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ABSTRACT proteins for future study in understanding the disease pro-
Motivation: Class distinction is a supervised learning ap- cess and the identification of potential targets for therapeu-
proach that has been successfully employed in the anal- tic intervention.

ysis of high-throughput gene expression data. Identifica- Contact: andrew_brooks@urmc.rochester.edu
tion of a set of genes that predicts differential biological

states allows for the development of basic and clinical sci- INTRODUCTION

entific approaches to the diagnosis of disease. The Inde-
pendent Consistent Expression Discriminator (ICED) was
designed to provide a more biologically relevant search cri-
terion during predictor selection by embracing the inher-
ent variability of gene expression in any biological state.
The four components of ICED include (i) normalization of
raw data; (i) assignment of weights to genes from both
classes; (iii) counting of votes to determine optimal num-
ber of predictor genes for class distinction; (iv) calculation
of prediction strengths for classification results. The search
criteria employed by ICED is designed to identify not only
genes that are consistently expressed at one level in one
class and at a consistently different level in another class
but identify genes that are variable in one class and consis-
tent in another. The resultis a novel approach to accurately
select biologically relevant predictors of differential disease

Microarray technologies including high-density oligonu-
cleotide and cDNA arrays make it possible to monitor the
MRNA levels of thousands of genes in a single experi-
ment. Data generated by these types of experiments has
been used for disease classification and class prediction
(Golub et al., 1999), drug target identification (Kozian
and Kirschbaum, 1999), and development and validation
of biological pathways (Gragt al., 1998; Martonet al.,
1998). However, no universally accepted methodology for
the analysis of such large and complex data sets exists.
Commonly used techniques include clustering methods
(Eisenet al., 1998; Alonet al., 1999; Perotet al., 1999;
Ben-Doret al., 2000), Support vector machines (SVMs;
(Furey et al., 2000; Brownet al., 2000)), classification
trees (Dubitzkyet al.), genetic algorithms (Lét al., 2001,
states from a small number of microarray samples. Moore and Parker, 2901)’ neural ngtworks (Hwaatg
Results: The data described herein utilized ICED to ana- al, 2001), and a weighted correlation method called

lyze the large AML/ALL training and test data set (Golubet ~ Neighborhood Analysis (Golué al., 1999). _

al., 1999, Science, 286, 531-537) in addition to a smaller We present an algorithm in which samples of microarray
data set consisting of an animal model of the childhood ~ data divided into two classes, recognizes genes that
neurodegenerative disorder, Batten disease, generated for ~ @re good class discriminators and uses them for the
this study. Both of the analyses presented herein have identification of unknown samples. Its novelty lies in its
correctly predicted biologically relevant perturbations that ~ ability to effectively bypass two assumptions which are
can be used for disease classification, irrespective of sam-  not addressed in some of the classical methods:

ple size. Furthermore, the results have provided candidate (a) The distribution of the gene intensities in a sample
is normal. For example, in their analysis of the well-
*To whom correspondence should be addressed. known leukemia data set (Golutt al., 1999) uses the

"The authors wish it to be known that, in their opinion, the first two authors

should be regarded as joint First Authors. Pearson Correlation Value to calculate importance of a

gene in distinction between two sample classes. This
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value is a fraction, whose denominator is the sum of thehe University of Rochester Medical Center. To test the
standard deviation of the gene’s expression in the twgobustness of this analysis, a full leave-one-out cross or
classes and whose numerator is the absolute differengack-knife evaluation (Efron, 1982) of the classification
of the average of the gene’s expression between thperformance was performed with 100% accurate results
two classes. In the case when one distribution is norméor both data sets. The ICED algorithm has been compared
and the other is bipolar but they have the same mearo analysis of similar approaches including SVMs (Furey
the Pearson Correlation Value is zero while the twoet al., 2000) and Neighborhood Analysis (Goléb al.,
distributions look quite different from each other. It 1999). In addition, the leukemia data set was resampled
is known that the distributions of some replicates arel00 times into a pair of 36-sample groups, where data in
apparently uniform while others are bimodal or trimodal,the first group was used to classify samples in the second.
with further irregularity introduced by the inclusion of In this repeated resampling test, ICED made highly
absent calls calculated by Affymetrix algorithms (Grantaccurate predictions and consistently identified similar
et al., 2001). groups of genes as good discriminators. Interestingly,

(b) A gene is a good discriminator if it is present  accurate results were obtained in data sets from both
at a consistently high level in one class, and absent  the leukemia and Batten disease studies, in spite of their
or present at a consistently low level in the other  significantly different sample sizes. Subsequent analysis
class. This appears to be an acceptable but incompletef the results from both analyses has found the highest
search strategy when attempting to identify biologicallyweighted genes to have strong biological relevance to the
important discriminators. disease states being classified.

In the Independently Consistent Expression Discrim-
inator (ICED) the first assumption is weakened bySYSTEM AND METHODS
allowing the distributions of relevant gene eXpreSSio”Microarray methods

to be multi-polar in one of the two sample classes. The B di q | RNA df
second assumption is addressed by broadening the searcf Batten disease data set, tota was prepared from
J.Fe cerebellum of cIn3 knock-out (Batten mice) and WT

criterion—ICED searches for genes that are consistent i 41 h q .
one class of data, but not consistent at the same level in tHit€'Mates & = 4; for each group) and gene expression

other class. Inherent genetic variation and environmentai

influence may lead to differential gene expression aff
baseline in any given population. The perturbation of a The AML/ALL data set used was generated at the

pathway(s) leads to changes in gene expression that rg\_/hitehead Institute and the Center for Genome Research
sults in a similar pattern exhibited by all subjects affectecftt the Massachussets Institute of Technology and is avail-

i : ; ; ble at their website (http://www-genome.wi.mit.edu/
by the change in biological state. ICED is deS|gn_ed tc;J{il/IPR/datasets.html). The methods used for generating

potential genetic and environmental variability. Recently, Tcroarray data have been previously described (Gelub

Califano et al. has presented an approach that select@l- 1999).
genes which are consistent in one condition and variabIFCED Analysis
in the other; the approach goes on to use those genes in zF\] ) ) )
ere are four steps involved in the execution of the

classification scheme (Califano , 2000). This approach has > )
significant differences from ICED, a major one being that/ CED protocol (Figure 1a). They were performed in the

in Califano’s approach statistical dependence betweeff!lOWing sequence and are described herein:

genes are taken into account indirectly, as opposed t01) Normalization. For comparability over different ex-

the gene by gene approach employed by ICED. Otheheimental standards and samples, normalization of mi-
differences between the two approaches lie primarily inyroarray data is critical for analysis. In these experiments,
the scalability and sample sizes needed to achieve a robu&éne expression levels within a sample were scaled to a

classification scheme. _ _ mean of 0 and standard deviation of 1.
All data points are assigned a weight according to a

formula, and a search criterion is used to decide th€2) Gene weight generation. Two typical measurements
optimal number of genes with the top weight shouldused in the computation of the relationship between gene
be used in the classifier. A voting mechanism base@xpression patterns and class distinctions are Euclidean
on the genes selected and their weights to assign clagstance and Pearson Correlation Coefficient.
membership along with a prediction strength confidence (a) Euclidean Distance was used in (Fueewgl., 2000).
value. To test the efficiency of this method, ICED was (b) A more sophisticated measure is the Pearson Corre-
run on a 72-sample leukemia data set (Gadual., 1999), lation Coefficient, modified as follows (Golwbal., 1999)

as well as an 8-sample Batten disease study performed tt emphasize the ‘signal-to-noise’ ratio in using a gene as

tudies were performed as described in Chattopadhyay
[. (2002) using Affymetrix Mul9K Genechips.
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Fig. 1. An overview of ICED (Independently Consistent Expression Discriminator). (a) A schematic of the ICED algorithm: The figures
provides a brief overview of the various processes that make up the algorithm; (b) The principle behind gene selection with ICED. Ratrgier
than restrict itself to genes with expression patterns similar to panel 1, that have widely differing means corresponding to class distinctign,
and demonstrate low variability within each class, ICED also finds genes with expression patterns like the one panel 2 that are significa@ly
consistent in one class, and less consistent or even variable in the other.

apredictor. Let[1(9), 01(g)] and[u2(9), o2(g)] denote by the Golubet al. team to select a number of predictor
the means and standard deviations of the log of the expregenes to achieve around 85% accuracy.
sion levels of geng for the samples in class 1 and class 2, This study is motivated by the question of whether this

respectively. measure can be improved to achieve much higher accuracy
in prediction. In particular, it seeks to investigate whether
P(@) = [11(9) — n2(9))/[01(9) + 02(9)] the requirement that the two genes should have consistent

This value is used to reflect the difference betweerEXPressions in each of the classes is too strict. There are
the classes relative to the standard deviation within th&0 reasons for this hypothesis—first, ideal genes may be
classes. Large values d¢?(g) are meant to indicate a limited innumbers and hard to find. With a limited number
strong correlation between the gene expression and ttff good discriminators, the quality of prediction may
class distinction, while the sign ¢#(g) being positive or suffer. Second, it is con_ce|yable that a part|cu_lar d|s_ease
negative corresponds tpbeing more highly expressed in State has the effect of bringing a gene’s otherwise variable
class 1 or class 2. expression level up or down to a certain uniform value.
The reasoning behind this criterion seems to be that A weight-assignment formula was developed to identify
variability in the data may occur due to the presence ofdenes that showed consistent expression levels in one
outliers, and gene expressions differing consistently as p&fass, and did not show consistent expression levels in the
class identity can function as well defined discriminatorssame numerical range in the other class. This definition
Namely, genes that serve as good discriminators betwedntrinsically includes genes that fit the idealized scenario
two classes are expressed consistently at a certain level élescribed earlier, but also identifies genes that may be
one class and consistently at a different level in the othegood discriminators but would be excluded from the
classes, and the more consistent the expressions are gprgvious analysis.
the wider the gap between the expression levels is, the For every geneg, two values,Wi(g) and W»(g), were
better the gene is for discrimination. This measure is usedomputed from the known samples, which are its weights
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as a discriminator for class 1 and class 2 respectively:  where

% S 1g2i — puan(Q)] Ox is the expression level of gergein the unknown

i=L.m sample;
Wi(9) = o1n(Q) 5 11TRr.n(Q) is the mean of tha training samples of gene
1 ’ ginclass 1;
7 2 191 — n2m(9)l w2TR.m(Q) is the mean of then training samples of gene
Wa(g) = — =" gin class 2.
o2.m(9) Finally, a prediction strengttP(x) is determined for
where unknown sample, usng the sum of the votes gb top
01 is the expression level of théh sample of gengin  genes in class 1 amgitop genes in class 2, to generate a
class 1; value within the rang¢—1, 1]:
i is the expression level of thgh sample of gen
in%zlé{ss 2; P g Ple 019509 qe ; Vi(g) —pe Zl Va(g)
u1.n(g) andoy n(g) are the mean and standard deviation P(x) = ——P '=-q
of the ngsamples of gengin class 1; 0 q .i leVl(gi) +p .i leq V2(9i)

u2.m(9) andoz m(g) are the mean and standard devia-
tion of them samples of geng in class 2. A positive value ofP(x) denotes thak is a member

Instead of using the sum of the standard deviations iRy ‘cjass 1, and vice versa for a negative value. This
both classes to calculate the denominators, the focus I cojute value ofP(x) reflects the confidence in the
on the deV|at|c_>n in one class. Furthermore, instead Oﬁrediction. Large values dP(x) are meant to indicate a
using the Euclidean Distance between two genes or thﬁigh prediction strength.
difference in the class means to compute the numerator,
the sum of the absolute distance between every sample {#) Vote-based classifier. The classifier is designed to
one class and the mean of the other class is calculated. #&nhswer the question—‘How many genes are necessary for
high value forW (g) implies that the gene expresses itselfan accurate discriminant analysis?’, i.e. to determine the
consistently in class, and not consistently at a similar value of p andq highest weighted genes in the prediction
value in the opposite class. Genes recognized usually hawrength equation.
either relatively highwy(g) or Wo(g) values, less often  If P indicates the number of the potential gene predic-
both, validating our design goals. The biggest differenceors in class 1, an@ indicates the number of the potential
between our weight and the Pearson Correlation Value igene predictors in class 2, the task of the classifier is to find
that, forWy, averaging is taken over the absolute value ofthe value ofp andq that maximizefitness(p, q). pisinthe
the distance ofl, j from n1. Suppose that the averaging is range of 1, P] andq is in the range of1, Q]. fitness(p, q)
not over the absolute value, as in the Pearson Correlatioflects the discriminating ability of the predictor usipg
Value, but over the simple difference between the twaighest weighted genes in class 1 andighest weighted
values, that; is subject to a normal distribution, and that genes in class 2. It can be computed in a number of differ-
02 is subject to a symmetric bipolar distribution having ent ways, as per the individual researcher’s requirement.
the same average @s. In our measure the evaluation is The result derived from using a particular number of pre-
some positive value while in the alternative definition thedictor genes can be evaluated by a number which is either
measure is 0. To achieve our goal of identifying genes thathe average, median or minimum value of the prediction
are expressed consistently at one level in one class but netrengths made by the voting mechanism. The classifier’s
consistently expressed at the same level in the other classhjective would be to find the number of top ranking genes
it is thus crucial that averaging is over the distancg0f  from either class that maximizes this value.
from p1. There is a precedent in Golebal. for using the median

Sorting genes by theW:(g) andWa(g) values can be prediction strength of classifier results to characterize the
used to rank their discriminating abilities and investigateperformance of a classifier. Our system allows the user
biological relationships between highly ranked genes angb select between maximizing the average, minimum or
the state represented by their respective classes. median prediction strength as per her assumptions of the
biological model. In our experiments, we first made an
estimate of the optimal number of genes required by the
classifier after observing the distribution of values in the
ranking of weights. After using this estimate to make

(3) Woting methodology.  To analyze an unknown sample
X, We compute a pair of votes for every gegén the data
set using the following formulas as proposed by Gadtib

al.; predictions with ICED, we observed the distribution of the
V1(9) = W2(9) @ [9x — r2TrRm(9)] prediction strengths of the classified samples to select a
V2(9) = Wi(9) e |9x — 11TR,n(9)] fitness measure.
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In these initial estimates for the ALL/AML data set, (4) Repeat 2 and 3 until a user specified number of
there was a relative variability in prediction strengths. It iterations is completed or the values @f and ty
did not seem wise to use the median since a certain per-  remain constant, whichever occurs first.

centage of the population seemed to lie at lower predic- i i
tion strengths. Maximizing the minimum recorded predic- EXPerimental evidence suggests that valuesifandty
stabilize in only 1 or 2 pairs of iterations. So the runtime

tion strength in the fitness function did not seem practi- . N - _
cal either, since Golubt al. and our earlier experiments IS réduced to @*(P + Q)*analysis-time), whereis the

had consistently found some outliers in the data. Hencé¥erage number of iter?ti%ns. AS ;he genes are sc;rted n
maximizing the average prediction strength seemed likd® decrealsmg orﬂe_r cIJ'ktI € W(?_lgdts,lwe Iexpe_zct t athour
the best prospect for a fitness function, and ICED’s resultdicremental search is likely to find a local optimum that

achieved a high enough degree of accuracy to attest to thf@" achieve accuracy close to the accuracy achieved by
choice. the global optimum.

We estimated the optimal number of genes required to In the scheme described above, a proper increment step

analyze the Batten disease data set and discovered tHean be selected to fit the user’s requirement of the runtime

the prediction strengths for all samples in a Ieave-oneand PreciSeness.

cross were similar, suggesting the use of maximal median
prediction strength as a selection criterion. Again, iIceD!MPLEMENTATION AND DISCUSSION
achieved a high degree of accuracy in its predictions. ~ Molecular diagnostics is a growing discipline that has the
Ideally, given a training data set, the classifier shouldootential to impact both preventative medicine and the
test out every possible value pfandq to find the optimal  treatment of established disease. ICED analysis of the
number of genes that need to be considered in each clas8®ML/ALL data set resulted in an accurate classification
This form of two-dimensional analysis is, however, veryof the samples, as well as the identification of biologically
time-intensive (runtime of the order (B*Q*analysis- relevant discriminator genes. The 38 sample (27 ALL, 11
time)). One compromise could be achieved by stepping\ML) training data set used by the Golebal. study was
through values op andq determined by threshold values used to develop a weighting/voting system that correctly
on weights in the respective classes. i.e. identified all 34 test samples, 33 of which were with strong
predictions (i.e. with a confidence level higher than 0.2).
p= number of genes With(gi) above the threshold valué he median confidence level of ICED predictions was
th- for class 1 0.911 (Figure 2b). In contrast, Neighborhood Analysis
1 . - .
) correctly identified 29 samples correctly with strong
q = number of genes withi2(gi) above the threshold valugegictions, and misidentified 2 of the other 5 samples
thy for class 2 that had weak predictions. The median prediction strength
was 0.73. SVMs or Support Vector Machines, are used
A user specified increment value would thus limit theby Fureyet al. (2000) to classify examples in the test
running time of such a search. set, producing results ranging from 30 to 32 accurate
We also designed a novel algorithm that determines oppredictions from the 34 sample data set. In all their
timal thresholds in significantly less time, with demonstra-tests, the SVM correctly classifies the 29 predicted by
bly high accuracy. Golub et al. and for the five unpredicted samples, each
is misclassified in at least one SVM test. Two samples are
(1) Initially, step through the training set using the misclassified in all SVM tests, and no prediction strengths
same thresholds for both classes, with user specifiegre available for the analyses.
increments, and test the same data set for accuracy.A |eave-one-out cross or jackknife testing of the 38
Let the threshold yielding the best resultstbe training samples by ICED resulted in 100% accuracy;
(2) Fix the threshold for class 1 & and repeat the all 3.8 _samples were identified correctly with strong
search while only implementing the increment step redictions, and .demonstrated a median confidence
in threshold values for class 2, testing after eac evel of 0'897. (Flg.u_re 28). An SVM based approach
weight list is generated. Let the threshold value foralso correctly identified all 38 training samples. On the

class 2 that generates the best result in combinatioﬂther hand, Neighborhood Analysis identified 36 of the
with t; be saved a& samples accurately with strong predictions, with a median

prediction strength of 0.77, and one of the two weak

(3) Now fix the threshold for class 2 d@ and step predictions was inaccurate. In addition, Table A (Http
through incrementing threshold values for class 1fgc.urmc.rochester.edu/resource.html) depicts genes that
finally logging the value that yields the best result inICED consistently allotted a high weighting to over 100
the variablet;. resampled analyses of the Golettal. 72 sample data set.
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Fig. 2. ICED analyses of 47 ALL and 25 AML samples, each containing 7129 genes, from the AML/ALL data set. (a) Scatter plot of}
confidence levels in ALL/AML, class predictions for leave-one-out cross or jackknife testing of 38 training samples (27 ALL, 11 AML):§
A class prediction (ALL/AML), with a percentage confidence level, is made for every sample in the training data set after using the other
37 samples to create a weighting/voting system. All 38 samples were identified correctly with strong predictions, with a median confidence
level of 89.7%, as shown by the red line. The blue line at 20% indicates the threshold between strong and weak predictions. This boundary
depends on the number of genes in the classifier as proposed by &alp(b) Scatter plot of confidence levels in ALL/AML class
predictions for 34 test samples (20 ALL, 14 AML); ICED used the 38 sample training data set to develop a weighting/voting system that
correctly identified all 34 samples, 33 of which were with strong predictions, and the median confience level was 91.1%, as shown by the
red line. The blue line at 20% indicates the threshold between strong and weak predictions; (c) The optimal genes selected as ALL/AML
distinctors based upon their expression levels over all 72 samples: The columns correspond to the samples, and the colors are graded from
low (blue) to high (red) gene expression levels, as determined after normalizing th@agefable: Distinctor genes that are consistent in

ALL samples.Bottom Table: Distinctor genes that are consistent in AML samples.
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Fig. 3. ICED analyses of 4 diseased and 4 control samples, each containing 21 146 genes from the Batten disease data set. (a) Scatter p@ot of
confidence levels in diseased/control class predictions for leave-one-out cross or jackknife testing: A class prediction (diseased/bontrol), Wit
apercentage confidence level, is made for every sample in the data set after using the other 7 samples to create a weighting/voting system.
All 8 samples were identified correctly with strong predictions, with a median confidence level of 87%, as shown by the red line. The blug
line at 20% indicates the threshold between strong and weak predictions; (b) The optimal genes selected as Batten’s disease distinctors liaased
upon their expression levels over 8 samples: The columns correspond to the samples, and the colors are graded from low (blue) to high @ed)
gene expression levels, as determined after normalizing theTaat@able: Distinctor genes that are consistent in diseased sangddsm
Table: Distinctor genes that are consistent in control samples.

In order to evaluate the robustness of ICED, for 100 runsearch criteria of the two approaches. One example of this
the 72 samples were randomly divided into 36 samplealifference is the highest ranked gene from the AML/ALL
pairs of training and test data sets, the first of which waslata set, Zyxin. Although there is no clear biological link
used to train ICED and the second to test it. 98.7% of thdetween leukemia and this gene product, it is considered
3600 predictions made were accurate, 95.6% of whictan excellent class predictor. By contrast, two of the
were strong predictions. Table A ranks genes that werbighest ranked ICED genes in the AML/ALL data set are
consistently weighted among the top 10, top 20, top 5@Cystatins, known cystein proteases responsible for protein
and top 100 highest weights in the lists generated byolding with clear implications in cancer biology (Finney
ICED from the training samples in the 100 resampledet al., 2001; Yanoet al., 2001; Foghsgaaret al., 2001;
analyses. Each cell in Table A represents the percentadéset al., 2000; Stabuet al., 2000).
of occurrences of that particular gene in the respective Determining the molecular basis of disease etiology
ranking. and progression is another application for applying a
A comparison of the resultant genes selected as prediclassification approach to microarray data sets. This
tors using the Nearest Neighborhood analysis and ICERpproach can be used not only to identify gene based
are interesting from a statistical and biological perspecand pharmacological targets for disease treatment, but
tive. This point is illustrated in Table B (httpwww.  monitor the progression of established disease and/or
urmc.rochester.edu/research/FGC/resource.html) whereeasure the efficiency of a therapeutic intervention.
the optimal number of genes selected by ICED for theBatten disease is inherited in an autosomal recessive
AML/ALL data set is directly compared to the output of manner and is the most common progressive neu-
the NNA. Although some gene function similarities arerodegenerative disease of childhood. The disorder is
observed the highest ranked genes (or strongest predictactharacterized initially by visual deterioration at age
of class distinction) exhibit differences based on the5—7 which ultimately results in blindness, followed
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Table 3. A functional classification of genes ICED optimally selected for variability (Brooks et al., unpublished observation). To

class distinction in an animal model of Batten’s disease

TIGR Identity Functional class
TC34642 TRAM-protein Trafficking
TC17513 Death Associated Protein (DAPI)  Cell death
TC40790 Myosin Light Chain Cytoskeleton
TC40743 Transketolase Pentose-P pathway
TC36758 Ribonuclease T2 RNA degradation
TC36715 CRIP protein Immune response
TC32487 Neurofilament B Neuron structure
TC15810 Oxoacyl coA thiolase Lipid modification
TC37556 p53 Cell death
TC39759 TB2 like protein Immune response

TC33834 Unknown
TC19822 Unknown
TC40087 Unknown

TC40857 Probable glycosyltransferase Protein modification
TC38959 Acyl coA desaturase Lipid modification
TC37945 Cytochrome C1 Oxidative phosphorylation

this end, we have minimized the experimentalist induced
variation by pooling the cerebella of three genetically
identical animals. Total sample size equaled a biological
replicate of four samples for each group. The resul-
tant probes derived from the RNA were hybridized to
Affymetrix high-density Mul9K sub arrays A, B and C.
Reproducible changes in expression of two-fold or more
(determined by averaging the fold change values of all
16 possible pairwise comparisons) were found for 756
genes by performing the comparative analysis using the
Affymetrix algorithms. We have classified those genes
that have an altered expression pattern into 14 functional
categories based on what is known in the public domain
about the biology of each gene product. Functional analy-
sis revealed gene expression changes in the cIn3-knockout
cerebellum as compared to normal for genes involved
in neuronal cell structure and development, immune and
inflammatory response, and lipid metabolism (Broeks

The optimal number of diseased discriminator genes for the Batten data sedl., UnpUb”Shed)-

with a biological classification relating the importance of function as a
result of selection criteria.

ICED analysis of this data set corroborates the func-
tional analysis described above. The weighted results for
Batten disease versus control from the ICED analysis,

by an increased frequency of untreatable seizuresllustrated in Table 1, provide an interesting correlation
mental retardation, loss of motor skills and prematurevith what we know about the pathogenesis of the disease,
death. The CLN3 gene responsible for Batten’s diseasas well as some interesting new insights. For example, as
was positionally cloned in 1995 (International Batten a neurodegenerative disease, atrophy of the brain occurs
disease Consortium, 1995), with most individuals affectedn Batten disease, and it is therefore not surprising that
harboring a 1.02 kb deletion of the gene. One of thegwo proteins associated to cell death, DAP1 and p53,
paradoxes of Batten disease is that it is characterizedre heavily weighted as being important predictors of a
by the accumulation of autofluorescent hydrophobiddisease state. Similarly, Batten disease is characterized
material in the lysosome of neurons and other cell type®y the accumulation of ceroid deposits in neurons, and
with the cerebellum being greatly affected. However, theone would predict altered lipid metabolism, which is
accumulation of this lysosomal storage material, whichborne out by the weighting of Oxoacyl CoA thiolase
no doubt contributes to the neurologic disease, does n@nd acyl CoA desaturase. In addition, up-regulation of
apparently lead to disease in these other cell types makirigflammatory proteins is often associated with neurode-
this observation a poor choice for clinical diagnosis. Agenerative disease. The high weighting of the CRIP
predominant component of the lysosomal storage materigirotein and a TB2-like protein is therefore intriguing,
has been identified as mitochondrial ATP synthase subun#uggesting perhaps that a novel inflammatory response of

c (Palmeretal., 1992, 1995; Kominamét al., 1992; Ezaki

an immunological nature may be occurring in this mouse

et al., 1996). However, how these cellular alterationsmodel for Batten disease.

relate to the neurodegeneration in NCL's is unknown.

We have compared gene expression in the cerebelluralready known to be associated with the disease processes

In summary, the ICED algorithm has predicted proteins

of 10-week old cIn3-knockout mouse model for thein addition to providing new insight to disease etiology

neurodegenerative disorder, Batten disease (Mitchéon

and progression by the selection of novel gene products.

al., 1999), as compared to normal mice, of approximatelyThese novel gene products upon subsequent study may
19000 transcripts by high-density oligonucleotide arrayprove to be valuable in ultimately understanding the

(Chattopadhyayt al., 2002). To minimize technical and

mechanism of disease. We have also demonstrated that

surgical variation, cerebella were collected from threethis approach can be applied successfully to both large

male cIn3-knockout and three male normal mice, andaind small data sets as demonstrated by the cancer and
each type pooled for extraction of RNA. We have recentlyneurodegenerative disease experiments described herein.

shown that surgical resection of individual sub-structures\We conclude that ICED is a powerful tool that can be

or pieces thereof, contribute significantly to the variabil-

utilized to focus microarray data into identification of key

ity of the assay irrespective of genetic and biologicalproteins that require further investigation.
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