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Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substi-
tutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to
commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico
by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial pep-
tides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model,
which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was
created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available
at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays
showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most
inhibitory peptides at 5 �g/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the
results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use
of computational tools.

The increase in microbial resistance to commercial antibiotics
and the need for protection against pathogenic agents have led

to the development of rapid and efficient defense mechanisms. In
this context, antimicrobial peptides represent a primitive defense
mechanism that is present in all organisms from invertebrates to
higher organisms, including humans (1).

In recent decades, various species of antimicrobial peptides
have been isolated and found to exhibit a wide spectrum of activity
against Gram-positive and Gram-negative bacteria (2). The pro-
duction of these peptides in higher organisms plays an important
role in the adaptive defense system and the regulation of various
biological systems (3). This production is beneficial, as it occurs at
low metabolic cost; the peptides are easily stored in large quanti-
ties and are rapidly made available to neutralize infections caused
by microorganisms.

Due to their importance for the organism’s immune system,
antimicrobial peptides have become the object of much interest as
a source of inspiration for the development of new drugs, based on
changes to known molecules (4). The manipulation of these struc-
tures is a promising source of new antimicrobial peptides capable
of blocking or inhibiting the growth of bacteria, fungi, parasites,
tumor cells, and even encapsulated viruses like HIV (3, 5). Differ-
ent methods are used to develop these artificial peptides, in par-
ticular, the synthesis of analogous peptides, which differ from nat-
ural peptides at one or more positions of the amino acid chain
by substitution, deletion, or insertion of residues (6). This en-
ables the residues crucial for antimicrobial activity to be deter-
mined and the desired effects to be modulated, with the pur-
pose of making the analogous peptides more effective than the
parental peptide (7, 8). However, these processes are costly and
time-consuming. Various pharmaceutical companies have
therefore encouraged the use of bioinformatics to investigate
bioactive peptides as part of the search for new drugs, where the
use of computer tools is complemented by genome, transcrip-
tome, and proteome studies (9).

Based on the accumulation of information on the mechanism
of action of antimicrobial peptides, various databases with de-
tailed information about these peptides have been created (10).
The diversity of forms and characteristics makes it difficult to
develop methods capable of predicting the antimicrobial activity
of peptides based on the similarity of their sequences alone. There-
fore, there is a need for computational tools capable of minimizing
the costs of predicting the antibacterial activity of peptides and
planning peptides that are more effective against pathogens. To
this end, methods such as the quantitative structure-activity rela-
tionship (QSAR), structure-activity relationship (SAR), and deci-
sion tree (DT) methods were developed to look for similar se-
quences and predict activity based on numerical data relating to
structure and antimicrobial activity (10).

Based on studies to discover new therapeutic agents through
peptide modeling using known antimicrobial peptides as a back-
bone, this study describes the induction of a decision tree model to
predict the antimicrobial activity of synthetic peptides created by
substitutions of amino acid residues in the parental peptide, which
was obtained from the cDNA library of Colossoma macropomum
(tambaqui), an Amazonian neotropical teleostean with high com-
mercial value representing an economically relevant fish species
from the Amazon basin (11).

MATERIALS AND METHODS
Identification of potential antimicrobial peptides. Coding sequences
for antimicrobial peptides were identified by constructing the cDNA
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library of Colossoma macropomum, using the SMART cDNA library
construction kit (Clontech), and sequencing more than 300 clones. A
BLASTX search was performed in the GenBank database on a local
server (www.ncbi.nlm.nih.gov), and a cDNA encoding a potential an-
timicrobial peptide with 19 residues was found. This peptide was ini-
tially named colossomin.

Synthetic peptide modeling. Based on the sequence of 19 amino
acids of the colossomin peptide, we created five analogous peptides
using a diagram proposed by Bordo and Argos to guide the substitu-
tions of amino acid residues, increasing or maintaining the antimicro-
bial activity demonstrated by the parental peptide (12). The substitu-
tions were based on the circumstances of net charge, total hydrophobic
ratio (%), positive charge distribution to arrange the hydrophobic
residues on the same surface, amphiphilic character, and the protein-
binding potential (also known as the Boman index) (13). The se-
quences obtained after the residue substitutions were submitted to the
predictive tool available at the Antimicrobial Peptide Database v2.34
(APD2; http://aps.unmc.edu/AP/main.php) (14) to verify their anti-
microbial potential (15).

Peptide analog synthesis. To verify if the antimicrobial activity of
the analog peptides could equal or exceed the effects observed for the
parental peptide, analog peptides were constructed using the 9-fluo-
renylmethoxy carbonyl (Fmoc) solid-phase peptide synthesis strategy
(16). The C-terminal amino acid of the native peptide was maintained
in some analogs, and the resulting peptides were named colossomin C
and colossomin D.

Decision tree experimental setup. Induction of decision trees is a
machine learning approach that has been applied to several tasks. De-
cision trees (DT) are well-suited for large, real-world tasks, as they
scale well and can represent complex concepts by constructing simple
yet robust logic-based classifiers amenable to direct expert interpreta-
tion (15). Top-down inductions of decision tree algorithms generally
choose a feature that partitions the training data according to some
evaluation functions (17). The partitions are then recursively split
until some stopping criterion is reached. After that, the decision tree is
pruned in order to avoid over-fitting (18). In our experiments, we used
the algorithm J48 from Weka (19), a library of several machine learn-
ing algorithms. J48 is a Java implementation of the well-known C4.5
algorithm (17).

The training data are composed of 60 antimicrobials, each de-
scribed by 53 molecular descriptors. These descriptors include struc-
ture, net charge, hydrophobic residues, and Boman index, among oth-
ers, and were obtained using the program package Marvin Beans (www
.chemaxon.com/download/marvin). Peptides were divided into four
classes, according to their microbial activity (none, low, medium, and
high) as follows. A specific peptide was classified as “none” if no activ-
ity was found in any of the cell types, “low” if the activity occurred in
only one organism, “medium” if the activity occurred in exactly two
organisms, and “high” if it occurred in three or more organisms. Ac-
cording to this procedure, the distribution of peptides into the classes
none, low, medium, and high in the training data was 3 (5%), 17
(28%), 20 (33%), and 20 (33%), respectively.

In order to select the most predictive attributes and find the best
configuration of parameters for J48, we used a technique called “win-
dowing” (20), in which the decision tree model begins to learn with

only a fraction (window) of the examples in the data set. A classifier is
induced using the initial window, and it is tested using the examples
not present in the window. A fraction of the examples outside the
window, which were misclassified, is added to the window. A new
classifier is induced and tested, and the process is repeated until there
are no misclassifications. Windowing can be repeated many times (tri-
als), starting with a different initial window each time. We used the
windowing provided by C4.5. After applying the technique with dif-
ferent configurations of C4.5 and windowing itself, we chose the tree
with the best test error. We then built a new data set, composed of only
those attributes found in the unpruned version of the best tree: net
charge, hydrogen, oxygen, isoelectric point, peptide accessible surface
area (ASA_P), Balaban index, Dreiding energy, minimal projection
radius, and the logarithm ratio of the partition coefficient [log(P)].
Using Weka, we ran J48 over the data set with the filtered attributes.
The default parameters for the inducer were used, except for the pa-
rameter M, which determines the minimum number of examples that
a leaf must contain. We used a value for M of 3, with which the best tree
found before was set.

Spectrum of activity prediction using decision trees. After the detec-
tion of the peptides’ antimicrobial potential using the Antimicrobial Pep-
tide Database, they were classified by the decision tree, and the activity
spectrum (none, low, medium, or high) was inferred. This was done by
considering the criteria adopted to determine the peptide activity accord-
ing to the types of organisms on which it will act, inhibiting, or extinguish-
ing their growth.

Antimicrobial tests. Microbiological assays were carried out using
Staphylococcus aureus (Gram positive) and Escherichia coli (Gram nega-
tive). Inoculated petri dishes were analyzed by the disk agar-diffusion
method with 10 �l of each synthetic peptide diluted with water to 5 �g/ml.
Four paper disks 5 mm in diameter were placed in each petri dish with
solid LB (Luria Bertani) culture medium and impregnated with diluted
peptides. The petri dishes were incubated for 20 h at 37°C to determine the
formation of growth inhibition zones.

Statistical analysis. The data (i.e., the diameters of the zones of
inhibition formed by each synthetic peptide) were analyzed using the
Wilcoxon–Mann-Whitney test in the R program (http://www.r-project
.org/) to compare antimicrobial activities. The antimicrobial activities of
each peptide against different bacteria were analyzed and compared in
order to detect the most efficient antimicrobial peptide.

RESULTS
Synthetic peptide modeling. After computational modeling and
prior analysis of the antimicrobial potential, five peptides were
designed using the parental peptide as the scaffold, and only two
were selected for Fmoc solid-phase synthesis and microbiological
tests (Table 1).

Decision tree experimental setup. The decision tree induced
is composed of nine decision nodes containing the eight attributes
(net charge, hydrogen, oxygen, isoelectric Point, log(P) of non-
ionic species, ASA_P, Balaban index, and Dreiding energy) and 10
leaves indicating the level of activity of the synthetic peptides
(high, medium, low, or no activity) (Fig. 1).

The decision tree model was validated using a leave-one-out

TABLE 1 Peptides selected for Fmoc solid-phase synthesis and microbiological testsa

Peptide Amino acid sequence Molecular formula �AA (%) Mol wt Charge HR (%) BI (Kcal/mol) AP

Parental peptide C-VIVVLMAQPGECFLGLIFH-N C99H156N22O23S2 2,086.59 0 68 �1.73 �
Colossomin C C-LIIILMKKPGECFLSLIYH-N C107H175N23O24S2 37 2,231.84 �2 57 �1.09 �
Colossomin D C-LIVVLMKKPGECFLSLIYH-N C105H171N23O24S2 26 2,203.78 �2 57 �1.00 �
a Peptides were selected after verification of antimicrobial activity through APD2. Underlined residues are hydrophobic; underlined residues in bold are both hydrophobic and
located on the same peptide surface. �AA, amino acid substitutions; charge, peptide charge; HR, hydrophobic residues; BI, Boman index; AP, antimicrobial prediction (�, the
peptide is predicted to have antimicrobial activity).
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method. The values of accuracy, area under the ROC (receiver
operating characteristic) curve, true-positive rate, true-nega-
tive rate, precision, and F measure are shown in Table 2. Each
line of the table shows the measures for each of the four possi-
ble class values, and the last line shows the weighted average of
the measures, representing the overall values for the classifica-
tion task.

Antimicrobial tests. After an incubation period, an inhibi-
tion area surrounding the paper disks containing colossomin C
and colossomin D on Staphylococcus aureus and Escherichia coli
cultures was visible (Fig. 2). The average sizes of inhibition
zones formed by colossomin C and colossomin D on these
cultures were 2.9 � 0.1 cm and 2.25 � 0.02 cm (S. aureus) and
1.37 � 0.08 cm and 0.625 � 0.04 cm (E. coli), respectively. The
parental peptide did not form zones of inhibition on any bac-
terial culture.

Statistical analysis. Statistical analyses showed that the activity
of colossomin C was significantly different (P � 0.0147) from that
of colossomin D for E. coli and S. aureus. In both cases, it was not
possible to reject the null hypothesis for any significance level
above 1.5%.

DISCUSSION

The results of this study show that the use of decision trees to
evaluate the antimicrobial activity of synthetic peptides enables
the creation of more effective models for use in the develop-
ment of new drugs, using known peptides as scaffolds for de-
signing new compounds, and reducing the cost and time re-
quired for research. As demonstrated in this study and shown
in previous works (21, 22), the development of algorithms for
decision tree models is an efficient tool for predicting the anti-
microbial activity and construction of peptides for various
therapeutic uses.

The inhibitory activity shown by colossomin C and colossomin
D, which were subjected to in vitro tests with S. aureus and E. coli,
provides the basis for a series of possible studies on the importance
of these antimicrobial peptides and their mechanism of action. It
also increase the possibility of using these synthetic antimicrobial
peptides as important biotechnological products for treating multi-
drug-resistant pathogens. The antimicrobial activity demonstrated
by colossomin C and colossomin D against S. aureus shows that these
peptides are more efficient in inhibiting the growth of Gram-positive
bacteria than that of Gram-negative bacteria (E. coli).

The results indicate that the induction of the amphiphilic be-
havior and the positive charge are responsible for destabilization
of the membrane surface and may induct pores by the partial or
total insertion of the hydrophobic portion (20). Based on the
method used in this study and the possibility of predicting the
antimicrobial activities of synthetic peptides created by site-tar-
geted mutations, this methodological pipeline has great value for
the discovery and development of new natural antibiotics using
known peptides.

In addition, this work may highlight the efficiency of two syn-
thetic peptides as promising antimicrobial agents for treating in-

FIG 1 Decision tree model created by the algorithm J48 using the physicochemical properties of the peptides descriptors.

TABLE 2 Performance measurements for the classification of peptide
activitya

Class value Accuracy AUC TP TN Precision F measure

None 0.97 1.00 0.97 0.60 0.75
Low 0.81 0.65 0.81 0.58 0.61
Medium 0.82 0.70 0.85 0.70 0.70
High 0.87 0.70 0.95 0.88 0.78

Total 0.70 0.84 0.70 0.88 0.72 0.70
a AUC, area under the ROC curve; TP, true-positive rate; TN, true-negative rate.
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fections caused by Gram-positive bacteria, drawing more atten-
tion to these new methods for the discovery of new drugs.
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