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Prediction of age 
and brachial‑ankle pulse‑wave 
velocity using ultra‑wide‑field 
pseudo‑color images by deep 
learning
Daisuke Nagasato1,2,3*, Hitoshi Tabuchi1,2, Hiroki Masumoto1,2, Takanori Kusuyama4, 
Yu Kawai4, Naofumi Ishitobi1, Hiroki Furukawa1, Shouto Adachi1, Fumiko Murao3 & 
Yoshinori Mitamura3

This study examined whether age and brachial‑ankle pulse‑wave velocity (baPWV) can be predicted 
with ultra‑wide‑field pseudo‑color (UWPC) images using deep learning (DL). We examined 170 UWPC 
images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years). Three 
types of images were included (total, central, and peripheral) and analyzed by k‑fold cross‑validation 
(k = 5) using Visual Geometry Group‑16. After bias was eliminated using the generalized linear mixed 
model, the standard regression coefficients (SRCs) between actual age and baPWV and predicted 
age and baPWV from the UWPC images by the neural network were calculated, and the prediction 
accuracies of the DL model for age and baPWV were examined. The SRC between actual age and 
predicted age by the neural network was 0.833 for all images, 0.818 for central images, and 0.649 for 
peripheral images (all P < 0.001) and between the actual baPWV and the predicted baPWV was 0.390 
for total images, 0.419 for central images, and 0.312 for peripheral images (all P < 0.001). These results 
show the potential prediction capability of DL for age and vascular aging and could be useful for 
disease prevention and early treatment.

Vascular aging is one of the most important characteristic changes of the aging  process1,2. It is assessed based 
on the structural and functional arterial properties and is generally considered to be an independent predic-
tor of cardiovascular  risk3. Pulse-wave velocity (PWV), which is the velocity at which the pulse wave of the 
aorta generated by the pulsation of the heart propagates toward the periphery, is an index of systemic arterial 
sti�ness and vascular disorders. It is measured at two arterial locations in the body and calculated using the 
di�erence in distance and time between the two  locations4. In clinical practice, PWV is typically measured at 
the brachial and ankle arteries, and the calculated branchial-ankle PWV (baPWV) value indicates the degree of 
systemic arteriosclerosis and vascular  disorders5,6. In fact, baPWV has been reported to be associated with risk 
factors for many systemic diseases, including cardiovascular  disease7–10,  hypertension11–13, diabetes  mellitus13, 
and  hyperuricemia14.

Recently, arti�cial intelligence (AI) technology including deep learning (DL) has resulted in remarkable 
progress in medicine, and various applications for diagnostic imaging have been  reported15. In the �eld of oph-
thalmology, many researchers, including the authors, have reported the performance of DL in image analysis 
using in vivo laser confocal microscopy, optical coherence tomography (OCT), OCT angiography, and ultra-
wide-�eld fundus  ophthalmoscopy16–27. Recently, Poplin et al. reported that using machine-learning algorithms, 
cardiovascular risk factors including age can be predicted from retinal fundus  photographs28. Because the retinal 
blood vessels are the only blood vessels that can be directly and noninvasively observed in the human body, �nd-
ings such as retinal blood vessels have been widely used in many classi�cation systems. Some of the most globally 
accepted of these systems include the classi�cation of diabetic retinopathy based on evidence from a large-scale 
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clinical trial by the Early Treatment Diabetic Retinopathy  Study29 and the classi�cation of hypertensive retin-
opathy, including the Keith-Wagener-Barker classi�cation and the Scheie  classi�cation30. Such retinal �ndings 
may show minute changes in various systemic diseases from an early stage. In their study, Poplin et al. used only 
fundus images with a 45° �eld of view to predict cardiovascular risk factors; however, such images re�ect only 
a small portion of the entire retina. In contrast, ultra-wide-�eld pseudo-color (UWPC) images taken by ultra-
wide-�eld fundus ophthalmoscopy with a 200° �eld of view are likely to contain more information on systemic 
factors than normal 45° fundus images. �e use of AI to predict age and baPWV with su�cient accuracy will be 
extremely useful in clinical practice in terms of preventive medicine.

In this study, we investigate the potential capability of AI to predict age and vascular aging from UWPC 
images by examining the correlation between actual age and baPWV and predicted age and baPWV from 
UWPC images by DL.

Results
A total of 170 images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years) were 
included in the study. �e mean actual baPWV of the participants was 1.14 ± 0.09 × 103 cm/s. �e characteristics 
of the participants are summarized in Table 1. �e correlation coe�cient between the actual baPWV and the 
actual age was 0.441 (95% con�dence interval [CI]: 0.245–0.637; P < 0.001).

Table 2 shows the predicted baPWV and age using each type of UWPC image (total, central, and peripheral) 
by the neural network. When the neural network made its prediction from the UWPC total images, the stand-
ard regression coe�cient (SRC) between the predicted age and the actual age was 0.833 (95% CI 0.730–0.933), 
and the SRC between the predicted baPWV and the actual baPWV was 0.390 (95% CI 0.217–0.559). When the 
prediction was made from the UWPC central images, the SRC between the predicted age and the actual age 
was 0.818 (95% CI 0.718–0.921), and the SRC between the predicted baPWV and the actual baPWV was 0.419 
(95% CI 0.249–0.593). When the prediction was made from the UWPC peripheral images, the SRC between the 
predicted age and the actual age was 0.649 (95% CI 0.500–0.803), and the SRC between the predicted baPWV 
and the actual baPWV was 0.312 (95% CI 0.140–0.490; all P < 0.001; Fig. 1; Table 2).

Bland–Altman plots showed good agreement between "the average values of the predicted baPWV and actual 
baPWV" and "the di�erence between the predicted baPWV and actual baPWV" with narrow limits of agreement 
(LOA) (Fig. 2). Regarding the UWPC total images, the average was 0.010, the upper 95% LOA was 0.146 (95% CI 
0.120–0.171), the lower 95% LOA was -0.127 (95% CI: -0.153– -0.102), and the correlation coe�cient was 0.775 
(95% CI 0.692–0.838) (P < 0.01). In case of the UWPC central images, the average was − 0.004, the upper 95% 
LOA was 0.142 (95% CI 0.114–0.169), the lower 95% LOA was − 0.149 (95% CI − 0.176 to − 0.121), and the cor-
relation coe�cient was 0.637 (95% CI 0.516–0.732) (P < 0.01). With regard to the UWPC peripheral images, the 
average was − 0.010, the upper 95% LOA was 0.132 (95% CI 0.105–0.158), the lower 95% LOA was − 0.151 (95% 
CI − 0.178 to − 0.124), and the correlation coe�cient was 0.534 (95% CI 0.392–0.651) (P < 0.01). In all the plots, 
there was signi�cant di�erence in the proportional error because each correlation coe�cient was signi�cant.

Figure 3 displays the composite images produced by heat maps when the predictions of baPWV and age were 
superimposed on three types of UWPC images (total, central, and peripheral). Blue indicates the intensity of the 

Table 1.  Participant characteristics.

Participants (n = 85)

Age (years) 57.5 ± 20.9

Gender (male/female) 40/45

Brachial-ankle pulse-wave velocity (× 103 cm/s) 1.14 ± 0.09

Systemic hypertension (%) 14 (16.5%)

Diabetes mellitus (%) 6 (7.1%)

Hyperlipidemia (%) 11 (12.9%)

Table 2.  Correlation between actual and predicted values of age and brachial-ankle pulse-wave velocity. 
baPWV brachial-ankle pulse-wave velocity, CI con�dence interval, SRC standardized regression coe�cient, 
UWPC ultra-wide-�eld pseudo-color. a SRC between predicted and actual age. b SRC between predicted and 
actual baPWV. c Signi�cance of correlation between predicted and actual age. d Signi�cance of correlation 
between predicted and actual baPWV.

Predicted age (years) SRCa (95% CI) P  valuec
Predicted baPWV 
(× 103 cm/s) SRCb (95% CI) P  valued

Total image of UWPC 57.0 ± 17.5 0.833 (0.730–0.933)  < 0.001 1.12 ± 0.03 0.390 (0.217–0.559)  < 0.001

Central image of 
UWPC

57.1 ± 14.3 0.818 (0.718–0.921)  < 0.001 1.13 ± 0.04 0.419 (0.249–0.593)  < 0.001

Peripheral image of 
UWPC

58.7 ± 15.8 0.649 (0.500–0.803)  < 0.001 1.13 ± 0.05 0.312 (0.140–0.490)  < 0.001
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neural network-based identi�cation. In predicting both age and baPWV, the neural network mainly placed its 
focus on the posterior pole, including the optic nerve head and vascular arcade, in both the total images and cen-
tral images. Moreover, the network did not focus on peripheral images or the peripheral part of the total images.

Discussion
�e results of this study demonstrate that using UWPC images, DL can predict age with high accuracy. In addi-
tion, the predicted baPWV from UWPC images using DL was signi�cantly correlated with the actual baPWV, 
although the correlation was small, indicating the DL’s potential capability to predict vascular aging. In this study, 
the included images were normal fundus images without apparent retinal �ndings such as retinal hemorrhage, 
hard exudate, and so� exudate. �is means that, interestingly, DL was likely capable of predicting age with a high 
degree of accuracy from fundus images that had no apparent abnormal clinical �ndings and also recognized 

Figure 1.  Correlation between the actual and predicted values by the neural network of age and brachial-
ankle pulse-wave velocity (baPWV). (A) Correlation between the actual age and actual baPWV. �e solid 
line represents the best-�t linear regression line (y = 0.00193x + 1.026). (B) Correlation between the actual and 
predicted ages from the ultra-wide-�eld pseudo-color (UWPC) images by the neural network. �e �gure on the 
le� shows the correlation obtained when the total images were used for the prediction. �e �gure in the middle 
shows the correlation obtained when the central images were used. �e �gure on the right shows the correlation 
obtained when the peripheral images were used. (C) Correlation between the actual and predicted baPWV from 
the UWPC images by the neural network. �e �gure on the le� shows the correlation obtained when the total 
images were used for the prediction. �e �gure in the middle shows the correlation obtained when the central 
images were used. �e �gure on the right shows the correlation obtained when the peripheral images were used.
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Figure 2.  Bland–Altman plots between predicted brachial-ankle pulse-wave velocity (baPWV) and actual 
baPWV. �e horizontal axis is "the average values of the predicted and actual baPWV," and the vertical axis is 
"the di�erence between the predicted and actual baPWV". �e three black dashed lines in each plot indicate the 
upper LOA, the mean, and the lower LOA from top to bottom, and the gray dotted lines above and below each 
LOA indicate its 95% con�dence interval. �e �gure on the le� shows the total images, the �gure in the middle 
shows the central images, and the �gure on the right shows the peripheral images used for the prediction. �ere 
was no signi�cant di�erence in the additional error, but proportional error was signi�cantly observed in all the 
plots.

Figure 3.  �e composite images produced by the heat maps when predicting branchial-ankle pulse-wave 
velocity and age were superimposed on three representative types of UWPC images: total, central, and 
peripheral images. (A) Total UWPC image, (B) central UWPC image, (C) peripheral UWPC image (D–F) 
�e composite images produced by the heat maps when predicting branchial-ankle pulse-wave velocity was 
superimposed on each type of UWPC image. (G–I) �e composite images produced by the heat maps when 
predicting age were superimposed on each type of UWPC image. In (D,E,G,H), it is evident that the neural 
network model focuses on the posterior pole area, including the optic nerve head. On the other hand, in 
(D,F,G,I), the neural network model tends to focus on parts other than the periphery.
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minute di�erences in retinal structures, including retinal blood vessels, thereby estimating the severity of arte-
riosclerosis and vascular disorders.

Arteriosclerosis that causes cardiovascular disease can progress to arterial occlusive disease, which may 
not only be fatal but also have serious sequelae. However, addressing risk factors early and promoting healthy 
lifestyle changes can improve this  condition31,32. Moreover, ophthalmologists can reliably detect the risk of vari-
ous systemic diseases, including diabetes mellitus and hypertension, from fundus photographs, when retinal 
hemorrhage, hard exudate, or so� exudate is found in the photographs of patients with moderate or higher 
hypertensive  retinopathy30 or in the photographs of patients with initial stage or higher diabetic  retinopathy29. 
However, identifying such risks using fundus images is challenging for ophthalmologists when patients have mild 
or less hypertensive retinopathy with minute changes in the retina or when patients with diabetes mellitus have 
not developed clear diabetic retinopathy. However, as shown in our results, the fact that DL was able to predict 
baPWV, the value that re�ects the status of blood vessels in the entire body, relatively easily from apparently 
normal UWPC images suggests that it can be used as an assessment item in screening tests.

Although they did not present the speci�c results, Poplin et al.28 claimed that there was a fairly linear rela-
tionship between actual age and the DL’s predicted age from fundus images with a 45° �eld of view. In our study, 
the SRCs between the actual age and the DL’s predicted age from the UWPC images with a 200° �eld of view 
were 0.833, 0.818, and 0.649 for total, central, and peripheral images, respectively. Our results cannot be simply 
compared with the results from the study by Poplin et al.; however, the results of both studies demonstrate the 
DL’s ability to predict age with very high accuracy from UWPC images with 45° and 200° �elds of view. For the 
baPWV values, the SRCs between the actual and the DL’s predicted values were 0.390, 0.419, and 0.312 for total, 
central, and peripheral images, respectively, which indicate that the prediction accuracy for age is clearly higher 
than that of baPWV. �is means that DL predicts age more accurately than baPWV by detecting other age-related 
changes in the fundus in addition to the vascular changes from UWPC images.

One of the age-related changes observed in the fundus is a decrease in choroidal thickness. In normal adult 
eyes, the choroidal thickness has been reported to decrease by 1.1 to 4.1 µm per year with  aging33,34. When 
the choroid becomes thinner, the choroidal vessels become more visible, and the tigroid fundus can be clearly 
 observed35,36. In fact, it has been reported that the degree of choroidal thinning can be predicted based on 
changes in the tigroid  fundus37. In the heat maps produced when the neural network predicted age, the model 
mainly placed its focus on the posterior pole, including the optic nerve head and the retinal vascular arcade, 
in the UWPC total and central images. With aging, the neuroretinal rim area decreases by 0.28% to 0.39% per 
year, and the mean ratio of the cup/disk diameter increases by about 0.1 between the age of 30 and 70 years38. 
Another age-related change is a decreased number of retinal ganglion cells histologically. As a result, the retinal 
nerve �ber layer becomes thin, and the number of retinal pigment cells decreases. Moreover, the pigment of 
the retinal pigment epithelium becomes thin, with an associated decrease in retinal  re�exes39. When a neural 
network predicts age from UWPC images, the network is likely to detect not only changes in the blood vessels 
but also the aforementioned age-related changes, including morphological changes in the optic nerve head, 
changes in retinal color tone, and changes in the permeability of choroidal blood vessels, thus predicting age 
more accurately than baPWV.

Another point to note in our results was that for the prediction of age, the strongest correlation was observed 
when the prediction was made from the total images, whereas for the prediction of baPWV, the strongest cor-
relation was obtained from the central images. In general, having more information results in a more accurate AI 
prediction. �erefore, the authors expected that the predictions using the total images would produce the highest 
prediction accuracy for both age and baPWV predictions. With regard to retinal blood vessels in older individuals 
with arteriosclerosis, it is known that the diameters of the blood column of the retinal arteries are signi�cantly 
irregular as compared with normal  subjects40. However, retinal blood vessels in the peripheral retina are thin-
ner than in the posterior retina. To perform the analysis in our study, all UWPC images were downsized from 
3900 × 3072 pixels to 256 × 192 pixels. �is image downsizing may have prevented the neural network from fully 
identifying minute changes in the peripheral retinal blood vessels. �ese possible reasons may explain why, for the 
prediction of age, the strongest correlation was observed with the total images, which had the largest amount of 
information, whereas for the prediction of baPWV, in contrast to our expectation, the strongest correlation was 
with the central images, in which the blood vessels of the posterior pole were easier to for the network to focus 
on. UWPC images are considered to contain more information than normal fundus images; however, the images 
of the posterior pole may be su�cient when predicting baPWV with the same image quality used in this study.

In a study conducted in patients with low to moderate cardiovascular risk factors, Hung et al.41 reported 
that aging was predictive of increased baPWV and baPWV was a composite risk factor for early atherosclerotic 
changes and a predictor for the development of diastolic dysfunction and long-term cardiovascular risk. Our 
study results are consistent with the report by Hung et al., indicating some correlations between age and actual 
baPWV. Tomiyama et al. reported that, of 12,517 patients (male, 8227; female, 4290) who received no medical 
treatment and had no history of cardiovascular disease, the correlations between age and actual baPWV were 
0.50 in males and 0.68 in  females42. Our study participants included those who were receiving treatment for 
conditions including hypertension, diabetes mellitus, or hyperlipidemia, although no obvious retinopathy was 
observed. �e hemodynamics of the participants might have been more variable as compared with participants 
who received no medical treatment, which may explain why the correlations found in our results were not as 
high as those reported by Tomiyama et al.

One of the major limitations of our study is the small sample size. Next, to shorten the analysis time, the 
original UWPC image with 3900 × 3072 pixels was resized to 256 × 192 pixels. �is research was conducted in a 
single facility. In future studies, analysis using the UWPC images from multiple facilities would be required. In 
addition, we excluded images for which retinal specialists would be unable to determine fundus �ndings because 
of conditions such as severe cataracts, corneal opacity, or vitreous opacity due to vitreous hemorrhage. We also 
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excluded images with obvious retinochoroidal diseases such as diabetic retinopathy, retinal vein occlusion, and 
age-related macular degeneration. Furthermore, it is known that age and PWV do not always have a signi�cant 
correlation in the population of adults older than 70 years, as there are many complications of overt and latent 
chronic diseases. Moreover, there are large di�erences in the progress of arteriosclerosis among  individuals43. 
Future studies are needed to examine how AI can predict age and baPWV from UWPC images in patients with 
various retinochoroidal diseases as well as in the elderly population. However, the ability to predict baPWV 
from fundus images before the onset of fundus diseases would be highly useful from the viewpoint of preventive 
medicine, as baPWV is associated with risk factors of various common systemic vascular diseases.

In summary, our results indicate that DL can predict age and baPWV from UWPC images. Using AI to 
screen fundus images may provide useful information for assessing the early risks of various systemic diseases 
in asymptomatic patients. �is �nding is very signi�cant from the viewpoint of disease prevention and early 
treatment for patients.

Methods
Data set. �is study adhered to the tenets of the Declaration of Helsinki and was approved by the ethics 
committee of Tsukazaki Hospital (Himeji, Japan). Written informed consent was obtained from all participants, 
who were provided su�cient information regarding the nature of the study and possible outcomes.

On the same day that the participants had their UWPC image taken using the ultra-wide-�eld scanning 
laser ophthalmoscope (Optos 200Tx; Optos PLC, Dunfermline, UK), their age was registered and baPWV was 
measured. Individuals with apparent ocular diseases were not enrolled as study participants. Retinal specialists 
examined the collected fundus images, and those images with obvious fundus lesions or vitreous opacity were 
excluded. Data were collected between May 22, 2018, and February 14, 2019, and a total of 170 images of both 
eyes of 85 participants were included in the study.

From the 170 UWPC images, three types of images (total, central, and peripheral images) were created by 
experienced certi�ed orthoptists. Images with no �lling were referred to as UWPC total images. �e UWPC 
central images were created by �lling the peripheral region of a total image with black color to obtain the same 
45° �eld of view, including retinal vascular arcades and optic disk reported in the study by Poplin et al.28, in which 
age was predicted from the posterior pole images taken by fundus cameras. �e UWPC peripheral images were 
created by �lling the central region of a total image with black color.

In this study, six types of validations were performed to predict baPWV and age from each of the three types 
of UWPC images (total, central, and peripheral images; Fig. 4).

k-fold cross-validation (k = 5) was used for these  validations44,45. A total of 170 images of 85 people were 
divided into k groups in a method in which the images taken from the same participant would belong to the 
same group. �e (K − 1) groups were used for training, and one group was used for validation.

For the training data, nine types of image processing were performed: unprocessed, two types of brightness 
correction, two types of gamma correction, gaussian blur, histogram equalization, and two types of noise addi-
tion. �ree of the nine types of image-processing techniques were randomly employed, and the images obtained 
were �ipped horizontally. Using such processing, the number of images used for training increased by six times. 
Using the ampli�ed training data, a convolutional neural network was developed, and the validation data were 
used to evaluate the performance of the constructed neural network. �is process was repeated k times so that 
all images in the k groups could be used for validation.

�is method is similar to that used in the previous  studies18,21.

Figure 4.  Analysis and validation of three types of ultra-wide-�eld pseudo-color images.
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Brachial‑ankle PWV measurement. �e baPWV measurements were performed using the methodol-
ogy described in previous  studies5,46. �e baPWV measurements were obtained using a noninvasive automated 
device (model BP-203RPE-III; Nihon Colin, Tokyo, Japan). A�er each participant had rested in the supine posi-
tion for �ve minutes, cu�s were placed around the upper arms (brachial arteries) and the ankles (posterior 
tibial arteries) bilaterally to perform measurements. We used the blood pressure measured at the upper limb, 
and the distance between the sampling points of baPWV was calculated automatically based on the height of 
the participant. �e path lengths from the suprasternal notch to the ankle (La) were obtained using the for-
mula: La = 0.8129 × height (cm) + 12.328. �e path lengths from the suprasternal notch to the brachium (Lb) 
were obtained by the formula: Lb = 0.2195 × height − 2.07345. Tba was de�ned as the time interval between the 
brachium and ankle, which was measured from the wave front of the brachial waveform and that of the ankle 
 waveform5. �e baPWV was then calculated according to the formula: baPWV = (La − Lb)/Tba.

�e baPWV values on the right side (right brachial artery and right posterior tibial artery) and the le� side 
(le� brachial artery and le� posterior tibial artery) were recorded simultaneously, and the higher value of the 
two was used as the actual baPWV of the participant.

DL model and its training. We used a neural network called Visual Geometry Group-16 (VGG-16)47. It 
has been reported that convolutional neural networks such as VGG-16 automatically learn local  features48,49. All 
images were downsized from 3900 × 3072 pixels to 256 × 192 pixels for analysis.

VGG-16 consists of �ve convolutional blocks and a fully connected layer block. A convolutional block consists 
of convolutional  layers48–50 that automatically detect the features in the input (image) that in�uence the output 
(in this study, age or baPWV);  ReLU51, which is an activation function to avoid vanishing gradient problems; 
and a max-pooling  layer52, which compresses the amount of information.

A�er �ve convolutional blocks, the tensor passes through a fully connected layer block consisting of a �atten 
layer and two fully connected layers. �e �atten layer removes spatial information from the extracted features. 
�e layer then passes through the fully connected layers to compress many extracted features. We output the 
�nal, fully connected layer without letting it pass through the activation function. We used this output as the 
age or baPWV to train the neural network and constructed a model with the ability to predict age and baPWV.

To accelerate the training process and improve the performance of a model, even with a small amount of data, 
we used a technique called transfer learning. Weights learned from an image dataset called ImageNet containing 
over 14 million images of 20,000 di�erent types are o�en used in transfer learning. �e parameters trained by 
ImageNet were used as the initial weights for the �rst four convolution  blocks53. We used the Adam method to 
update the parameters for our model (learning ratio = 0.0001)54.

Keras (https ://keras .io/ja/) of Python (backend TensorFlow) was used for the construction and validation of 
the neural network. �e code used for the validation is provided in Dataset S1.

Outcome. We obtained the following SRCs between the predicted values by the neural network and actual 
values of both age and baPWV from each type of UWPC images: SRC between predicted age from the UWPC 
total images and actual age (ρ11); SRC between predicted baPWV from the UWPC total images and actual 
baPWV (ρ12); SRC between predicted age from the UWPC central images and actual age (ρ21); SRC between 
predicted baPWV from the UWPC central images and actual baPWV (ρ22); SRC between predicted age from 
the UWPC peripheral images and actual age (ρ31); SRC between predicted baPWV from the UWPC peripheral 
images and actual baPWV (ρ32). We used the obtained SRCs as performance evaluation indexes.

In addition, for each type of UWPC image, Bland–Altman analysis was performed on the predicted and 
actual baPWV.

Statistical analysis. Linear regression analysis was used to examine the association between actual baPWV 
and actual age. �e SRCs between the values predicted by the neural network and the actual values of both age 
and baPWV from each type of UWPC image were calculated using the following method. A generalized linear 
mixed model (random intercept model) was constructed as follows.

where [pred’] is the predicted value that is standardized so that it has a mean 0 and variance 1, and [actual’] is 
the actual value processed in the same way. [PID] is a variable that stores which data belongs to which patient.

�e prior distributions of α_all and β0 were uniform distributions of (− ∞, ∞), and σ_P^2, and σ_α^2 were 
irregular uniform distributions of (0, ∞). �e number of chains was 4, the number of times of random number 
generation was 2000, and the burn-in period was 1000. No decimation was performed. To generate the random 
number, we used the No-U-Turn Sampler, one of the implementation methods of the Hamiltonian Monte Carlo 
 method55. �e representative value was the posterior median value, 95% CI (2.5–97.5%). �e analysis was per-
formed using pyStan, a Python package (https ://pysta n.readt hedoc s.io/en/lates t/getti ng_start ed.html). P values 
less than 0.05 (P < 0.05) were considered signi�cant.

Heat maps. Interpretable machine-learning techniques can be grouped into two categories, namely intrinsic 
interpretability and post-hoc  interpretability56. Class activation method (CAM) is a post-hoc local explanation 
method which explains why the model makes a particular decision.

pred′ [n] ∼ Normal(α[PID[n]) + β ∗ actual′[n], σ 2
P n = 1, 2, 3, . . . , N

α[k] = αall + αid [k] k = 1, 2, 3, . . . , K

αid[k] ∼ Normal(0, σ 2
α ) k = 1, 2, 3, . . . , K

https://keras.io/ja/
https://pystan.readthedocs.io/en/latest/getting_started.html
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Heat maps were produced using the Score-CAM method to indicate where the neural network placed its 
 focus57. Score-CAM removes the dependence on the gradients by obtaining the weight of each activation map 
through its forward passing score on the target class.

�e target layer was the max-pooling layer of the �rst block. �e ReLU function was used to correct the loss 
function during backpropagation.

Data availability
Fundus images and image data sets used in the study are available from the corresponding authors upon reason-
able request.
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