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A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent

quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy,

Weyl nodes, which are connected only through the crystal’s boundary by exotic Fermi arcs.

The length of the Fermi arc gives a measure of the topological strength, because the only way

to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl

semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in

MoxW1� xTe2 where Weyl nodes are formed by touching points between metallic pockets.

We show that the Fermi arc length can be changed as a function of Mo concentration, thus

tuning the topological strength. Our results provide an experimentally feasible route to

realizing Weyl physics in the layered compound MoxW1� xTe2, where non-saturating

magneto-resistance and pressure-driven superconductivity have been observed.
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R
esearch on Dirac fermions in graphene and topological
insulators have been one of the main themes in condensed
matter physics and materials science in the past decade.

A particle that is also relevant for both condensed matter and
high-energy physics and that may give rise to even more exotic
physics is the Weyl fermion. The Weyl fermion was theore-
tically discovered by Weyl1 in 1929. He noted that the Dirac
equation takes a simple form if the mass term is set to zero:
i@LC ¼ cp � rC, where c is constant, p is momentum, r is
conventional Pauli matrices and C is wavefunction. Such a
particle, the Weyl fermion, is massless but is associated with a
chirality. Weyl fermions may be thought of as the basic building
blocks for a Dirac fermion. For example, two Weyl fermions of
opposite chirality can combine to form a massless Dirac fermion.
Weyl fermions have played a vital role in quantum field theory but
they have not been found as fundamental particles in vacuum. A
Weyl semimetal is a solid-state crystal that host Weyl fermions as
its low-energy quasiparticle excitations1–17. Weyl semimetals have
attracted intense research interest not only because they provide a
Weyl fermion in nature, but also because they allow topologically
nontrivial states in metals not insulators. In a Weyl semimetal, a
Weyl fermion is associated with an accidental degeneracy of the
band structure. Away from the degeneracy point, the bands
disperse linearly and the spin texture is chiral, giving rise to a
quasiparticle with a two-component wavefunction, a fixed
chirality and a massless, linear dispersion. Weyl fermions have
distinct chiralities, either left-handed or right-handed. In a Weyl
semimetal crystal, the chiralities of the Weyl nodes give rise to
topological charges, which can be understood as monopoles and
anti-monopoles of Berry flux in momentum space. Remarkably,
the topological charges in a Weyl semimetal are protected only by
the translational invariance of the crystal6,8,17. The band structure
degeneracies in Weyl semimetals are uniquely robust against
disorder6,8,17, in contrast to the Dirac nodes in graphene,
topological insulators and Dirac semimetals, which depend on
additional symmetries beyond the translational symmetry13–18. As
a result, the Weyl fermion carriers are expected to transmit
electrical currents effectively. Moreover, the transport properties
of Weyl semimetals are predicted to show many exotic
phenomena including the negative magnetoresistance due to the
chiral anomaly known from quantum field theory, non-local
transport and quantum oscillations where electrons move in real
space between opposite sides of a sample surface10–12. These novel
properties suggest that Weyl semimetals are a flourishing field of
fundamental physics and future technology. The separation of the
opposite topological charges in momentum space leads to surface
state Fermi arcs which form an anomalous band structure
consisting of open curves that connect the projections of
opposite topological charges on the boundary of a bulk sample.
Within band theory, the only way to destroy the topological Weyl
phase is to annihilate Weyl nodes with opposite charges by
bringing them together in the reciprocal space. Thus the length of
the Fermi arc provides a measure of the topological strength of a
Weyl state.

For many years, research on Weyl semimetals has been held
back due to the lack of experimentally feasible candidate
materials. Recently, a family of isostructural compounds, TaAs,
NbAs, TaP and NbP, was theoretically predicted and experimen-
tally discovered as the first Weyl semimetals19–28. So far, the TaAs
class of the four iso-electronic compounds remains to be the only
experimentally realized Weyl semimetals21–28.

Tungsten ditelluride, WTe2, is a member of the transition
metal dichalcogenide materials that has recently drawn significant
interest because it shows very large, non-saturating magnetore-
sistance and pressure-induced superconductivity29–34. It has an
inversion symmetry breaking crystal structure, and exhibits a

compensated semi-metallic ground state29,31–33. The coexistence
of inversion symmetry breaking and semi-metallic transport
behaviour resembles the properties of TaAs and hence suggests a
possible Weyl semimetal state. Here, we propose a tunable Weyl
metallic state in Mo-doped WTe2 via our first-principles
calculation, where the length of the Fermi arc and hence the
topological strength of the system can be adiabatically tuned as a
function of Mo doping. A very recent paper35 predicted the Weyl
state in pure WTe2, but the separation between Weyl nodes was
reported to be beyond spectroscopic experimental resolution.

In this paper, we demonstrate that a 2% Mo doping is sufficient
to stabilize the Weyl metal state not only at low temperatures but
also at room temperatures. We show that, within a moderate
doping regime, the momentum space distance between the Weyl
nodes and hence the length of the Fermi arcs can be continuously
tuned from 0 toB3% of the Brillouin zone (BZ) size via changing
Mo concentration, thus increasing the topological strength of the
system. Our results present a tunable topological Weyl system,
which is not known to be possible in the TaAs class of Weyl
semimetals.

Results
Material system considerations. WTe2 crystalizes in an orthor-
hombic Bravais lattice, space group Pmn21 (No. 31). In this
structure, each tungsten layer is sandwiched by two tellurium
layers and forms strong ionic bonds. Figure 1a shows a top view
of the lattice. It can be seen that the tungsten atom is shifted away
from the centre of the hexagon formed by the tellurium atoms.
This makes the in-plane lattice constant along the x̂ direction a
longer than that of along the ŷ direction b. The WTe2 sandwich
stacks along the out-of-plane ẑ direction, with van der Waals
bonding between layers (Fig. 1b). We used the experimental
lattice constants reported by Brown36, a¼ 6.282Å, b¼ 3.496Å,
c¼ 14.07Å. The bulk BZ and the (001) surface BZ are shown in
Fig. 1c, where high symmetry points are noted. In Fig. 1d, we
show the bulk band structure of WTe2 along important high
symmetry directions. Our calculation shows that there is a
continuous energy gap near the Fermi level, but the conduction
and valence bands have a finite overlap in energy. The band gap
along the G�Y direction is much smaller than that of along the
G�X direction or G�Z direction, consistent with the fact that
the lattice constant b is much smaller than a and c. At the Fermi
level, our calculation reveals a hole pocket and an electron
pocket along the G�Y direction (Fig. 1d), which agrees with
previous calculation and photoemission results29,31–33. We also
calculated the band structure of MoTe2 by assuming that it is in
the same crystal structure. As shown in Fig. 1e, the general trend
is that the bands are ‘pushed’ closer to the Fermi level. For
example, in MoTe2, there are bands crossing the Fermi level even
along the G�X and G�Z directions. We emphasize that,
according to available literature36,37, MoTe2 has a different crystal
structure, either hexagonal37 or monoclinic36 both of which have
inversion symmetry, but not orthorhombic. Thus in our
calculation we assumed that MoTe2 has the orthorhombic
crystal structure as WTe2 and obtained the lattice constants and
atomic coordinates from first-principle calculations. Very
recently, a paper38 claimed that MoTe2 can be grown in the
orthorhombic structure. This still needs to be further confirmed.

We now calculate the band structure of pure WTe2 throughout
the bulk BZ based on the lattice constants reported in the paper
by Brown36. Our results show that pure WTe2 has a continuous
energy gap throughout the bulk BZ without any Weyl nodes. The
k point that corresponds to the minimal gap is found to be close
to the G�Y (Fig. 2a) axis. The minimal gap of WTe2 is 0.9meV
(Fig. 2c). We note that the discrepancy between our results and
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the results of Soluyanov et al.35 is due to the slightly different
values of the lattice constants36,39. The lattice constants used by
Soluyanov et al.35 were at low temperatures39. Thus the results35

better refelct the groundstate (T¼ 0) of WTe2. We used the lattice
constants at room temperatures36, so our results correspond to
the state of WTe2 at elevated temperatures. The difference
between our results and the results of Soluyanov et al.35 shows
from another angle that WTe2 is very close to the phase boundary
between the Weyl state and the fully gapped state. For many
purposes, it is favourable to have the Weyl state in a material that
is robust at elevated (room) temperatures. Here, we use the room
temperature lattice constants for all of our calculations. We also
note that the very small difference of the lattice constant value
does not play a role except for undoped or very lightly doped
samples, that is, xr2%, where the separation of the Weyl nodes is
beyond experimental resolution anyway.

We propose Mo-doped WTe2, MoxW1� xTe2, as an experi-
mental feasible platform to realize Weyl state in this compound.
We have shown that pure WTe2 is very close to the phase-
transition boundary. Therefore, the k splitting between the Weyl
nodes would be beyond experimental resolution. On the other
hand, another very recent paper proposed a Weyl state in pure
MoTe2 (ref. 40), but, as shown above, the existence of the
orthorhombic MoTe2 needs to be confirmed. By contrast, we
show that the moderately Mo-doped WTe2 sample has a number
of advantages, making it experimentally feasible. First, pure
MoTe2 has many irrelevant bands crossing the Fermi level along
the G�X and G�Z directions, whereas the band structure
of moderately Mo-doped system is as clean as pure WTe2
(Fig. 1d–f). Second, as we will show below, a moderate Mo doping

leads to a k space separation of the Weyl nodes that is similarly as
large as that of pure MoTe2. Therefore, we propose the Mo-doped
WTe2 as a better platform for studying Weyl physics.

Doping dependency of the Weyl nodes. Figure 2e shows the
evolution of the k space distance between a pair of Weyl nodes as
a function of Mo concentration. Our calculation shows that a 2%
Mo doping is sufficient to stabilize the system in the Weyl metal
state. Also, the distance between the Weyl nodes increases rapidly
at the small doping regime. At a moderate doping x¼ 20%, the
k space distance is found to be as large as 0.03 2p/a. As one
further increases the doping concentration, the distance seems
saturated. The distance is about 0.04 2p/a at x¼ 40%. The energy
difference between the pair of Weyl nodes is shown in Fig. 2g. In
Fig. 2d we show the dispersion along the momentum space cut
that goes through the direct pair of Weyl nodes as defined in
Fig. 2b. It can be seen clearly that two singly generated bands, b2
and b3, cross each other and form the two Weyl nodes with
opposite chiralities. We name the Weyl node at lower energy as
W1 and the Weyl node at higher energy as W2. Another useful
quantity is the energy difference between the extrema of these two
bands. This characterizes the magnitude of the band inversion, as
shown in Fig. 2f. It is interesting to note that, in contrast to the k
space distance between the Weyl nodes (Fig. 2e), the energy
difference between the Weyl nodes (Fig. 2g) and the band
inversion energy (Fig. 2f) does not show signs of saturation as one
increases the Mo concentration x up to 40%. In Fig. 2h, we show a
schematic for the distribution of the Weyl nodes in Mo-doped
WTe2. We observe a pair of Weyl nodes in each quadrant of the
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Figure 1 | Crystal structure and band structure. (a) A top view of WTe2 lattice. (b) A side view of WTe2 lattice. The silver and yellow balls represent W

and Te atoms, respectively. Rectanglar box denotes crystal unit cell. WTe2 crystalizes in an orthorhombic Bravais lattice, space group Pmn21 (No. 31). The

lattice constants are a¼ 6.282Å, b¼ 3.496Å, c¼ 14.07Å according to a previous X-ray diffraction measurement36. (c) The bulk and (001) surface BZ of

WTe2. (d) Bulk band structure of WTe2. (e) Bulk band structure of MoTe2 by assuming that it has the same crystal structure as WTe2. Note that, in fact,

according to available literature MoTe2 has two possible structures36,37, both of which are different from the crystal structure of WTe2. (f) Bulk band

structure of Mo0.2W0.8Te2.
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kz¼ 0 plane. Thus in total there are four pairs of Weyl nodes on
the kz¼ 0 plane.

Tunable Fermi arc surface states. A critical signature of a Weyl
semimetal is the existence of Fermi arc surface states. We pre-
sent calculations of the (001) surface states in Fig. 3. We choose
the 20% Mo-doped system, Mo0.2W0.8Te2. Figure 3a shows the
surface energy dispersion along the momentum space cut that
goes through the direct pair of Weyl nodes, W1(� ) and
W2(þ ), which arises from a single band inversion. Here (þ )
and (� ) denote positive and negative chiral charge, respec-
tively. Our calculation (Fig. 3a) clearly shows the topological
Fermi arc surface state, which connects the direct pair of Weyl
nodes. The Fermi arc was found to terminate directly onto the
projected Weyl nodes. In addition, we also observe a normal
surface state, which avoids the Weyl node and merges into the
bulk band continuum. Because the W1 and W2 Weyl nodes
have different energies, and because W1 is a type II Weyl cone35,
constant energy maps always have finite Fermi surfaces. Type II
means that at the Weyl node energy, its constant energy contour
consists of an electron and a hole pocket touching at a point, the
Weyl node. Hence, visualizing Fermi arc connectivity in
constant energy maps is not straightforward. Instead of a
constant energy map, it is possible to use a varying-energy kx, ky
map, that is, Energy¼E(kx, ky), so that there are no bulk states
on this varying-energy map at all kx, ky points except the Weyl
nodes. Figure 3f shows the calculated surface and bulk electronic
structure on such a varying-energy kx, ky map in the vicinity of a
pair of Weyl nodes. A Fermi arc that connects the pair of Weyl
nodes can be clearly seen. We study the effect of surface

perturbations. The existence of Weyl nodes and Fermi arcs are
guaranteed by the system’s topology, whereas the details of the
surface states can change under surface perturbations. In order
to do so, we change the surface on-site potentials of the system.
Physically, the surface potentials can be changed by surface
deposition or applying an electric field on the surface. Figure 3b
shows the surface band structure with the surface
on-site energy increased by 0.02 eV. We find that the normal
surface state moves further away from the Weyl nodes, whereas
the topological Fermi arc does not change significantly.
Figure 3c shows the surface band structure with the surface
on-site energy decreased by 0.11 eV. The normal surface states
disappear. The Fermi arc also changes significantly. Instead of
directly connecting the two Weyl nodes in Fig. 3a,b, a surface
state stems from each Weyl node and disperses outside the
window. We note that the surface states in Fig. 3c are still
topological and are still arcs because they terminate directly
onto the projected Weyl nodes. We illustrate the two types of
Fermi arc connectivity in Fig. 3d,e. Figure 3d corresponds to the
case in Fig. 3a,b, where a Fermi arc directly connects the pair of
Weyl nodes in a quadrant. Figure 3e corresponds to Fig. 2d. In
this case, Fermi arcs connect Weyl nodes in two different
quadrants across the �Y � �G� �Y line. The normal surface states
do not exist necessarily as they can be removed by tuning the
on-site energy as shown in Fig. 3a,b. The nontrivial topology in
a Weyl semimetal requires that there must be Fermi arc(s)
terminating onto each projected Weyl node with a non-zero
projected chiral charge and that the number of Fermi arcs
associated with a projected Weyl node must equal its projected
chiral charge. On the other hand, the pattern of connectivity can
vary depending on details of the surface. The observed different
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Fermi arc connectivity patterns as a function of surface on-site
potential provide an explicit example of both the constraints
imposed and the freedoms allowed to the Fermi arc electronic
structure by the nontrivial topology in a Weyl semimetal.

We further study the surface states via bulk boundary
correspondence. We note that except Fig. 3b–e, all other figures

correspond to the case without additional changes to the on-site
energy. Specifically, we choose a closed loop in (kx, ky) space as
shown in Fig. 3j. As we mentioned above, the conduction and
valence bands only touch at the eight Weyl nodes. Thus as long as
the loop chosen does not go through these Weyl nodes, there is a
continuous bulk energy gap along the loop. In the bulk BZ, the
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chosen rectangular loop corresponds to a rectangular pipe along
the kz direction. Then topological band theory requires that the
net chiral charge of the Weyl nodes that are enclosed by the pipe
equals the Chern number on this manifold, which further equals
the net number of chiral edge modes along the loop. For example,
the rectangular loop a�b� g� d in Fig. 3j encloses a W1(� )
and a W2(þ ), which leads to a net chiral charge zero. The energy
dispersion along this rectangular loop is shown in Fig. 3g. It can
be seen that the bands are fully gapped without any surface states
along b� g� d� a. Along a�b, there are two surface states
(SS1 and SS2), both of which connect the band gap. Interestingly,
we note that these two surface bands are counter-propagating
although they seem to have the same sign of Fermi velocity.
This is because the continuous energy gap a�b is highly ‘tilted’.
If we ‘tilt’ the energy gap back to being horizontal, then it can be
clearly seen that the two surface bands are counter-propagating,
which means that the net number of chiral edge modes is zero.
Similarly, we can choose other loops. For example, we choose
another rectangular loop a0 �b0 � g� d that encloses only the
W2(þ ) Weyl node. Because there are no surface states along the
two horizontal edges and the vertical edge to the right, we only
need to study the vertical edge to the left, that is the a0 �b0.
The enclosed net chiral charge is þ 1, which should equal the net
number of chiral edge mode along a0 �b0. The band structure
along this line is shown in Fig. 3h. We see that while the surface
band SS1 still connects across the band gap, SS2 starts from and
ends at the conduction bands. Therefore, SS1 contributes one net
chiral edge mode, whereas SS2 contributes zero net chiral edge
mode. Hence there is one net chiral edge mode along the this
rectangular loop. By the same token, we can choose the loop
a00 � b00 � g� d, which does not enclose any Weyl node.
Consistently, as shown in Fig. 3i, along a00 �b00, SS1 does not
appear along this line and SS2 does not connect across the band
gap. Hence the net number of chiral edge mode is also zero along
this rectangular loop.

We study the constant energy contours of the surface states.
We emphasize that (i) there is a significant energy offset between
the W1 and W2 Weyl nodes, and that (ii) the W1 Weyl cones are
the type II Weyl cone35. These two properties are very different
from the ideal picture, where all Weyl cones are normal rather
than type II and their nodes are all at the same energy. We show
below that these two properties make the surface states’ constant
energy contours quite different from what one would expect
naively. Figure 4d shows the calculated constant energy contour
within the top half of the surface BZ at energy E1, which is
between the W1 and W2 nodes in energy. More constant energy
contours at other energies are shown in the Supplementary Fig. 1
and Supplementary Note 1. We see three bulk pockets. The
corresponding schematic is shown in Fig. 4a. Specifically, we see a
big pocket closer to the �Y point, which encloses two W1 Weyl
nodes with opposite chiral charges. We also see two separate
small pockets closer to the �G, each of which encloses a W2 Weyl
node. As for the surface states, from Fig. 4d,e we see a surface
state band that connects the two small pockets, each of which
encloses a W2 Weyl node. This is quite counter-intuitive because
we know that the Fermi arc connects the direct pair of Weyl
nodes, namely a W1(� ) and a W2(þ ) or vice versa. We show
that there is no discrepancy. Specifically, we show that the surface
band seen in the constant energy contours is exactly the Fermi arc
that connects the W1(� ) and the W2(þ ) Weyl nodes seen in
Fig. 4c. To do so, we consider the constant energy contours at two
different energies, E1 and E2. According to the energy dispersion
(Fig. 4c), we see that the big bulk pocket in the constant energy
map is electron-like, while the two small bulk pockets are hole-
like. Thus as we increase the energy from E1 to E2, the big pocket
should expand, whereas the two small pockets should shrink, as

shown in Fig. 4b. The surface state band keeps connecting the two
small pockets as one changes the energy. This evolution is shown
by real calculations in Fig. 4e,f. The orange line in Fig. 4b
connects the W1(� ) and W2(þ ) Weyl nodes. At each energy,
the surface state band crosses the orange line at a specific k point.
By picking up the crossing points at different energies, we can
reconstruct the Fermi arc that connects the W1(� ) and W2(þ )
Weyl nodes shown in Fig. 4c. Therefore, from our systematic
studies above, we show that the Fermi arc connectivity means the
pattern in which the surface state connects the Weyl nodes. This
is defined on a varying-energy (kx, ky) map where the chosen
E(kx, ky) map crosses the bulk bands only at the Weyl nodes. If
there is no significant energy offset between Weyl nodes and if all
Weyl cones are normal rather than type II, then the connectivity
can also be seen in a constant energy contour. However, in our
case here, one needs to be careful with the simplified ideal picture,
that is, to study the Fermi arc connectivity from the constant
energy contour. Because of the energy offset between the Weyl
nodes and because of the existence of type II Weyl cones, how
surface bands connect different bulk pockets in a constant energy
contour does not straightforwardly show the Fermi arc
connectivity.

Discussions
We discuss the tunability of the length of the Fermi arcs as a
function of Mo concentration x in our MoxW1� xTe2 system. The
undoped x¼ 0 sample is fully gapped according to our
calculations (Fig. 4g). A very small Mo concentration (B0.5%)
will drive the system to the critical point, where the conduction
and valence bands just touch each other Fig. 4h. The length of the
Fermi arc is zero, and hence the system is at the critical point. As
one further increases the Mo concentration x, the touching point
splits into a pair of Weyl nodes with opposite chiralities (Fig. 4i).
The Weyl nodes are connected by a Fermi arc. A way to gap the
system without breaking any symmetry is to annihilate pairs of
Weyl nodes with opposite chiralities. In order to do so, one needs
to overcome the momentum space separation between the Weyl
nodes to bring them together in the k space. Thus the length of
the Fermi arc that directly connects the Weyl nodes by the
shortest distance provides a measure of the system’s topological
strength. Such a tunability is not known in the TaAs class of
Weyl system. We also compare our proposal to previous
candidates9,41–47, where analogous tunability was proposed. We
emphasize that the key difference is the experimental feasibility of
the proposals. For example, refs 41–43 used hypothetic crystal
structures which have never been synthesized. Reference 9
requires a ferromagnetic normal insulator that is lattice
matched with the known topological insulators, which are
currently unknown. Reference 44 requires external magnetic
fields and hence ARPES cannot be done. References 46,47 require
external pressure and cannot be realized at ambient conditions.
As stressed in the TaAs prediction19, in order to have a robust
material candidate, following aspects are crucial: first, the
proposal can be realized at ambient conditions with a realistic
crystal structure that has been successfully synthesized. Second,
there is no need to align the magnetic domains as in the
ferromagnetic compounds; Third, the proposed candidate
does not need fine-tuning of the chemical composition (in our
case, any composition within the the wide range of 3 to 40%
works). Fourth, the separation of Weyl nodes is large enough
for experimental observation, which is not the case for WTe2.
These aspects were crucial for the experimental discovery
of TaAs19,21 and are also satisfied by our prediction of
MoxW1� xTe2 here. We hope that our prediction can provide
another material realization which is critically needed for this
rapidly developing field.
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Methods
Computational details. We computed the electronic structures using the projector
augmented wave method48,49 as implemented in the VASP package50 within the
generalized gradient approximation schemes51. For WTe2, experimental lattice
constants were used36. For MoTe2, we assumed that it has the same crystal
structure as WTe2 and calculated the lattice constants self-consistently (a¼ 6.328Å,
b¼ 3.453Å, c¼ 13.506Å). A 8� 16� 4 MonkhorstPack k-point mesh was used in
the computations. The spin-orbit coupling effects were included in calculations. In
order to systematically calculate the surface and bulk electronic structure, we
constructed a tight-binding Hamiltonian for both WTe2 and MoTe2, where the tight-
binding model matrix elements were calculated by projecting onto the Wannier
orbitals52–54, which used the VASP2WANNIER90 interface55. We used W (Mo) s
and d orbitals and Te p orbitals to construct Wannier functions without using the
maximizing localization procedure. The electronic structure of the samples with finite
dopings was calculated by a linear interpolation of tight-binding model matrix
elements of WTe2 and MoTe2. Since tight-binding parameters contained all
important information such as lattice constants and atomic bonding strength, an
interpolation presumably covered all systematic changes of the electronic structure

between the two end points. Therefore, this approach is highly reliable and effective
for studying iso-valence substitution/doping. Previously, we used the same method to
investigate a similar iso-valence substitution in the BiTlSe1� xSx and predicted a
critical point of xc¼ 0.48 that was in excellent agreement with experimental finding of
xc¼ 0.5 (ref. 56). Also, since we mainly studied small Mo doping, for example,
Mo¼ 20% that is close enough to the end compound, a linear interpolation should be
a good approximation. The surface state electronic structure was calculated by the
surface Green’s function technique, which computes the spectral weight near the
surface of a semi-infinite system.
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