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Purpose

Allogeneic hematopoietic stem-cell transplantation (HSCT) is potentially curative for acute leuke-
mia (AL), but carries considerable risk. Machine learning algorithms, which are part of the data
mining (DM) approach, may serve for transplantation-related mortality risk prediction.

Patients and Methods
This work is a retrospective DM study on a cohort of 28,236 adult HSCT recipients from the AL

registry of the European Group for Blood and Marrow Transplantation. The primary objective was
prediction of overall mortality (OM) at 100 days after HSCT. Secondary objectives were estimation
of nonrelapse mortality, leukemia-free survival, and overall survival at 2 years. Donor, recipient, and
procedural characteristics were analyzed. The alternating decision tree machine learning algorithm
was applied for model development on 70% of the data set and validated on the remaining data.

Results

OM prevalence at day 100 was 13.9% (n = 3,936). Of the 20 variables considered, 10 were
selected by the model for OM prediction, and several interactions were discovered. By using a
logistic transformation function, the crude score was transformed into individual probabilities for
100-day OM (range, 3% to 68%). The model’s discrimination for the primary objective performed
better than the European Group for Blood and Marrow Transplantation score (area under the
receiver operating characteristics curve, 0.701 v 0.646; P < .001). Calibration was excellent.
Scores assigned were also predictive of secondary objectives.

Conclusion
The alternating decision tree model provides a robust tool for risk evaluation of patients with AL

before HSCT, and is available online (http://bioinfo.Inx.biu.ac.il/~bondi/web1.html). It is presented
as a continuous probabilistic score for the prediction of day 100 OM, extending prediction to 2
years. The DM method has proved useful for clinical prediction in HSCT.
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ten plays a key role in patient selection.” Risk scores
for mortality prediction, such as the European

Allogeneic (allo) hematopoietic stem-cell transplan-
tation (HSCT) is a potentially curative procedure for
selected patients with hematologic disease. Despite a
reduction in transplantation risk in recent years,'
morbidity and mortality remain substantial, making
the decision of whom, how, and when to perform
transplantation of great importance.

Numerous parameters affect transplantation-
related risk. When indicated, clinical judgment of-
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Group for Blood and Marrow Transplantation
(EBMT) risk score and the Hematopoietic Cell
Transplant-Comorbidity Index (HCT-CI),> may
aid decisions. These scoring systems were developed
using a standard statistical approach and have been
validated; however, their predictive accuracy is
still suboptimal.®

The development of large and complex regis-
tries,'® incorporating biologic and clinical data, and
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Predicting Allo-HSCT Outcomes With a Machine Learning Approach

the need for improved prediction models generate the drive to apply
machine learning (ML) algorithms for clinical predictions."" ML is a
field in artificial intelligence stemming from computer sciences. The
underlying paradigm does not start with a predefined model; rather, it
lets the data create the model by detecting underlying patterns.'! Thus,
this approach avoids preassumptions about model types and variable
interactions, and may complement standard statistical methods.'*"?
Different algorithms are used to produce a function, a model, which
will fit the data and not the other way around. In such procedures,
many variables and combinations thereof can be used, and models are
developed on a training set and validated on a test (ie, validation) set." !

ML algorithms are part of a wider approach, called data mining
(DM), for analyzing large and complex data sets. Such algorithms have
been used in various financial and technologic applications and are
gradually entering clinical use."' DM is a multidisciplinary field seek-
ing to discover knowledge in databases in a systematic and automatic
process.'* A primer on the DM method in HSCT has been published
by Shouval et al."*

The need for improved risk assessment of allo-HSCT and the
potential benefits of the DM approach served as the rationale for
undertaking the current study. We have applied such an approach on
a large cohort of patients with acute leukemia (AL) to develop an
ML-based prediction model of overall mortality (OM) 100 days after
allo-HSCT. We then assessed the model’s ability to predict outcomes
at 2 years.

Study Design and Outcomes

This was a retrospective, DM, supervised learning study, on the basis of
data reported to the Acute Leukemia Working Party registry of the EBMT. The
EBMT is a voluntary working group of more than 500 transplantation centers,
required to report all consecutive HSCT and follow-ups annually in a stan-
dardized manner. The registry is routinely audited. The study was approved by
Acute Leukemia Working Party.

The primary objective was prediction of OM 100 days after allo-HSCT.
Secondary objectives were the estimation of overall survival (OS), nonrelapse
mortality (NRM), leukemia-free survival (LFS), and relapse incidence at 2
years, according to the score predicted for day100 OM.

All outcomes were measured from the time of allo-HSCT. Day 100 OM
was defined as death from any cause before day 100; NRM was defined as death
without previous relapse/progression; LFS was defined as survival without
leukemia progression or relapse; and relapse was defined as leukemia recur-
rence at any site. Cumulative incidence functions were used to estimate 2-year
NRM and relapse after transplantation, taking into account the competition
between these two events.'” Probabilities of OS and LFS at 2 years were
calculated using the Kaplan-Meier estimate.'® Patients were censored at time
of the last follow-up.

Population and Variables

Per protocol, inclusion criteria encompassed first allogeneic transplan-
tations, performed from 2000 to 2011, using peripheral blood stem cells or
bone marrow as the cell source, in adults age = 18 years diagnosed with de
novo AL. Haploidentical transplantations were excluded.

A total of 29,685 patients from 404 European centers were initially
analyzed. Patients lost from follow-up before day 100 after HSCT were
discarded from analysis (n = 1,449, 5%; Data Supplement). Twenty vari-
ables describing recipient, donor, and procedural characteristics were con-
sidered. Variables were defined according to EBMT criteria'” and are
detailed in Table 1 and the Data Supplement.

Wwww.jco.org

Alternating Decision Tree

The alternating decision tree (ADT) is an ML algorithm designed for
prediction. It generates alternating levels of prediction and decision nodes,
denoted as ellipses and rectangles, respectively. Each prediction node is asso-
ciated with a weight, representing its contribution to the final prediction score,
whereas each decision node contains a splitting attribute (ie, variable). The tree
is formed through an iterative process. The iteration number, in which the
decision node was introduced to the tree, is an arbitrary measure of its impor-
tance as a decision rule (ie, lower iterations correspond to higher impor-
tance).'® The first level of decision nodes represents independent variables,
whereas daughter decision nodes are dependent on previous decisions.

Prediction with ADT involves pursuing multiple paths, corresponding
with the instance features, with the same variable possibly playing multiple
roles in different places along the tree. To calculate the score, one starts at the
root and proceeds along multiple paths down the tree, according to the follow-
ing rules: If the node is a prediction node, proceed along all of the dotted edges
emanating from it; if the node is a decision node, proceed along the edge
corresponding to the instance characteristics (Fig 1). The cumulative score
gathered by an instance (ie, patient) is the sum of the prediction values along all
paths that the patient traverses in the decision tree. A positive score implies
membership of one class, and a negative score, membership of the other class.
Higher absolute scores are associated with higher probability of a certain
binary outcome (ie, day 100 OM). In the current study, we did not choose a
threshold for classification, but used the cumulative score as a continuous
probabilistic measure for classification. The good performance of ADT, which
is achieved while maintaining interpretability, makes it an excellent choice in
clinical settings.'®*' For a detailed description of the algorithm, see Freund
and Mason'® and the Data Supplement.

Model Development and Validation

The ADT algorithm was applied for prediction model development. The
study cohort was randomly divided into training (n = 19,765; 70%) and
validation (n = 8,471; 30%) data sets. The algorithm was trained and tested
using 10-fold cross validation on the training data set and validated on the
validation set (Data Supplement). In addition, a separate Cox regression
model, including the variables selected by the ADT model, was simultaneously
developed on the training set for prediction of day 100 OM and then validated
using the validation set. Software packages used were WEKA (version 3 to 7-9;
http://www.cs.waikato.ac.nz/ml/weka/), SPSS 19 (http://www-01.ibm.com/
software/analytics/spss/), and R version 3.0.1 (http://www.r-project.org/). For
personalized score calculation, an online interface was constructed (http://
bioinfo.Inx.biu.ac.il/~bondi/web1.html).

Predictive Performance and Comparison With the
EBMT Score

To transform the crude score into individual probabilities of day 100
OM, the training set was calibrated by entering the crude score as a
covariate in a logistic regression model, with the dependent variable being
day 100 OM. The quality of the score after calibration was evaluated
through a reliability diagram, which verified that in each score interval,
defined according to the deciles, the mean score was consistent with the
observed proportions of events.”>?*> The prediction model’s discrimina-
tion was assessed using the area under the receiver operating characteristics
curve (AUC). AUCs were computed as time-dependent receiver operating
characteristic curves, and comparisons were performed by the time re-
ceiver operating characteristic software.**

Patient Characteristics

The characteristics of 28,236 analyzed patients are listed in
Table 1. The median follow-up time was 45 months. Most patients
had acute myeloid leukemia (70%), were in first complete remission
(CR1;60%), and received myeloablative conditioning (MAC; 71.5%).
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Table 1. Patient Characteristics

(continued in next column)

Patients No.
Variable Value (n = 28,236) Missing
Median age (IQR), years 43 (31-563) 28,236 0
Median time between diagnosis
and HSCT (IQR), days 195 (139-379) 28,217 19
Median annual allo-HSCT
experience (IQR)* 16 (9-25) 28,236 0
Median BMI (IQR) 24 (22-27) 11,767 16,469
Patients No. Missing
Diagnosis, No. (%)
Total 28,236 0
AML 19,853 (70.3)
ALL 8,383 (29.7)
Disease stage, No. (%)
Total 28,236 0
CR1 17,055 (60.4)
CR2 5,281 (18.7)
Advancedt 5,900 (20.9)
Patient sex, No. (%)
Total 28,198 28
Male 15,426 (54.6)
Female 12,772 (45.2)
Karnofsky performance score at
HSCT, No. (%)
Total 24,596 3,640
= 80 23,951 (93.6)
< 80 1,645 (6.4)
R CMV serostatus, No. (%)
Total 22,096 6,140
Negative 7,856 (35.6)
Postive 14,240 (64.4)
Cytogenetics, No. (%)
Total 11,029 17,207
Nonpoor 7.441 (67.5)
Poor 3,688 (32.5)
Donor type, No. (%)
Total 28,236 0
HLA MSD 15,208 (53.9)
HLA MUD#% 13,028 (46.1)
Donor sex, No. (%)
Total 27,582 654
Male 16,821 (61)
Female 10,761 (39)
D-R sex combination, No. (%)
Total 27,546 690
Male D to male R 9,734 (34.4)
Female D to female R 5,425 (19.2)
Male D to female R 7,056 (24.9)
Female D to male R 5,331 (18.9)
D CMV serostatus, No. (%)
Total 21,843 6,393
Negative 10,588 (48.5)
Positive 11,255 (51.5)
D-R CMV serostatus
combination, No. (%)
Total 21,527 6,709
D CMV~/R CMV~ 5,572 (25.9)
D CMV*/R CMV™* 9,019 (41.9)
D CMV~/R CMV* or C
CMV*/R CMV~ 6,936 (32.2)
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Table 1. Patient Characteristics (continued)
Patients No. Missing

Year of HSCT, No. (%)

Total 28,236 0
2000-2003 6,607 (23.4)
2004-2007 9,815 (34.8)
2008-2011 11,814 (41.8)
Conditioning, No. (%)
Total 27,238 998
MAC with TBI 10,815 (39.7)
MAC without TBI 8,670 (31.8)
RIC 7,753 (28.5)

Previous autograft, No. (%)

Total 28,236 0
Negative 27,264 (96.6)
Positive 972 (3.4)

GVHD prevention, No. (%)

Total 22,980 5,256
Other 13,993 (60.9)

ATG 7,558 (32.9)

Ex vivo T-cell depletion 1,429 (6.2)

Source of stem cells, No. (%)

Total 28,236 0
PB or BM + PB 22,113 (78.3)
BM 6,123 (21.7)
Overall mortality at day 100,
No. (%)
Total 28,236 0
Negative 24,300 (86.1)
Positive 3,936 (13.9)

NRM at day 100, No. (%)

Total 28,236 0
Negative 25,308 (89.6)
Positive 2,928 (10.4)

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid
leukemia; ATG, antithymocyte globulin; BM, bone marrow; BMI, body mass
index; CMV, cytomegalovirus; CR1, first complete remission; CR2, second
complete remission; D, donor; GVHD, graft-versus-host disease; HSCT, he-
matopoietic stem-cell transplantation; IQR, interquartile range; MAC, myelo-
ablative conditioning; MSD, matched sibling donor; MUD, matched unrelated
donor; NRM, nonrelapse mortality; PB, peripheral blood; R, recipient; RIC,
reduced-intensity conditioning; TBI, total body irradiation.

“Annual allogeneic transplantations done in the individual center, and re-
ported to the European Group for Blood and Marrow Transplantation, in the
year the transplantation was performed.

TAIll other stages.

FHLA allelic level compatibility: 10 of 10 (n = 4,619), 9 of 10 (n = 2,099),
< 90f 10 (n = 1,363), and missing (n = 4,947).

Grafts from matched sibling donors were used in 53.9% of patients.
The graft source was mainly peripheral blood (78%). OM and NRM
prevalence at day 100 were 13.9% (n = 3,936) and 10.4% (n = 2,928),
respectively. Relapse incidence before 100 days was 9.6% (n = 2,714).
Infection and graft-versus-host disease were the leading causes of day
100 NRM (Data Supplement). The training and validation data sets
were similar in terms of baseline variables, except for donor’s sex and
recipient-donor sex combination (Data Supplement).

ADT Model Output

On the basis of the training set, a prediction model for day 100
OM was developed. We applied the ADT algorithm on the training set
and optimized parameters (Data Supplement) through 10-fold cross
validation. Figure 1 depicts the graphical output of the ADT predic-
tion model. The ADT algorithm selected 10 of 20 variables (Fig 1 and
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Fig 1. Alternating decision tree (ADT) prediction model for overall mortality (OM) at day 100. The ADT consists of alternating levels of prediction (ellipses) and decision
nodes (rectangle). Each prediction node is associated with a weight, representing its contribution to the cumulative prediction score, whereas each decision node
contains a splitting attribute. The iteration number in which the decision node was introduced is described by the number on the left side of the decision node and is
inversely correlated with predictive influence. Variables are not mutually exclusive. Patients traverse the tree according to their features (ie, variable values), and the
cumulative score is calculated. For example, the cumulative prediction score for a patient with the following features (plotted as black arrows on the tree):
received transplantation in CR2, a Karnofsky performance score of 90, diagnosed with acute myeloid leukemia, received transplantation from a matched
unrelated donor (MUD) in 2011, and both recipient and donor are cytomegalovirus (CMV) sero-negative, is —0.099 (0.065 — 0.178 — 0.057 + 0.236 — 0.074 +
0.064 — 0.035 — 0.12) . The score is transformed into an individualized probability of day 100 OM (10.7% for the above example) and provides the output for
the online user interface. Only 6 of the 10 variables included in the model were necessary for score calculation in this patient. No. of annual hematopoietic
stem-cell transplantations (HSCTs) represents the No. of annual allogeneic HSCTs performed in the individual center in the year the transplantation was
performed. AML, acute myeloid leukemia; CR, complete remission; D, donor; Disease st., disease stage; dx, diagnosis; neg, negative; PS, performance score;
R, recipient; RIC, reduced-intensity conditioning.

Table 2). Independent variables for the primary objective were
disease stage, Karnofsky performance score, donor type, recipient-
donor cytomegalovirus (CMV) serostatus, and HSCT year, whereas
age, diagnosis, days from diagnosis to transplantation, conditioning

Table 2. Variables Selected by the ADT Prediction Model for Day 100 OM
Boosting
Iteration
(predictive

Variable influence) Independent Dependent
Disease stage 1and 3 =F —
Karnofsky at HSCT 2 + —
Age 4 and 10 — 4
Days between diagnosis and HSCT 5 — +
Conditioning regimen 6 — +
Donor type 7 + —
Annual allo-HSCT experience 8 — 4
Year of HSCT 9 + —
D-R CMV serostatus combination 11 + —
Diagnosis 12 — +
Abbreviations: ADT, alternating decision tree; CMV, cytomegalovirus; D,
donor; HSCT, hematopoietic stem-cell transplantation; OM, overall mortality;
R, recipient.

Wwww.jco.org

regimen, and annual number of transplantations were dependent
variables.

Selected interactions discovered by the tree include the following:
patients with acute myeloid leukemia who received transplantation in
CR2 had a lower risk of OM when compared with patients with acute
lymphoblastic leukemia who received transplantation in the same
stage (prediction node weight, —0.074 and 0.152, respectively); a
shorter duration (< 142 days) between diagnosis and transplantation
in CRI1 or advanced-stage patients was associated with lower OM
(node weight, —0.144). However, this effect was abrogated in patients
age 46 years or older (node weight, 0.148). In the same disease stage
categories (CR1 and advanced), older patients (age = 37 years) receiv-
ing reduced-intensity conditioning had lower OM risk (node weight,
—0.144) when compared with MAC. In transplantations from
matched unrelated donors, center experience (= 20 transplantations/
year) positively affected outcomes.

The year range of transplantation was incorporated in the predic-
tion model, because HSCTs performed after 2003 were associated
with lower day 100 OM rates. Nevertheless, it was not entered in the
online user interface, because the model’s aim is prospective outcome
prediction. Thus, the year range is predefined in the Web site as 2004
and on.

© 2015 by American Society of Clinical Oncology 3147
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Fig 2. The alternating decision tree score calibration plot. Mean predicted
probability of overall mortality at day 100 for each categorized score interval was
plotted against observed proportions of events. R, correlation coefficient.

Prediction of Day 100 OM

Before calibration, individual patient scores ranged from
—0.812 to 1.389. After calibrating the validation set, day 100
OM probabilities ranged from 3% to 68%. Consistency between
predicted and observed probabilities for primary objectives was
excellent (Fig 2).

The ADT model’s discrimination for the primary objective out-
performed the EBMT score (AUC, 0.702 v 0.646; P = 3 - 107 '%).
Predictive performance of the Cox model (Data Supplement), when
compared with a subset of patients with available information on all 10
variables included, did not differ from the ADT model (AUC, 0.693 v
0.697; P = .38; Data Supplement).

Prediction of Long-Term Outcomes

Probabilities of 2-year outcomes in each score interval for
secondary objectives are summarized in Table 3 and Figure 3.
Cumulative incidence of 2-year NRM was 38.2% (95% CI, 34.7%
to 41.7%) for patients included in the highest score interval, with a
corresponding Kaplan-Meier estimate of OS and LFS of 19.9%
(95% CI, 17% to 22.9%) and 17.5% (95% CI, 14.7% to 20.3%),
respectively. Probabilities of 2-year NRM, OS, and LFS, for patients
in the lowest score interval, were 9.8% (95% CI, 7.9% to 12%),
72% (95% CI, 68.8% to 75.1%), and 64.9% (95% CI, 61.6% to
68.2%), respectively. Relapse incidence was not predicted by the
score. Discrimination of the ADT model for 2-year OS outper-
formed the EBMT score and did not differ when compared with
the Cox model (Data Supplement).

Eligibility of patients with AL for allo-HSCT is based on a risk-
benefit assessment of the relapse risk versus transplantation risk.*>
By applying the ADT algorithm, we have developed a novel predic-

3148 © 2015 by American Society of Clinical Oncology

tion model on the basis of 10 variables for day 100 OM. Scores
correlated with objectives, enabling an individual continuous
probabilistic evaluation of the primary objective (ie, OM at day
100) and a discretized risk assessment of secondary objectives at 2
years (OS, NRM, and LES).

Insights can be derived from the tree-like structure of the model
and variable weights (Fig 1 and Table 2). Disease stage and perfor-
mance status were strong outcome determinants, corroborating pre-
vious studies.”>*” Earlier years (2000 to 2003) were associated with a
worse outcome, reflecting advances in the field." An advantage of the
ADT is its ability to detect interactions. For instance, the effect of the
interval between diagnosis and transplantation, with a cutoff of 142
days, had impact only for certain disease stages (ie, CR1 and ad-
vanced). Thus, specific characteristics of unique subpopulations
were captured, and the cutoff set by the EBMT score of 1 year for all
disease stages was refined.” A threshold of 20 transplantations or
more per year in matched unrelated donors was associated with
better outcomes, again stressing the importance of center experi-
ence and accreditation.”®?° Not surprisingly, reduced-intensity
conditioning was a favorable prognostic factor when compared
with MAC in older patients (age = 37 years), corroborating inter-
actions between age and conditioning. Interestingly, age was not an
independent risk variable. It seems that transplantation practice
and patient selection have downgraded age importance with re-
spect to outcome.”!

The ADT algorithm was able to detect variables associated with
the primary outcome, assign weights, and ignore redundancies (eg,
the recipient-donor CMV serostatus combination was selected,
whereas individual CMV status, donor or recipient, was excluded).
Body mass index and cytogenetics may play a role as prognostic
factors,™* but were not selected, possibly because of many missing
values. Transplantation from a female donor to a male recipient has
also been associated with mortality in previous studies,” but was
not selected in the current study, because it mainly affects late
mortality. Differences in variable selection compared with previ-
ous allo-HSCT prognostic studies probably reflect different mea-
sures of predictive importance assessment. Models augment,
rather than contradict, one another. Their integration may lead to
improved predictive accuracy.

The EBMT score is a well-recognized tool for adjusting trans-
plantation analysis. The ADT model showed improved discrimina-
tion, although relatively small, in comparison to the EBMT score
(AUC, 0.701 v 0.646; P < .001). Nevertheless, one must keep in mind
that the EBMT score was designed for prediction of long-term sur-
vival; thus, comparison with our score is not trivial, because primary
end points differ. In addition, the ADT score allows a continuous and
personalized risk assessment for day 100 OM, as opposed to other
contemporary scores, which focus on identification of prognostic
groups.”™” Moreover, when contemplating a transplantation, one
must take into account specific patient history (eg, the interval
from diagnosis to transplantation does not have the same impact in
CR1 or CR2).”® Such interactions are not necessarily captured by
standard statistical models.

Stratifying OM risk at 100 days by collapsing score intervals
into different risk groups would lead to loss of important clin-
ical information. By providing a continuous measure for patient
risk, we transformed the prediction problem from a classifica-
tion task to a regression task, and we enhanced physician and
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Fig 3. Kaplan-Meier curves of overall survival stratified by the categorized
alternating decision tree score. Higher scores (ie, higher score interval number)
resulted in lower probability of survival. Calibrated score intervals are described
(see Table 3).

patient understanding regarding expected transplantation haz-
ard. Two-year outcomes, which have previously been shown to
predict long-term survival,>* were estimated according to the
score (by deciles) established for day 100 OM. Thus, potential
use was extended, and factors predicting day 100 OM may be
surrogates for long-term survival.

The ADT is a classification algorithm designed for handling bi-
nary end points, but not censored or continuous end points. There-
fore, we focused on a short-term outcome, in a population in which
loss to follow-up was lower than 5% and center effect is unlikely,
because transplantation volume was not linked to patient loss (Data
Supplement). Patients lost had some differing characteristics (Data
Supplement); however, given their relatively small number, they are
not likely to affect model performance. An important aspect of the
current study is the introduction of an alternative approach for
prediction model development, rather than comparison with the
conventional approach. A DM method has been applied in fields
such as communication and finance, and one can think of potential
uses in HSCT, because it allows prediction of the outcome of
interest without strong assumptions regarding the distribution of
the variables and the regression model used.'"'? It is reassuring
that the Cox and ADT models achieved similar discrimination,
stressing the validity of the DM method with short-term transplan-
tation data. Nevertheless, alternative methods should be explored
for modeling long-term outcomes.>>>*

This study has several limitations. First, it is a retrospective
analysis susceptible to data selection and measurement biases.’”
However, the registry analyzed reflects real world data, conveying
contemporary practice.'® Second, validation was done on an inter-
nal data set, and external validation is warranted. Nonetheless, the
many patients in the analysis, the use of 10-fold cross validation for
training in addition to a separate validation set, and the model’s
excellent calibration, all greatly enhance validity and robustness.
Moreover, despite lack of prediction model development guide-

3150 © 2015 by American Society of Clinical Oncology

lines, we adhered to strict methodologic principals.> Third, in
contrast to the EBMT and HCT-CI scores, which are not disease
specific, our score applies only to ALs, which are a leading indica-
tion for allo-HSCT transplantation'; thus, targeting this patient
population is reasonable. Still, the diagnosis variable had low pre-
dictive influence, suggesting that the score may be applicable to
other diseases. Fourth, given the ADT model complexity, calcula-
tion of patient score is nontrivial, as opposed to the EBMT score.’
Therefore, we provided an online interface (http://bioinfo.Inx.biu.ac.il/
~bondi/web1.html) to enable easy calculation. Finally, the primary
objective focused on short-term survival. Nevertheless, our model
showed competence in predicting NRM, OM, and LFS at 2 years. In
addition, the high rate of day 100 OM (13.9%) highlights its impor-
tance as a valid objective.

In conclusion, we present a machine learning—based predic-
tion model for mortality after allo-HSCT. The model was devel-
oped using a DM approach and internally validated on a large data
set with excellent calibration. It can be readily used online and
provides a personalized estimation of day 100 OM risk and a
discretized estimation of long-term outcomes, and at the same
time reveals variables’ interactions. The model’s potential applica-
tions include pretransplantation risk assessment and stratification,
patient counseling during informed consent sessions, and tailoring
transplantation regimens or referring to alternative treatments
according to transplantation risk. Predictive accuracy is still not
optimal. Integration with the HCT-Cl score, detailed data on mod-
ifiable therapeutic factors, and data on somatic mutations (eg,
Fms-like tyrosine kinase 3 and Nucleophosmin 1) may further
enhance predictive power and aid treatment personalization. Hav-
ing demonstrating that the DM approach can be applied to the
EBMT registry data, future studies must aim to make more precise
predictions for long-term outcomes using the recent methods
developed to manage censored data.>>®
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