\section*{Organizer

\section*{4 INRA

4 INRA
 Public support

https://colloque,inra.fr/medpine4

www.colloque.inra.fr/medpine4

Prediction of annual tree growth and survival for thinned and unthinned even-aged maritime pine stands in Portugal from data with different time measurement intervals

A PROBLEM $\longrightarrow \quad$ Available data sets for fitting individual tree models frequently have measurement intervals greater than 1 year and many times these intervals are irregularly spaced. Also thinning can occur between measurements. This causes difficulty when modelling annual tree growth and survival.

3. RESULTS
Selected equations (Modelling approach 2 performed slightly better)
The survival probability function:
$p i=\left(1+\exp \left(-9.267-0.204 d i+0.066 \mathrm{G}+0.077 \mathrm{G}_{>}\right)\right)^{-1}$

The diameter growth function:

$\Delta d_{i j}=\exp \left(1.296+0.204 \ln \left(d_{i j}\right)+m \ln \left(t_{j}\right)\right)$,
where,
$m=-0.903+0.101 \mathrm{~d} / \mathrm{dg}+0.006 \mathrm{hdom}-0.007 \mathrm{G}_{\gamma_{d}}+0.145\left(G / G_{a)}\right)\left(1-0.11_{s t}\right) I_{t_{s}<10}$
The height growth function:
The height growth function:
\Delta\mp@subsup{h}{ij}{}=\operatorname{exp}(1.275+0.274|n(\mp@subsup{h}{ij}{})+m\operatorname{ln}(\mp@subsup{f}{j}{\prime})),
\Delta\mp@subsup{h}{ij}{}=\operatorname{exp}(1.275+0.274|n(\mp@subsup{h}{ij}{})+m\operatorname{ln}(\mp@subsup{f}{j}{\prime})),
where,
where,
m=-1.490+0.207 d/h+0.022hdom+0.093 G>d}/
m=-1.490+0.207 d/h+0.022hdom+0.093 G>d}/

4. DISCUSSION

In the selected equations, tree survival and growth are predicted using tree attributes, stand variables reflecting the competition levels and also variables related to the site. The parameters present logical signs which is important for biological realism

The area under the receiving operating characteristic curve (ROC) for the survival probability function was 0.94 , indicating a very good discrimination capacity between the categories live and dead.

The variable that was tested, accounting for the thinning intensity and the duration of its effect, was significant to explain diameter growth. However no evidence of significant effect was found for the height growth. The diameter and height growth functions presented a promising performance as evaluated using PRESS residuals.

The obtained results in the evaluation of the individual tree growth and survival model recommend the use of this model for practical applications.

