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ABSTRACT
Motivation: Class distinction is a supervised learning ap-
proach that has been successfully employed in the anal-
ysis of high-throughput gene expression data. Identifica-
tion of a set of genes that predicts differential biological
states allows for the development of basic and clinical sci-
entific approaches to the diagnosis of disease. The Inde-
pendent Consistent Expression Discriminator (ICED) was
designed to provide a more biologically relevant search cri-
terion during predictor selection by embracing the inher-
ent variability of gene expression in any biological state.
The four components of ICED include (i) normalization of
raw data; (ii) assignment of weights to genes from both
classes; (iii) counting of votes to determine optimal num-
ber of predictor genes for class distinction; (iv) calculation
of prediction strengths for classification results. The search
criteria employed by ICED is designed to identify not only
genes that are consistently expressed at one level in one
class and at a consistently different level in another class
but identify genes that are variable in one class and consis-
tent in another. The result is a novel approach to accurately
select biologically relevant predictors of differential disease
states from a small number of microarray samples.
Results: The data described herein utilized ICED to ana-
lyze the large AML/ALL training and test data set (Golub et
al., 1999, Science, 286, 531–537) in addition to a smaller
data set consisting of an animal model of the childhood
neurodegenerative disorder, Batten disease, generated for
this study. Both of the analyses presented herein have
correctly predicted biologically relevant perturbations that
can be used for disease classification, irrespective of sam-
ple size. Furthermore, the results have provided candidate
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proteins for future study in understanding the disease pro-
cess and the identification of potential targets for therapeu-
tic intervention.
Contact: andrew brooks@urmc.rochester.edu

INTRODUCTION
Microarray technologies including high-density oligonu-
cleotide and cDNA arrays make it possible to monitor the
mRNA levels of thousands of genes in a single experi-
ment. Data generated by these types of experiments has
been used for disease classification and class prediction
(Golub et al., 1999), drug target identification (Kozian
and Kirschbaum, 1999), and development and validation
of biological pathways (Grayet al., 1998; Martonet al.,
1998). However, no universally accepted methodology for
the analysis of such large and complex data sets exists.
Commonly used techniques include clustering methods
(Eisenet al., 1998; Alonet al., 1999; Perouet al., 1999;
Ben-Doret al., 2000), Support vector machines (SVMs;
(Furey et al., 2000; Brownet al., 2000)), classification
trees (Dubitzkyet al.), genetic algorithms (Liet al., 2001;
Moore and Parker, 2001), neural networks (Hwanget
al., 2001), and a weighted correlation method called
Neighborhood Analysis (Golubet al., 1999).

Wepresent an algorithm in which samples of microarray
data divided into two classes, recognizes genes that
are good class discriminators and uses them for the
identification of unknown samples. Its novelty lies in its
ability to effectively bypass two assumptions which are
not addressed in some of the classical methods:

(a) The distribution of the gene intensities in a sample
is normal. For example, in their analysis of the well-
known leukemia data set (Golubet al., 1999) uses the
Pearson Correlation Value to calculate importance of a
gene in distinction between two sample classes. This

62 c© Oxford University Press 2003

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/1/62/316861 by guest on 20 August 2022



ICED

value is a fraction, whose denominator is the sum of the
standard deviation of the gene’s expression in the two
classes and whose numerator is the absolute difference
of the average of the gene’s expression between the
two classes. In the case when one distribution is normal
and the other is bipolar but they have the same mean,
the Pearson Correlation Value is zero while the two
distributions look quite different from each other. It
is known that the distributions of some replicates are
apparently uniform while others are bimodal or trimodal,
with further irregularity introduced by the inclusion of
absent calls calculated by Affymetrix algorithms (Grant
et al., 2001).

(b) A gene is a good discriminator if it is present
at a consistently high level in one class, and absent
or present at a consistently low level in the other
class. This appears to be an acceptable but incomplete
search strategy when attempting to identify biologically
important discriminators.

In the Independently Consistent Expression Discrim-
inator (ICED) the first assumption is weakened by
allowing the distributions of relevant gene expression
to be multi-polar in one of the two sample classes. The
second assumption is addressed by broadening the search
criterion—ICED searches for genes that are consistent in
one class of data, but not consistent at the same level in the
other class. Inherent genetic variation and environmental
influence may lead to differential gene expression at
baseline in any given population. The perturbation of a
pathway(s) leads to changes in gene expression that re-
sults in a similar pattern exhibited by all subjects affected
by the change in biological state. ICED is designed to
identify all differentially expressed genes as a function of
potential genetic and environmental variability. Recently,
Califano et al. has presented an approach that selects
genes which are consistent in one condition and variable
in the other; the approach goes on to use those genes in a
classification scheme (Califano , 2000). This approach has
significant differences from ICED, a major one being that
in Califano’s approach statistical dependence between
genes are taken into account indirectly, as opposed to
the gene by gene approach employed by ICED. Other
differences between the two approaches lie primarily in
the scalability and sample sizes needed to achieve a robust
classification scheme.

All data points are assigned a weight according to a
formula, and a search criterion is used to decide the
optimal number of genes with the top weight should
be used in the classifier. A voting mechanism based
on the genes selected and their weights to assign class
membership along with a prediction strength confidence
value. To test the efficiency of this method, ICED was
run on a 72-sample leukemia data set (Golubet al., 1999),
as well as an 8-sample Batten disease study performed at

the University of Rochester Medical Center. To test the
robustness of this analysis, a full leave-one-out cross or
jack-knife evaluation (Efron, 1982) of the classification
performance was performed with 100% accurate results
for both data sets. The ICED algorithm has been compared
to analysis of similar approaches including SVMs (Furey
et al., 2000) and Neighborhood Analysis (Golubet al.,
1999). In addition, the leukemia data set was resampled
100 times into a pair of 36-sample groups, where data in
the first group was used to classify samples in the second.
In this repeated resampling test, ICED made highly
accurate predictions and consistently identified similar
groups of genes as good discriminators. Interestingly,
accurate results were obtained in data sets from both
the leukemia and Batten disease studies, in spite of their
significantly different sample sizes. Subsequent analysis
of the results from both analyses has found the highest
weighted genes to have strong biological relevance to the
disease states being classified.

SYSTEM AND METHODS
Microarray methods
For Batten disease data set, total RNA was prepared from
the cerebellum of cln3 knock-out (Batten mice) and WT
littermates (n = 4; for each group) and gene expression
studies were performed as described in Chattopadhyayet
al. (2002) using Affymetrix Mu19K Genechips.

The AML/ALL data set used was generated at the
Whitehead Institute and the Center for Genome Research
at the Massachussets Institute of Technology and is avail-
able at their website (http://www-genome.wi.mit.edu/
MPR/datasets.html). The methods used for generating
microarray data have been previously described (Golubet
al., 1999).

ICED Analysis
There are four steps involved in the execution of the
ICED protocol (Figure 1a). They were performed in the
following sequence and are described herein:

(1) Normalization. For comparability over different ex-
perimental standards and samples, normalization of mi-
croarray data is critical for analysis. In these experiments,
gene expression levels within a sample were scaled to a
mean of 0 and standard deviation of 1.

(2) Gene weight generation. Two typical measurements
used in the computation of the relationship between gene
expression patterns and class distinctions are Euclidean
Distance and Pearson Correlation Coefficient.

(a) Euclidean Distance was used in (Fureyet al., 2000).
(b) A more sophisticated measure is the Pearson Corre-

lation Coefficient, modified as follows (Golubet al., 1999)
to emphasize the ‘signal-to-noise’ ratio in using a gene as

63

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/1/62/316861 by guest on 20 August 2022



R.Bijlani et al.

(a) (b)

Fig. 1. An overview of ICED (Independently Consistent Expression Discriminator). (a) A schematic of the ICED algorithm: The figure
provides a brief overview of the various processes that make up the algorithm; (b) The principle behind gene selection with ICED. Rather
than restrict itself to genes with expression patterns similar to panel 1, that have widely differing means corresponding to class distinction,
and demonstrate low variability within each class, ICED also finds genes with expression patterns like the one panel 2 that are significantly
consistent in one class, and less consistent or even variable in the other.

a predictor. Let[µ1(g), σ1(g)] and[µ2(g), σ2(g)] denote
the means and standard deviations of the log of the expres-
sion levels of geneg for the samples in class 1 and class 2,
respectively.

P(g) = [µ1(g) − µ2(g)]/[σ1(g) + σ2(g)]
This value is used to reflect the difference between
the classes relative to the standard deviation within the
classes. Large values ofP(g) are meant to indicate a
strong correlation between the gene expression and the
class distinction, while the sign ofP(g) being positive or
negative corresponds tog being more highly expressed in
class 1 or class 2.

The reasoning behind this criterion seems to be that
variability in the data may occur due to the presence of
outliers, and gene expressions differing consistently as per
class identity can function as well defined discriminators.
Namely, genes that serve as good discriminators between
two classes are expressed consistently at a certain level in
one class and consistently at a different level in the other
classes, and the more consistent the expressions are and
the wider the gap between the expression levels is, the
better the gene is for discrimination. This measure is used

by the Golubet al. team to select a number of predictor
genes to achieve around 85% accuracy.

This study is motivated by the question of whether this
measure can be improved to achieve much higher accuracy
in prediction. In particular, it seeks to investigate whether
the requirement that the two genes should have consistent
expressions in each of the classes is too strict. There are
two reasons for this hypothesis—first, ideal genes may be
limited in numbers and hard to find. With a limited number
of good discriminators, the quality of prediction may
suffer. Second, it is conceivable that a particular disease
state has the effect of bringing a gene’s otherwise variable
expression level up or down to a certain uniform value.

A weight-assignment formula was developed to identify
genes that showed consistent expression levels in one
class, and did not show consistent expression levels in the
same numerical range in the other class. This definition
intrinsically includes genes that fit the idealized scenario
described earlier, but also identifies genes that may be
good discriminators but would be excluded from the
previous analysis.

For every geneg, two values,W1(g) andW2(g), were
computed from the known samples, which are its weights
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as a discriminator for class 1 and class 2 respectively:

W1(g) =
1
m

∑

i=1,m
|g2,i − µ1,n(g)|
σ1,n(g)

;

W2(g) =
1
n

∑

j=1,n
|g1, j − µ2,m(g)|

σ2,m(g)

where
g1,i is the expression level of thei th sample of geneg in

class 1;
g2, j is the expression level of thej th sample of geneg

in class 2;
µ1,n(g) andσ1,n(g) are the mean and standard deviation

of then samples of geneg in class 1;
µ2,m(g) andσ2,m(g) are the mean and standard devia-

tion of them samples of geneg in class 2.
Instead of using the sum of the standard deviations in

both classes to calculate the denominators, the focus is
on the deviation in one class. Furthermore, instead of
using the Euclidean Distance between two genes or the
difference in the class means to compute the numerator,
the sum of the absolute distance between every sample in
one class and the mean of the other class is calculated. A
high value forWx (g) implies that the gene expresses itself
consistently in classx , and not consistently at a similar
value in the opposite class. Genes recognized usually have
either relatively highW1(g) or W2(g) values, less often
both, validating our design goals. The biggest difference
between our weight and the Pearson Correlation Value is
that, forW1, averaging is taken over the absolute value of
the distance ofg2, j from µ1. Suppose that the averaging is
not over the absolute value, as in the Pearson Correlation
Value, but over the simple difference between the two
values, thatg1 is subject to a normal distribution, and that
g2 is subject to a symmetric bipolar distribution having
the same average asg1. In our measure the evaluation is
some positive value while in the alternative definition the
measure is 0. To achieve our goal of identifying genes that
are expressed consistently at one level in one class but not
consistently expressed at the same level in the other class,
it is thus crucial that averaging is over the distance ofg2, j
from µ1.

Sorting genes by theirW1(g) andW2(g) values can be
used to rank their discriminating abilities and investigate
biological relationships between highly ranked genes and
the state represented by their respective classes.

(3) Voting methodology. To analyze an unknown sample
x , we compute a pair of votes for every geneg in the data
set using the following formulas as proposed by Golubet
al.:

V1(g) = W2(g) • |gx − µ2T R,m(g)|
V2(g) = W1(g) • |gx − µ1T R,n(g)|

where
gx is the expression level of geneg in the unknown

sample;
µ1T R,n(g) is the mean of then training samples of gene

g in class 1;
µ2T R,m(g) is the mean of them training samples of gene

g in class 2.
Finally, a prediction strengthP(x) is determined for
unknown samplex , using the sum of the votes ofp top
genes in class 1 andq top genes in class 2, to generate a
value within the range[−1, 1]:

P(x) =
q • ∑

i=1,p
V1(gi ) − p • ∑

i=1,q
V2(gi )

q • ∑

i=1,p
V1(gi ) + p • ∑

i=1,q
V2(gi )

A positive value ofP(x) denotes thatx is a member
of class 1, and vice versa for a negative value. This
absolute value ofP(x) reflects the confidence in the
prediction. Large values ofP(x) are meant to indicate a
high prediction strength.

(4) Vote-based classifier. The classifier is designed to
answer the question—‘How many genes are necessary for
an accurate discriminant analysis?’, i.e. to determine the
value of p andq highest weighted genes in the prediction
strength equation.

If P indicates the number of the potential gene predic-
tors in class 1, andQ indicates the number of the potential
gene predictors in class 2, the task of the classifier is to find
the value ofp andq that maximizefitness(p, q). p is in the
range of[1, P] andq is in the range of[1, Q]. fitness(p, q)

reflects the discriminating ability of the predictor usingp
highest weighted genes in class 1 andq highest weighted
genes in class 2. It can be computed in a number of differ-
ent ways, as per the individual researcher’s requirement.
The result derived from using a particular number of pre-
dictor genes can be evaluated by a number which is either
the average, median or minimum value of the prediction
strengths made by the voting mechanism. The classifier’s
objective would be to find the number of top ranking genes
from either class that maximizes this value.

There is a precedent in Golubet al. for using the median
prediction strength of classifier results to characterize the
performance of a classifier. Our system allows the user
to select between maximizing the average, minimum or
median prediction strength as per her assumptions of the
biological model. In our experiments, we first made an
estimate of the optimal number of genes required by the
classifier after observing the distribution of values in the
ranking of weights. After using this estimate to make
predictions with ICED, we observed the distribution of the
prediction strengths of the classified samples to select a
fitness measure.

65

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/1/62/316861 by guest on 20 August 2022



R.Bijlani et al.

In these initial estimates for the ALL/AML data set,
there was a relative variability in prediction strengths. It
did not seem wise to use the median since a certain per-
centage of the population seemed to lie at lower predic-
tion strengths. Maximizing the minimum recorded predic-
tion strength in the fitness function did not seem practi-
cal either, since Golubet al. and our earlier experiments
had consistently found some outliers in the data. Hence,
maximizing the average prediction strength seemed like
the best prospect for a fitness function, and ICED’s results
achieved a high enough degree of accuracy to attest to this
choice.

We estimated the optimal number of genes required to
analyze the Batten disease data set and discovered that
the prediction strengths for all samples in a leave-one-
cross were similar, suggesting the use of maximal median
prediction strength as a selection criterion. Again, ICED
achieved a high degree of accuracy in its predictions.

Ideally, given a training data set, the classifier should
test out every possible value ofp andq to find the optimal
number of genes that need to be considered in each class.
This form of two-dimensional analysis is, however, very
time-intensive (runtime of the order O(P∗Q∗analysis-
time)). One compromise could be achieved by stepping
through values ofp andq determined by threshold values
on weights in the respective classes. i.e.

p = number of genes withW1(gi ) above the threshold value

th1 for class 1

q = number of genes withW2(gi ) above the threshold value

th2 for class 2

A user specified increment value would thus limit the
running time of such a search.

We also designed a novel algorithm that determines op-
timal thresholds in significantly less time, with demonstra-
bly high accuracy.

(1) Initially, step through the training set using the
same thresholds for both classes, with user specified
increments, and test the same data set for accuracy.
Let the threshold yielding the best results bet1.

(2) Fix the threshold for class 1 att1 and repeat the
search while only implementing the increment steps
in threshold values for class 2, testing after each
weight list is generated. Let the threshold value for
class 2 that generates the best result in combination
with t1 be saved ast2.

(3) Now fix the threshold for class 2 att2 and step
through incrementing threshold values for class 1,
finally logging the value that yields the best result in
the variablet1.

(4) Repeat 2 and 3 until a user specified number of
iterations is completed or the values oft1 and t2
remain constant, whichever occurs first.

Experimental evidence suggests that values fort1 andt2
stabilize in only 1 or 2 pairs of iterations. So the runtime
is reduced to O(c∗(P + Q)∗analysis-time), wherec is the
average number of iterations. As the genes are sorted in
the decreasing order of the weights, we expect that our
incremental search is likely to find a local optimum that
can achieve accuracy close to the accuracy achieved by
the global optimum.

In the scheme described above, a proper increment step
can be selected to fit the user’s requirement of the runtime
and preciseness.

IMPLEMENTATION AND DISCUSSION
Molecular diagnostics is a growing discipline that has the
potential to impact both preventative medicine and the
treatment of established disease. ICED analysis of the
AML/ALL data set resulted in an accurate classification
of the samples, as well as the identification of biologically
relevant discriminator genes. The 38 sample (27 ALL, 11
AML) training data set used by the Golubet al. study was
used to develop a weighting/voting system that correctly
identified all 34 test samples, 33 of which were with strong
predictions (i.e. with a confidence level higher than 0.2).
The median confidence level of ICED predictions was
0.911 (Figure 2b). In contrast, Neighborhood Analysis
correctly identified 29 samples correctly with strong
predictions, and misidentified 2 of the other 5 samples
that had weak predictions. The median prediction strength
was 0.73. SVMs or Support Vector Machines, are used
by Furey et al. (2000) to classify examples in the test
set, producing results ranging from 30 to 32 accurate
predictions from the 34 sample data set. In all their
tests, the SVM correctly classifies the 29 predicted by
Golub et al. and for the five unpredicted samples, each
is misclassified in at least one SVM test. Two samples are
misclassified in all SVM tests, and no prediction strengths
are available for the analyses.

A leave-one-out cross or jackknife testing of the 38
training samples by ICED resulted in 100% accuracy;
all 38 samples were identified correctly with strong
predictions, and demonstrated a median confidence
level of 0.897 (Figure 2a). An SVM based approach
also correctly identified all 38 training samples. On the
other hand, Neighborhood Analysis identified 36 of the
samples accurately with strong predictions, with a median
prediction strength of 0.77, and one of the two weak
predictions was inaccurate. In addition, Table A (http://
fgc.urmc.rochester.edu/resource.html) depicts genes that
ICED consistently allotted a high weighting to over 100
resampled analyses of the Golubet al. 72 sample data set.

66

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/1/62/316861 by guest on 20 August 2022



ICED

(a) (b)

(c)

Fig. 2. ICED analyses of 47 ALL and 25 AML samples, each containing 7129 genes, from the AML/ALL data set. (a) Scatter plot of
confidence levels in ALL/AML, class predictions for leave-one-out cross or jackknife testing of 38 training samples (27 ALL, 11 AML):
A class prediction (ALL/AML), with a percentage confidence level, is made for every sample in the training data set after using the other
37 samples to create a weighting/voting system. All 38 samples were identified correctly with strong predictions, with a median confidence
level of 89.7%, as shown by the red line. The blue line at 20% indicates the threshold between strong and weak predictions. This boundary
depends on the number of genes in the classifier as proposed by Golubet al.; (b) Scatter plot of confidence levels in ALL/AML class
predictions for 34 test samples (20 ALL, 14 AML); ICED used the 38 sample training data set to develop a weighting/voting system that
correctly identified all 34 samples, 33 of which were with strong predictions, and the median confience level was 91.1%, as shown by the
red line. The blue line at 20% indicates the threshold between strong and weak predictions; (c) The optimal genes selected as ALL/AML
distinctors based upon their expression levels over all 72 samples: The columns correspond to the samples, and the colors are graded from
low (blue) to high (red) gene expression levels, as determined after normalizing the data.Top Table: Distinctor genes that are consistent in
ALL samples.Bottom Table: Distinctor genes that are consistent in AML samples.
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(a) (b)

Fig. 3. ICED analyses of 4 diseased and 4 control samples, each containing 21 146 genes from the Batten disease data set. (a) Scatter plot of
confidence levels in diseased/control class predictions for leave-one-out cross or jackknife testing: A class prediction (diseased/control), with
a percentage confidence level, is made for every sample in the data set after using the other 7 samples to create a weighting/voting system.
All 8 samples were identified correctly with strong predictions, with a median confidence level of 87%, as shown by the red line. The blue
line at 20% indicates the threshold between strong and weak predictions; (b) The optimal genes selected as Batten’s disease distinctors based
upon their expression levels over 8 samples: The columns correspond to the samples, and the colors are graded from low (blue) to high (red)
gene expression levels, as determined after normalizing the data.Top Table: Distinctor genes that are consistent in diseased samples.Bottom
Table: Distinctor genes that are consistent in control samples.

In order to evaluate the robustness of ICED, for 100 runs
the 72 samples were randomly divided into 36 sample
pairs of training and test data sets, the first of which was
used to train ICED and the second to test it. 98.7% of the
3600 predictions made were accurate, 95.6% of which
were strong predictions. Table A ranks genes that were
consistently weighted among the top 10, top 20, top 50
and top 100 highest weights in the lists generated by
ICED from the training samples in the 100 resampled
analyses. Each cell in Table A represents the percentage
of occurrences of that particular gene in the respective
ranking.

A comparison of the resultant genes selected as predic-
tors using the Nearest Neighborhood analysis and ICED
are interesting from a statistical and biological perspec-
tive. This point is illustrated in Table B (http://www.
urmc.rochester.edu/research/FGC/resource.html) where
the optimal number of genes selected by ICED for the
AML/ALL data set is directly compared to the output of
the NNA. Although some gene function similarities are
observed the highest ranked genes (or strongest predictors
of class distinction) exhibit differences based on the

search criteria of the two approaches. One example of this
difference is the highest ranked gene from the AML/ALL
data set, Zyxin. Although there is no clear biological link
between leukemia and this gene product, it is considered
an excellent class predictor. By contrast, two of the
highest ranked ICED genes in the AML/ALL data set are
Cystatins, known cystein proteases responsible for protein
folding with clear implications in cancer biology (Finney
et al., 2001; Yanoet al., 2001; Foghsgaardet al., 2001;
Kos et al., 2000; Stabucet al., 2000).

Determining the molecular basis of disease etiology
and progression is another application for applying a
classification approach to microarray data sets. This
approach can be used not only to identify gene based
and pharmacological targets for disease treatment, but
monitor the progression of established disease and/or
measure the efficiency of a therapeutic intervention.
Batten disease is inherited in an autosomal recessive
manner and is the most common progressive neu-
rodegenerative disease of childhood. The disorder is
characterized initially by visual deterioration at age
5–7 which ultimately results in blindness, followed
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Table 3. A functional classification of genes ICED optimally selected for
class distinction in an animal model of Batten’s disease

TIGR Identity Functional class

TC34642 TRAM-protein Trafficking
TC17513 Death Associated Protein (DAPI) Cell death
TC40790 Myosin Light Chain Cytoskeleton
TC40743 Transketolase Pentose-P pathway
TC36758 Ribonuclease T2 RNA degradation
TC36715 CRIP protein Immune response
TC32487 Neurofilament B Neuron structure
TC15810 Oxoacyl coA thiolase Lipid modification
TC37556 p53 Cell death
TC39759 TB2 like protein Immune response
TC33834 Unknown
TC19822 Unknown
TC40087 Unknown
TC40857 Probable glycosyltransferase Protein modification
TC38959 Acyl coA desaturase Lipid modification
TC37945 Cytochrome C1 Oxidative phosphorylation

The optimal number of diseased discriminator genes for the Batten data set
with a biological classification relating the importance of function as a
result of selection criteria.

by an increased frequency of untreatable seizures,
mental retardation, loss of motor skills and premature
death. The CLN3 gene responsible for Batten’s disease
was positionally cloned in 1995 (International Batten
disease Consortium, 1995), with most individuals affected
harboring a 1.02 kb deletion of the gene. One of the
paradoxes of Batten disease is that it is characterized
by the accumulation of autofluorescent hydrophobic
material in the lysosome of neurons and other cell types
with the cerebellum being greatly affected. However, the
accumulation of this lysosomal storage material, which
no doubt contributes to the neurologic disease, does not
apparently lead to disease in these other cell types making
this observation a poor choice for clinical diagnosis. A
predominant component of the lysosomal storage material
has been identified as mitochondrial ATP synthase subunit
c (Palmeret al., 1992, 1995; Kominamiet al., 1992; Ezaki
et al., 1996). However, how these cellular alterations
relate to the neurodegeneration in NCL’s is unknown.

We have compared gene expression in the cerebellum
of 10-week old cln3-knockout mouse model for the
neurodegenerative disorder, Batten disease (Mitchisonet
al., 1999), as compared to normal mice, of approximately
19 000 transcripts by high-density oligonucleotide arrays
(Chattopadhyayet al., 2002). To minimize technical and
surgical variation, cerebella were collected from three
male cln3-knockout and three male normal mice, and
each type pooled for extraction of RNA. We have recently
shown that surgical resection of individual sub-structures,
or pieces thereof, contribute significantly to the variabil-
ity of the assay irrespective of genetic and biological

variability (Brooks et al., unpublished observation). To
this end, we have minimized the experimentalist induced
variation by pooling the cerebella of three genetically
identical animals. Total sample size equaled a biological
replicate of four samples for each group. The resul-
tant probes derived from the RNA were hybridized to
Affymetrix high-density Mu19K sub arrays A, B and C.
Reproducible changes in expression of two-fold or more
(determined by averaging the fold change values of all
16 possible pairwise comparisons) were found for 756
genes by performing the comparative analysis using the
Affymetrix algorithms. We have classified those genes
that have an altered expression pattern into 14 functional
categories based on what is known in the public domain
about the biology of each gene product. Functional analy-
sis revealed gene expression changes in the cln3-knockout
cerebellum as compared to normal for genes involved
in neuronal cell structure and development, immune and
inflammatory response, and lipid metabolism (Brookset
al., unpublished).

ICED analysis of this data set corroborates the func-
tional analysis described above. The weighted results for
Batten disease versus control from the ICED analysis,
illustrated in Table 1, provide an interesting correlation
with what we know about the pathogenesis of the disease,
as well as some interesting new insights. For example, as
a neurodegenerative disease, atrophy of the brain occurs
in Batten disease, and it is therefore not surprising that
two proteins associated to cell death, DAP1 and p53,
are heavily weighted as being important predictors of a
disease state. Similarly, Batten disease is characterized
by the accumulation of ceroid deposits in neurons, and
one would predict altered lipid metabolism, which is
borne out by the weighting of Oxoacyl CoA thiolase
and acyl CoA desaturase. In addition, up-regulation of
inflammatory proteins is often associated with neurode-
generative disease. The high weighting of the CRIP
protein and a TB2-like protein is therefore intriguing,
suggesting perhaps that a novel inflammatory response of
an immunological nature may be occurring in this mouse
model for Batten disease.

In summary, the ICED algorithm has predicted proteins
already known to be associated with the disease processes
in addition to providing new insight to disease etiology
and progression by the selection of novel gene products.
These novel gene products upon subsequent study may
prove to be valuable in ultimately understanding the
mechanism of disease. We have also demonstrated that
this approach can be applied successfully to both large
and small data sets as demonstrated by the cancer and
neurodegenerative disease experiments described herein.
We conclude that ICED is a powerful tool that can be
utilized to focus microarray data into identification of key
proteins that require further investigation.
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