-term memory (BLSTM) method
[18, 19], the deep conditional neural field [20], DCRNN
[21], the next-step conditioned deep convolutional
neural network(CNN) [22] and Deep inception-inside-
inception (Deep3I) network [23] have been widely
explored.
Protein secondary structures are not confined to only

adjacent residues, but also involved with long-range
residue contacts. Many literature computational methods
have considered these biological facts to combine both
local and long-range contact information. DeepCNF [20]
is a Deep Learning extension of Conditional Neural Fields,
which combines the advantages of both conditional neural
fields and deep convolutional neural networks. DCRNN
[21], comprised of a multi-scale convolutional layer linked
by three stacked bidirectional recurrent network layers,
uses CNN to obtain the local information and BRNN to
obtain long-range contact information. An ensemble of
ten independently trained DCRNN has achieved a 69.7%
accuracy on the CB513 benchmark data set. Next-Step
Conditioned CNN [22] combines the previous labels to
the current input to remember the former information
like RNN. It further improves the prediction performance
to a 70.3% accuracy. When trained under an ensemble
learning framework, it has achieved a 71.4% accuracy, rep-
resenting the newest state-of-the-art performance of the
Q8 prediction problem. Based on the Google Inception
network [24], a Deep inception-inside-inception (Deep3I)
network [23], named MUFOLD-SS which are mainly con-
structed by CNNs and residual networks(Resnet) [25], is
proposed. MUFOLD-SS uses inception-inside-inception
and Resnet to enhance the performance of capturing long-
range contact information in sequences. MUFOLD-SS has
been evaluated for the Q8 and Q3 prediction performance
on the CB513, CASP10, CASP11 and CASP12 datasets.
Very recently, Port 5 [16] assembling seven BRNNs have
achieved 73% and 84.2% of Q8 and Q3 prediction on 3315
protein sequences respectively.
In this study, we propose to use a convolutional, resid-

ual, and recurrent neural network (CRRNN) for both Q8
and Q3 secondary structure prediction. Firstly a local
block comprising of one-dimensional CNNs and the orig-
inal input combines local features and original sequence

information. After local block filtering, the sequences are
fed to a bidirectional recurrent neural network (BRNN)
containing gated recurrent units (GRU) [26]. This archi-
tecture of BRNN can model the sequence structure and
can capture long-range dependencies of the residues. The
BRNN is a three-layer stacked structure with residual
connections [25] linked to the interval BRNN layer. To
reduce the high-dimensionality of hidden-layer input, a
1D convolutional filter with one kernel [24] is used along
with the residual connection. The multi-perception and
softmax layer for the final classification are then con-
nected. We used 12,148 sequences to train the model
and tested its performance on the benchmark data sets
CB513, CASP10, CASP11 and CASP12. We also trained
ten individual model and ensemble them as a integrated
model named as eCRRNN. The prediction results have
demonstrated that the deep network has better general-
ization performance in comparison with the best existing
method. The superior performance is mainly attributed
to: (i) The local block can integrate both local features
and the original sequence information; the 1D CNN
rather than 2D CNN is used for processing sequence
data in local block. (ii) A novel deep learning model,
CRRNN for sequence to sequence learning is proposed;
The model parameters are evaluated and 1D convolu-
tional filter with one kernel is used for dimensionality
reduction.

Materials

Datasets

A hybrid training set and five independent test datasets
were used in this study. The training data is named
TR12148 which consists of 12,148 polypeptide chains
from the integration of the existing benchmark datasets
TR5534 and TR6614. TR5534 was prepared by [17] that
contains 5534 proteins. This benchmark dataset has been
used to train the deep learning models including SC-
GSN [17], DCRNN [21], and conditioned CNN [22]. In
fact, TR5534 was derived from the 6128 proteins of the
CB513 dataset after sequence identity reduction. Dataset
TR6614 contains 6614 non-homologous sequences pro-
duced using the PISCES Cull PDB server [27]. Protein
sequences in TR6614 have a similarity less than 25%, a
resolution better than 3.0Å and an R factor of 1.0. The
redundancy with test datasets was removed using cd-hit
[28]. A detailed sequences list of TR6614 is given in Addi-
tional file 1 in supplemental information. We randomly
selected 248 proteins as a validation dataset (VR248)
and 240 proteins as test dataset (TS240) from TR12148,
respectively, and used the remaining 11,700 proteins for
training. The 3D structure files were downloaded from the
RCSB Protein Data Bank (PDB).
Four public test datasets (named CB513, CASP10,

CASP11, and CASP12) were used to evaluate the Q8
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and Q3 performance of our proposed model. CB513
is from [17]. CASP10, CASP11, and CASP12 are from
the “Protein Structure Prediction Center”. CASP10 con-
tains 123 domain sequences extracted from 103 chains;
CASP11 contains 105 domain sequences extracted from
85 chains; and CASP12 contains 40 chains. The total
residues of the sequences from CASP10, CASP11,
CASP12 and CB513 are 22041, 20498, 10526 and 87041
respectively. More details of the Q8 secondary structures
in these datasets are listed in Table 1.
TR12148 is a dataset merging TR5534 and TR6614, and

it contains 2,976,315 residues. The sequence lengths of
the proteins in TR6614 range from 60 to 700 and the
length range of the proteins in TR5534 is from 50 to 700.
Sequence lengths of the proteins in the test datasets are
capped at 700 as well. If the length of a sequence from the
test datasets is longer than 700, the sequence is splitted
into two sequences. The 700-residue length cut-off was
chosen to provide a good balance between efficiency and
coverage, given that the majority of the protein chains are
shorter than 700 residues.

Input features

Four types of features, including a position-specific scor-
ing matrix (PSSM), protein coding features, conserva-
tion scores, and physical properties, are used to char-
acterize each residue in a protein sequence. To gener-
ate a PSSM, we ran PSI-Blast [29] to search the NCBI
non-redundant database through three iterations with
E-value=0.001. The physical property features [30] have
been previously used for protein structure and prop-
erty prediction [19, 31]. These physical properties are:
steric parameters (graph-shape index), polarizability, nor-
malized van der Waals volume, hydrophobicity, isoelec-
tric point, helix probability, and sheet probability. These
specific values were downloaded from Meiler’s study
[30]. To ensure the network gradients decrease smoothly,
these above 27 features were normalized by logistic
function.

The 1-dimensional conservation score was computed by
the method [32](1),

R = log 20 +

20
∑

i=1

Qi logQi (1)

Residue conversion was conducted according to amino
acid frequency distribution in the corresponding column
of a multiple-sequence alignment of homologous pro-
teins. The score information in the PSSM was calculated
from this probability. Residue score in the i-th columnwas
calculated as follows [33]:

Si = [ln(Qi/Pi)] /λu. (2)

where Qi is a predicted probability that a properly aligned
homologous protein has amino acid i in that column, Pi
is the background probability [29], and λu = 0.3176. Qi is
defined as Qi = exp(Si ∗ λu) ∗ Pi.
The commonly used protein coding is an orthogonal

coding. As Zhou’s [17] scheme, the 22-dimensional cod-
ing vector is a sparse one-hot vector, only one of 22
elements is none-zero and a zero vector is no use for gra-
dient optimization. Like description by [21], we adopted
an embedding operation from natural-language process-
ing to transform sparse sequence features into a denser
representation. This embedding operation was imple-
mented as a feed-forward neural network layer with an
embedding matrix mapping a sparse vector into a denser
22-dimensional vector.
In our scheme, one residue is represented by 50-dimen-

sional features (20-dimensional PSSM, 7-dimensional
physical properties, 1-dimensional conservation score and
22-dimensional protein coding information). The sec-
ondary structure labels are generated by DSSP [2]. Similar
to Zhou’s method [17], proteins shorter than 700 AA were
padded with all-zero features and the corresponding out-
puts are labeled with “NoSeq”. The advantage of padding
these proteins is to enable the training of the model on
GPU in batches.

Table 1 Training and test data used in our work

Label Types TR6614 TR5534 CB513 CASP10 CASP11 CASP12

Count % Count % Count % Count % Count % Count %

H α-helix 517653 0.352 405560 0.345 26143 0.309 6544 0.297 6330 0.309 3550 0.337

B β-bridge 15321 0.010 12096 0.010 1180 0.014 227 0.010 221 0.011 113 0.011

E β-strand 321156 0.218 255887 0.218 17994 0.212 5225 0.237 5089 0.248 2223 0.211

G 310helix 55994 0.038 46019 0.039 3132 0.037 797 0.036 716 0.035 320 0.030

I π -helix 281 0 209 0 30 0 5 0 0 0 0 0

T Turn 160753 0.109 132980 0.113 10008 0.118 2811 0.128 2299 0.112 1164 0.111

S Bend 118800 0.081 97298 0.083 8310 0.098 1780 0.081 1751 0.085 955 0.091

L Coil 282584 0.192 225493 0.192 17904 0.211 4652 0.211 4092 0.200 2201 0.209

All 1472542 1175542 84701 22041 20498 10526
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Methods
As illustrated in Fig. 1, our CRRNN model consists of
four parts: a local block, three stacked bidirectional gated
recurrent unit (BGRU, or BGRU block) layers, two resid-
ual connections, and two fully-connected layers. The local
block capture local sequence features and feeds them to
the first BGRU layer, and the residual network transfers
data to the subsequent BGRU layers. In the BGRU block,
two types of input data are concatenated and fed to the
next BGRU layer. At the end of the fully connected layer,
the softmax activation outputs the predicted results in
either the 8- or 3-state category.

Local block

Extracting information from protein sequences by convo-
lutional neural network has fast progressed [17, 20–22].
The application of the convolution operator is dependent
upon input dimensionality [34]. Two-dimensional kernels
are often used in a 2D spatial convolutional operator,
whereas a 1D convolutional network is usually used for
processing sequences. In the 1D domain, a kernel can be
viewed as a filter capable of removing outliers to filter
data or act as a feature detector. Here, we used a 1D CNN
to model the local dependencies of adjacent amino acids.
Given the sequence data

X = (x1, x2, x3. . .xt−1, xt , xt+1. . .xn), (3)

where xi = (xi1, xi2, . . .xij, . . .xim) is a feature vector of the
ith residue. Residue xi is context-dependent and strongly
reliant on forward and backward information; however,
the value space of feature xij might differ from xik . Overall,
residue orientation is convoluted by the 1D CNN:

hi = f (W ∗ xi:i+k−1 + b) (4)

where “*” denotes the convolutional operation, and k rep-
resents the kernel size. Considering that the minimum
length of the second structure, the kernel sizes of CNN
in local block are set to three and five. One-hundred
filters were used separately, and a rectified linear unit
function activates the network output. To capture more
structure information, the original input data is concate-
nated with the convolutional network output. Compared
with the kernel size of 7, 11 [21] and 9×24 [22], our net-
work parameters were smaller and they could effectively
capture the local information.

BGRU and BGRU block

Protein structures are affected largely by long-range
interactions between residues. Recurrent neural network
(RNN) can model large-distance dependencies between
amino acids. At a given time T = t, the recurrent
neural network can remember information from past
input, x1, x2, x3. . .xt−1, and current input xt . However,
the output, yt , might depend upon the contextual protein
sequence. The BRNN [35] combines a RNN that moves
forward through time beginning from the start of the
sequence along with another RNN that moves backward
through time beginning from the end of the sequence. In
the BRNN, increased input over time is represented by
−→
f (x1, x2, x3, . . ., xt−1), and the decreased input over time

is represented by
←−
f (xt+1, . . ., xn). Compared to RNN, the

BRNN is more suitable for context-related applications,
and its performance is better than unidirectional RNN.
The depth of a RNNmakes the network difficult to train

because of an exploding or vanishing gradient [36]. Long
short-termmemory (LSTM) [37], which consists of a vari-
ety of gate structures (forgotten gate, input gate, output
gate and memory cell) can overcome with the vanishing

Fig. 1 a CRRNN overall architecture. b A local block comprising of two 1D convolutional networks with 100 kernels, and the concatenation (Concat)

of their outputs with the original input data. c the BGRU block. The concatenation of input from the previous layer and before the previous layer is

fed to the 1D convolutional filter. After reducing the dimensionality, the 500-dimensional data is transferred to the next BGRU layer
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gradient problem. Compared with a LSTM, gate recur-
rent units (GRU) achieved comparable performance, and
required fewer parameters [36]. The details of GRU is
described by the following formula (5):

rt = σ(Wxrxt + Whrht−1 + br)

zt = σ(Wxzxt + Whzht−1 + bz)

h̃t = tanh
(

Wxhxt + Whh

(

rt
⊙

ht−1
)

+ bh
)

ht = zt
⊙

ht−1 + (1 − zt)
⊙

h̃t

(5)

where σ is the sigmoid function,
⊙

represents an
element-wise multiplier. rt , zt , h̃t and ht are the reset gate,
update gate, internal memory cell activation vectors and
output, respectively. We construct three BGRU layers in
the CRRNN model. When the forward-computed result
Ft is merged with the backward result, Bt , merging com-
putation in the first GRU layer is concatenated, and the
others are summed, as formula (6):

O1
t = Concat(Ft ,Bt)

O2,3
t = Ft + Bt

s.t. Ft = (
−→
h1 ,

−→
h2 , . . .,

−→
ht ),

Bt = (
←−
ht ,

←−
h t+1, . . .,

←−
hn)

(6)

In first BRNN layer, 250 units were used in the unidi-
rectional RNN, and the dimensionality of the output was
500. In the 2nd and 3rd layer, 500 units were used in the
unidirectional RNN. Based on the improved performance
of the CNN model [25] using additive identity shortcuts
between the outputs of the lower layers and the inputs to
higher layers, which improved information flow through-
out the network, Fig. 1c shows how we introduce this
process into recurrent neural network. hlt is the previous
layer output and hl−1

t is the previous layer input. It , the
concatenation of them will be fed to current hidden layer,

It = Concat
(

hlt , h
l−1
t

)

I ′t = f (W ∗ It)
(7)

To avoid the explosion caused by feature concatenation
of the input from the previous layer, the BGRU block used
the 1D CNN with one kernel to control the high dimen-
sionality. Concatenating operation is not as same as the
summing operation used in residual network, for it can
reserve more information.

Implementation details

In our experiments, an Adam optimizing function was
used for training the entire network of the default set-
ting parameters. The default learning rate was initially
set at 0.0004 with a decreasing step 0.0001, whereas the
validation accuracy did not increase after more than 10
epochs. The learning-rate threshold was set to 0.0001. A
cross-entropy loss function was used to train the model.
Weight constraint of dropout (p= 0.5) used to avoid over-
fitting were applied to the output filters before advancing

to the next BGRU layer. The algorithm was enforced to
complete when validation accuracy stopped increasing.
When the model had iterated about 130 epochs, it con-
verged and predictive performance stabilized. Our model
was implemented in Keras, which is a publicly available
deep-learning software. Weights in the CRRNN were ini-
tialized using default values, and the entire network was
trained on a single NVIDIA GeForce GTX 1080 Ti GPU
with 12GB memory.

Results and discussion

Performance for Q8 and Q3 prediction

Ourmodel, which was trained individually ten times using
the TR12148 dataset, achieved a 73.3±0.4% accuracy on
the TS240 test set. As an individual model, we per-
formed validation on the CB513 benchmark and achieved
a 71.4±0.2% accuracy, competitively matching that of
the state-of-the-art method using the NCCNN ensem-
ble model [22] and 1.1% higher than the NCCNN single
model. The single model of NCCNN was iterated at least
1000 epochs while our model converged after only 130
epochs. We also compared our model with other repre-
sentative methods, such as MUFOLD-SS [23], DCRNN
[21], DeepCNF [20], and GSN [17], and BLSTM [18].
Except that MUFOLD-SS are trained using 9000 pro-

teins, most of them are trained on TR5534. We did
re-implement Conditioned CNN and DCRNN and used
TR12148 as the training data. As some errors were
occurred in the re-implemented 2D CNN, we replaced
2D CNN with 1D CNN. The performance by the re-
implemented DCRNN exceeded the original results. The
performance by the re-implemented NCCNN is weaker
than the original results. Details of precision and recall
are shown in Tables 2 and 3. The overall performance is
shown in Table 4. DCRNN2 was re-implemented by us
and trained on TR12148.
For all of these methods, their prediction accuracies on

the CASP10 dataset are higher than on the other datasets,

Table 2 Q8 predictive precision of individual secondary

structures from CB513

Q8 Label CRRNN NCCNN MUFOLD-SS DCRNN2a DCRNN DeepCNF

H 0.86 0.841 0.855 0.863 0.832 0.849

B 0.466 0.676 0.571 0.571 0.554 0.433

E 0.797 0.767 0.764 0.768 0.753 0.748

G 0.466 0.487 0.413 0.419 0.429 0.49

I 0 0 0 0 0 0

T 0.556 0.577 0.572 0.562 0.559 0.53

S 0.494 0.548 0.522 0.509 0.518 0.487

L 0.603 0.565 0.586 0.571 0.573 0.571

aData is generated by our experiment

Boldface numbers indicate best performance
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Table 3 Recall of individual secondary structures is compared on

CB513 for Q8 prediction

Q8 Label CRRNN NCCNN MUFOLD-SS DCRNN2a DCRNN DeepCNF

H 0.926 0.932 0.920 0.920 0.933 0.904

B 0.081 0.041 0.071 0.003 0.026 0.026

E 0.831 0.821 0.815 0.841 0.828 0.833

G 0.371 0.285 0.364 0.359 0.252 0.26

I 0 0 0 0 0 0

T 0.555 0.524 0.549 0.539 0.522 0.528

S 0.332 0.24 0.290 0.258 0.249 0.255

L 0.658 0.69 0.662 0.658 0.652 0.657

aData is generated by our experiment

Boldface numbers indicate best performance

and the accuracies on the CASP12 dataset are lower. One
reason is that the profiles of CASP10 is extracted from
the NCBI NR database which represent the sequences
more precisely. CASP12 contains more hard cases and the
PSSM profiles are not as good as those in CASP10 or
CB513.
Tables 2 and 3 show the model performance on indi-

vidual secondary structures. F1-score, which corresponds
to the harmonic means of precision and recall, is also
compared in Table 5. Macro_F1 [38] represents the un-
weighted mean of all the categories, whereas micro_F1
represents the averages of global total true positives;
therefore, this indicator has the same value as the accu-
racy.

F1 =
2∗(precision∗recall)
(precision+recall)

macro_F1 = 1
n

n
∑

i=1
F1i

(8)

Table 4 A comparison of the Q8 accuracy(%) on CB513, CASP10,

CASP11 and CASP12 between CRRNN and other state-of-the-art

methods

method CB513 CASP10 CASP11 CASP12

GSN 66.4 - - -

BLSTM 67.4 - - -

DeepCNF 68.3 71.8 71.7b 0.694b

DCRNN 69.7 - - -

DCRNN2a 70.4 73.9 71.2 68.8

NCCNN 70.3 - - -

NCCNNa 71.4 - - -

MUFOLD-SSb 70.5 74.2 71.6 69.5

CRRNN 71.4±0.2 73.8±0.5 71.6±0.7 68.7±0.8

eCRRNNa 74 76.3 73.9 70.7

a indicates ensemble model
bData is generated by our experiment

Boldface numbers indicate best performance

The F1 score related to individual secondary structure
for our model exceeded those by the other methods, indi-
cating that our model exhibited better predictive ability.
The macro_F1 score of our model was also better than
those by the other methods.
To validate the generalization capability of our model,

independent test datasets CASP10, CASP11, and CASP12
were used. The performance results are reported in
Table 4. The performance for CASP10, CASP11, and
CASP12 by NCCNN were not supplied.
By the same way as [20], we mapped 8-state labels

to 3-state labels: H(8-state) was mapped to H(3-state),
E(8-state) was mapped to E(3-state) and others (8-state)
were mapped to C(3-state). Q3 predictive performance
was compared with those by DCRNN and DeepCNF on
Table 6. The Q3 accuracy on the CB513 dataset was
85.3±0.4%, which was 1.5% higher than the state-of-the-
art methods [21]. The predictive accuracy of our model
on CASP10, CASP11 and CASP12 were 86.1±0.6%,
84.2±0.5% and 82.6±1.2% respectively, and most of these
were higher than the compared methods.
Another newest Q3 prediction tool SPIDER3 [19] using

a two-layered BLSTM was proposed, wherein H, G, and
I (8-state) are mapped to H (3-state), E and B (8-state)
are mapped to E, and others (8-state) are mapped to
C. Similarly, we trained our model and tested it on the
TS1199 dataset [19], achieving 85.5% accuracy, which
was higher than SPIDER3 (84.5%) and SPIDER2 (81.8%).
Figure 2 compares the accuracy of secondary struc-
ture prediction at individual amino acid levels with SPI-
DER3 and SPIDER2, indicating higher accuracies than
both at 82%.

Ensemble learning and case study

In order to further evaluate the model generalization
capability, an ensemble of ten independently trainedmod-
els (named eCRRNN) is constructed. The outputs of the
ensemble model are derived by averaging the individ-
ual predicted probabilities over the secondary structure
labels (Eq. 9).

y = argmax

(

1

N

N
∑

i=1

pi

)

(9)

pi is the output probability of constituent model and the
model has been trained independently. Ensemble meth-
ods can obtain better predictive performance that could
be obtained from any of the constituent predictor inde-
pendently [39]. Prediction of eCRRNN achieved 74%,
76.3%, 73.9%, and 70.7% Q8 accuracy on the CB513,
CASP10, CASP11, and CASP12 datasets, respectively.
The Q8 prediction performance is improved by 2.6%, 2.5%
2.3% and 2% on CB513, CASP10, CASP11 and CASP12
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Table 5 F1 score of individual secondary structure labels using CB513

Q8 Label CRRNNa CRRNN NCCNNa NCCNN MUFOLD-SS DCRNN2 DCRNNa DeepCNF

H 0.903 0.892 0.889 0.884 0.886 0.891 0.880 0.876

B 0.138 0.139 0.089 0.077 0.000 0.006 0.050 0.049

E 0.834 0.814 0.805 0.793 0.789 0.803 0.789 0.788

G 0.463 0.413 0.374 0.360 0.387 0.387 0.317 0.340

I 0 0 0 0 0 0 0 0

T 0.594 0.555 0.565 0.549 0.561 0.550 0.540 0.529

S 0.433 0.397 0.343 0.334 0.373 0.342 0.336 0.335

L 0.660 0.629 0.631 0.621 0.622 0.611 0.610 0.611

macro-F1 0.503 0.480 0.462 0.452 0.452 0.449 0.440 0.441

micro_F 0.74 0.714 0.714 0.704 0.705 0.704 0.697 0.683

a indicates ensemble model

Boldface numbers indicate best performance

respectively. We conducted analysis on the performance
for the individual labels in CB513. Predictive accuracies
of H type, E type and L type have been improved by
0.9%, 3.6% and 3.9% respectively. The secondary struc-
tures are imbalanced data and the majority labels are H, E
and L. The ensemble model has effectively improved the
classification accuracy for the major categories.
The precision and recall performance on the CB513

dataset are list in Table 7, and the F1 score, macro_F1, and
micro_F1 are compared in Table 5. The F1 score for indi-
vidual secondary structure prediction using our ensemble
model was better than that of a NCCNN ensemble model.
The predictive details on the CASP10, CASP11, and
CASP12 datasets are listed in Table 8. We also validated
its generalization on Q3 prediction and achieved 87.3%,
87.8%, 85.9% and 83.7% on CB513, CASP10, CASP11, and
CASP12. Both of the Q8 and Q3 prediction results are
better than the state-of-the-art.
The P-value of significance test between CRRNN and

MUFOLD-SS is 5.31E-7 (< 0.005); The P-value of differ-
ence between eCRRNN andMUFOLD-SS is 6.93E-15; and

Table 6 Q3 accuracy(%) comparison on CB513 and CASP

datasets

Method CASP10 CASP11 CASP12 CB513

PSIPRED 81.2 80.7 80.5a 79.2

JPRED 81.6 80.4 78.8a 81.7

DeepCNF 84.4 84.7 83.2a 82.3

DCRNN - - - 84

NCCNN - - - -

MUFOLD-SSa 84.3 82.3 81.1 82.7

CRRNN 86.1±0.6 84.2±0.5 82.6±1.2 85.3±0.4

eCRRNN 87.8 85.9 83.7 87.3

aData is generated by our experiment

Boldface numbers indicate best performance

the significance test between CRRNN and eCRRNN is at
the 0.0047 level.
Segment of OVerlap(SOV) score has been used to evalu-

ate the predicted protein secondary structures comparing
with the native secondary structures. If the predictive
structure segments match more native structures, SOV
score will more higher.We calculate the SOV’99 score [40]
using the SOV_refine [41] tool which measures how well
the native and the predicted structure segments match.
As shown in Table 9, in terms of SOV score on CB513,
CASP10, CASP11 and CASP12, eCRRNNobtained 72.5%,
74.7%, 72.2% and 68.4% respectively. SOV scores on con-
stituent secondary structure are also listed in Table 9. The
comparison of SOV scores on CASP12 using eCRRNN,
DeepCNF and MFOLD-SS is shown in Fig. 3. On the

 76
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 86

 88

A C D E F G H I K L M N P Q R S T V W Y

CRRNN
SPIDER2
SPIDER3

Fig. 2 The accuracy of 3-state secondary structure prediction for

individual amino acids as compared with CRRNN, SPIDER3 and

SPIDER2 on the TS1199 dataset
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Table 7 Q8 prediction using the ensemble model on the CB513 dataset

Q8 Label precision recall

eCRRNN* CRRNN NCCNNa DCRNNa eCRRNNa CRRNN NCCNNa DCRNNa

H 0.872 0.860 0.846 0.832 0.935 0.926 0.936 0.933

B 0.582 0.466 0.786 0.554 0.078 0.081 0.047 0.026

E 0.804 0.797 0.776 0.753 0.867 0.831 0.837 0.828

G 0.554 0.466 0.528 0.429 0.398 0.371 0.29 0.252

I 0 0 0 0 0 0 0 0

T 0.603 0.556 0.591 0.559 0.586 0.555 0.542 0.522

S 0.563 0.494 0.621 0.518 0.352 0.332 0.237 0.249

L 0.626 0.603 0.570 0.573 0.697 0.658 0.707 0.652

a indicates ensemble model

Boldface numbers indicate best performance

structure types B and G, the performance of eCRRNN is
slightly weaker than that of MFOLD-SS. In a large num-
ber of continuous secondary structures, the performance
of eCRRNN is better. Table 10 lists the detailed scores on
Q3 prediction. We also compared predictive SOV score
on CASP12 with JPRED, DeepCNF and MFOLD-SS, and
the specific scores are listed in Table 11. Although the
overall SOV score of our method is just 0.9% better than
DeepCNF, the SOV score on structure C by our method
is 74.1%, 8.3% better than DeepCNF. These SOV scores
indicate that our method can match more continuous
segments.
Port 5 [16] is the latest release of one of the best per-

forming secondary structure predictor. The sequences of
more than 40% of the similarity with Port 5 training
dataset were removed, then the four public datasets are
used as validating benchmark. The Q8 prediction accu-
racy using Port 5 is 74%, 76.3%, 74.2%, and 70.9% respec-
tively on CB513, CASP10, CASP11 and CASP12. The
Q8 prediction accuracy using eCRRNN is 74.2%, 76.5%,
73.8%, and 70%. The SOV score measured on Port 5 is
71.3%, 73.9%, 71.8% and 67.9%. The SOV score measured

Table 8 Details of Q8 accuracy on the CASP10, CASP11, and

CASP12 datasets predicted by an ensemble model of CRRNN

Q8 Label CASP10 CASP11 CASP12

precision recall precision recall precision recall

H 0.894 0.925 0.867 0.931 0.853 0.926

B 0.758 0.110 0.607 0.077 0.333 0.027

E 0.829 0.868 0.796 0.864 0.746 0.837

G 0.580 0.403 0.541 0.313 0.389 0.278

I 0 0 0 0 0 0

T 0.672 0.670 0.596 0.588 0.547 0.508

S 0.561 0.366 0.523 0.327 0.490 0.263

L 0.639 0.722 0.616 0.658 0.578 0.615

on eCRRNN is 72.9%, 74.9%, 72.6% and 67.6%. Although
the prediction accuracy of Port 5 on casp12 is higher than
our method, it is almost the same with respect to the
SOV score. The other SOV scores on our method are all
better than those of Port 5. These results show that eCR-
RNN could obtain more meaningful secondary structure
predictions.
Specifically, proteins of length ≥ 400AA in the CB513

dataset were 20.The performance of MUFOLD-SS and
DCRNN2 is 67.12%, 67.34%. Our ensemble model
achieved 72.49% accuracy on these proteins, which
demonstrate the model effectiveness on capturing long-
range information. The detailed performance is compared
on Fig. 4.
Two examples are used to illustrate our model per-

formance, with the predicted results from an ensem-
ble CRRNN(eCRRNN) model, DCRNN2 and MUFOLD-
SS. A protein, T0786 (PDB-ID 4QVU), selected from

Table 9 SOV’99 scores of Q8 prediction using eCRRNN on 4

datasets: CB513, CASP10, CASP11 and CASP12

Type CB513 CASP10 CASP11 CASP12

SOVL 0.611 0.629 0.595 0.538

SOVH 0.929 0.924 0.908 0.907

SOVT 0.599 0.67 0.605 0.531

SOVE 0.882 0.884 0.86 0.829

SOVS 0.351 0.362 0.327 0.256

SOVB 0.078 0.11 0.077 0.027

SOVG 0.419 0.416 0.339 0.297

SOVI 0 0 0 0

SOV 0.725 0.747 0.722 0.684

SOVmean 0.723 0.740 0.738 0.698

SOVL ,SOVH , SOVT , SOVE , SOVS , SOVB , SOVG and SOVI represent the prediction SOV

score on a constituent secondary structure type L, H, T, E, S,B, G and I respectively.

SOV represents the SOV score on different dataset and SOVmean is mean value of the

SOV score on sequence level
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Fig. 3 The SOV score comparison of Q8 prediction on CASP12 dataset
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the prediction SOV score on a individual secondary structure type

respectively. “All” represents the SOV score on CASP12 dataset

the CASP11 dataset has 264 residues. The known sec-
ondary structure residues total only 217 AA (from residue
37 to 253). The native 3D structure is described in
Fig. 5. The predictive accuracy according to DCRNN2,
MUFOLD-SS and eCRRNN was 72.4%, 68.2%, and 91.7%.
The comparison between native structure and predicted
structure is described in Fig. 6. The results suggested
that our model sufficiently captured continuous structure
information.
The 3D structure of another protein (PDB: 6CPP)

selected from the CB513 dataset is shown in Fig. 7 and
represents an oxidoreductase of 414 residues (only 405
residues with known structures). Predictive accuracy by
DCRNN2, MUFOLD-SS, and eCRRNN was 75.3%, 76%,
and 88.4%, respectively. Detailed prediction results are
shown in Fig. 8. The accuracy of maximum continuous
predicted structure from eCRRNN is 83AA. These results
also indicate that our model was effective for long-chain

Table 10 SOV’99 scores of Q3 prediction using eCRRNN on 4

datasets: CB513, CASP10, CASP11 and CASP12

Type CB513 CASP10 CASP11 CASP12

SOVH 0.917 0.919 0.922 0.884

SOVE 0.859 0.868 0.835 0.798

SOVC 0.769 0.813 0.778 0.741

SOV 0.829 0.855 0.833 0.797

SOVmean 0.842 0.851 0.850 0.817

SOVH , SOVE and SOVC represent the prediction SOV score on a constituent

secondary structure type H, E and C respectively. SOV represents the SOV score on

different dataset and SOVmean is mean value of the SOV score on sequence level

Table 11 SOV’99 scores of Q3 prediction on CASP12 using

recently predicting methods are compared

Method SOVH SOVE SOVC SOV

JPRED 0.827 0.747 0.676 0.737

DeepCNF 0.873 0.799 0.658 0.788

MFOLD-SS 0.879 0.814 0.594 0.715

eCRRNN 0.884 0.798 0.741 0.797

SOVH , SOVE and SOVC represent the prediction SOV score on a constituent

secondary structure type H, E and C respectively. SOV represents the SOV score on

CASP12 dataset

Boldface numbers indicate best performance

protein structures. From the two cases, isolated residues
which are not as same as previous and backward residue
were not properly predicted, for the captured information
is strongly depended on context residues.

Ablation learning

The total parameters of our model were about 7.74 mil-
lion. The feature values provided by TR5534 with 50-
dimensional features were 58.777 million and the ratio
of training features to model parameters was 7.6:1. The
ratio of features on TR12148 to the model parameters was
about 16.4:1, which is bigger than the practical require-
ment (10:1).
We trained the model using the TR5534 dataset. After

about 55 epochs, the predictive accuracy for CB513
dataset decreased and the loss became increasing. The
model encountered overfitting problem as Fig. 9 illus-
trated. The model with two BGRU layers, which were
capable of reducing about 1 million parameters, was also
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Fig. 5 Protein 4QVU native 3D structure

trained using TR5534. And the prediction for CB513
dataset shows that model’s generalization was decreased.
Table 12 lists the predictive performance on CB513
when model was trained using TR5534, TR6614 and
TR12148. Figure 10 shows themodel loss variation trained
using TR12148. The training error increased along with
increases in the size of the training set, because larger
datasets are harder to fit. Meanwhile, the loss error
of CB513 dataset was decreased, for fewer incorrect
hypotheses were consistent with the training data.
To discover important factors related to the optimal uti-

lization of our proposed model, we evaluated alternative
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Fig. 6 Secondary structure comparison between native and

predicted structures on protein 4QVU

Fig. 7 Protein 6CPP native 3D structure

architectures by removing individual components. We
specifically tested the performance of models without a
local block or residual connections, as well as the mod-
els with 2-layer BGRUs where the input vectors were
42-dimensional features.
The test results on CB513 (Table 13) show that input

features were slightly affected, and that the most impor-
tant constituent was the BRNN. When input features
comprised a 20-dimensional PSSM and 22-dimensional
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Fig. 8 Secondary structure comparison between native and

predicted structure on protein 6CPP
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Fig. 9Model loss variation trained using TR5534. About 55 epochs,

loss on CB513 dataset stopped decreasing and the model became

overfitting

protein coding, the performance just decreased by 0.1%.
When the recurrent neural network was constructed by
unidirectional GRU, the performance dropped to 67.2%.
Protein structure is particularly depended upon context
residues; therefore, the unidirectional GRU network was
ineffective at capturing contextual dependencies. Regard-
ing the number of stacked BGRU layers, the performance
of the network architecture with 1-layer was poor. When
the staked layers were increased to two layers, the per-
formance increased to 70.5%, and three-layer networks
increased further to 71.4% accuracy. Increases in the
stacked BRNN layers allowed the capture of more long-
range information. Furthermore, the use of residual net-
work indicated that shortcut connections between BRNN
layers were essential for improving BRNN generalization.
Without the residual network, accuracy dropped to 70.7%.
These results are not presented on a model scale. Upon
replacement of the BRNN hidden node with a LSTM,
the model parameters increased to 9.99 million while
the accuracy dropped to 70.2%, because the model had
become overfitted and had not been adequately trained.
When the 1D CNN filter with one kernel was removed,
performance improved slightly improved, but 1.73 million

Table 12 Model-performance comparison using different

training sets against CB513

Training set Model Accuracy(%)

TR5534 CRRNN with 3-layer BGRU 69.6

TR5534 CRRNN with 2-layer BGRU 69.0

TR6614 CRRNN with 3-layer BGRU 70.6

TR12148 CRRNN with 3-layer BGRU 71.4
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Fig. 10Model loss variation trained using TR12148. Loss on CB513

dataset stopped decreasing after 130 iterations and the model

inclined to be stable

parameters increased. These results indicated that the 1D
CNN with 1 kernel effectively controlled model dimen-
sionality without reducing model generalization. And the
local block improved also overall accuracy.

Conclusion
The CNN was successful at feature extraction, and the
RNN was successful at sequence processing. Given that
the residual network ImageNet [25] stacked 152 layers
of convolutional neural network, we proposed a novel
sequence-to-sequence deep learning model (CRRNN)
for protein secondary structure prediction. Here, 1D
CNN and original data were constructed into a local
block to capture adjacent amino acid information. The
residual network connected the interval BGRU network
to improve modeling long-range dependencies. Our

Table 13 Comparison of different model’s generalization

performance

Model Accuracy(%)

CRRNN 71.4 ±0.2

Without ResNet 70.7 ±0.2

3-layer with BLSTM 70.2 ±0.2

Without local bolck 71.1 ±0.3

Without 1D one kernel CNN filter 71.5 ±0.2

With 2-layer BGRU 70.5 ±0.1

Unidirectional GRU 67.2

With 1-layer BGRU 69.5

CRRNN with 42dim features input 71.3 ±0.2
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ensemble model was more generalizable, and the overall
performance exceeded the performance by the state-of-
the-art methods for both 8- and 3-state prediction. The
model can also be used to predict other sequence-labeling
problems and is not limited to biological problems.

Additional file

Additional file 1: The file lists 6614 protein sequences PDB-ID which were

used training in our work. (DOCX 38 kb)
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