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ABSTRACT Computer-aided drug design is an efficient method to analyze the development of

disease-related drugs. However, developed as binding targets, medicines perform well in cell models and

animal models but fail in human models. One main reason for this failure is that the human body has

natural barriers, such as the blood-brain barrier, to block exogenous macromolecules. Thus, efficient and

accurate predictions of drug molecules that can effectively pass the blood-brain barrier is necessary in

developing drug treatments for brain tissue diseases. In this study, 7658 molecular structure features were

extracted from 2354 drugmolecule SMILE strings using computational methods. By integrating three feature

selection algorithms of machine learning, 33 chemical structure features with significantly discriminant

performance were screened out and used to construct multiple discriminant models. After a comprehensive

comparison, the XGBoost model was selected as the final prediction model. After data preprocessing and

parameter optimization, the model achieved 95% accuracy on the training set. To verify the model’s stability,

we introduced an external data set, which reached 96% accuracy of the model. This study applies new

resampling methods and machine learning algorithms, and adjusts the application of resampling methods

to obtain new chemical features to construct machine learning predictors. The features may contribute to the

significant drug development that integrates biological analysis and machine learning algorithms.

INDEX TERMS Blood-brain barrier, data imbalanced, machine learning, eXtreme Gradient Boosting

(XGBoost), computational biology, resample methods.

I. INTRODUCTION

Although drug design and discovery result in various poten-

tial drugs candidates, most drug candidates cannot be final-

ized and marketed due to varying problems related to

absorption, distribution, metabolism, addition, and toxicity

(ADMET) [1]. Therefore, to reduce loss associated with

the drugs, the low marketability of which caused by poor

The associate editor coordinating the review of this manuscript and
approving it for publication was Trivikram Rao Molugu.

ADMET properties, it is necessary to develop a method

that maximizes efficiency in developing novel drugs [2]–[4].

Applying computational technology to drug screening can

significantly reduce cost and save time in studying drug

ADMET properties in vivo or in vitro [5]–[8].

The blood-brain barrier refers to the barrier formed by

brain capillary walls and glial cells between plasma and brain

cells. The barrier is formed by the choroidal plexus between

plasma and cerebrospinal fluid [9], [10]. The barrier can

prevent most harmful substances in the blood from entering
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FIGURE 1. Workflow of optimized model The general workflow is shown in the illusive graph. We began with the parsing the smile strings and
obtained 7658 chemical features in total. Then we applied the feature selection methods to screen the most significant signatures. Eventually,
we received 33 features that present significant performance distinguishing positive and negative molecules. We constructed multiple classifiers
and compared different machine learning algorithms. Finally, we selected the XGBoost model as the best model according to the F1-score. The
trained model was validated using an independent external data.

into the brain tissue. It is different for the various solutes in

the blood to enter the brain tissue from the brain capillaries,

where some pass quickly, some are slow, and some cannot

pass at all. This selective osmosis phenomenon makes people

imagine that there may be a particular structure that can

restrict solute penetration [11]. This structure can reduce

or even protect the brain tissue from damage by harmful

substances circulating blood, thus protecting the brain tissue.

The stability in the brain that is maintained by the blood-brain

barrier has crucial biological significance for maintaining the

normal physiological state of the central nervous system [12].

This stability protects the brain, but serious diseases dis-

rupt this environment ignoring the protection of the stability.

Central nervous system (CNS) has become the second-largest

disease after cardiovascular diseases [13]. Despite the rise

in quantity of CNS diseases, the success rate in developing

drugs related to these illnesses is shallow. Compared with the

20% success rate of prescriptions for cardiovascular diseases,

the success rate of prescriptions for CNS diseases is only

8%. A significant factor affecting the success of CNS drug

development is the blood-brain barrier (BBB), which blocks

nearly 100% of large molecule drugs and more than 98% of

small molecule drugs [14].

Therefore, in addition to overcoming ADMET issues, CNS

drugs must also overcome the BBB and achieve sufficient

exposure in its targeted region. This is the key to the success

of CNS drug development [15].

Current experimental methods with the best accuracy to

screen drug candidates that can pass the BBB are limited due

to high costs and labor [16]. Because it is impossible to deter-

mine all potential candidates that can cross the blood-brain

barrier through current experimental methods. it is imperative

and even desirable to apply an evaluation method based on a

computational model [17]–[19].

The rapid development of prediction models has divided

into statistical methods andmachine learning algorithms [20].

In this study, we use traditional machine learning such as

Logistic regression [21],support vector machine (SVM) [22],

Naive Bayes [23], random forest(RF) [24], XGBoost [25]

and multilayer perceptron(MLP) [26] to build supervised

regression or classification models. Compounds that can

cross the BBB (BBB+) and compounds that cannot cross

the BBB (BBB-) are used as the label of the models. SVM

generally performs well in higher dimension and SVM is

the best algorithm when classes are separable. What’s more,

outliers in SVM models have less impact to the prediction.

However, disadvantages in SVM models, such as the long

time to process a larger dataset, existed in model training.

SVM with overlapped classes may have poor performance.

Selecting appropriate hyperparameters is important for the

performance. Selecting the appropriate kernel function can

be tricky. Naive Bayse is very fast and can be used in real

time. It’s scalable with large datasets and insensitive to irrel-

evant features. Multi class prediction is effectively done in

Naive Bayes. It generally has good performance with high

dimensional data. The disadvantages of Naive Bayes are the

independence of features which can not be guaranteed, and

Naive Bayes is a bad estimator. The logistic regression is

simple to implement. Feature scaling is not needed. Tuning

of hyperparameters is not needed, either. The disadvantage

of logistic regression is the poor performance on non-linear

data. The poor performance with irrelevant and highly corre-

lated features may be involved. The logistic regression is not

very powerful algorithm and can be easily outperformed by
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other algorithms. It also has high dependancy on the proper

presentation of data. Random forest has outperformed on

imbalanced datasets, and can handle huge amount of data and

missing data. Outliers have little impact on random forest.

It’s useful to extract feature importance. One of the short-

comings is that features need to have some predictive power,

else, they won’t work. The predictions of the trees need to

be uncorrelated. XGBoost requires less feature engineering.

Feature importance can be found out. Outliers have minimal

impact. XGBoost handles large-sized datasets well and is

fast to interpret. XGBoost is less prone to overfitting. How-

ever, the XGBoost is difficult to be interpreted, and tough in

visualization. Overfitting is possible if parameters have not

be tuned properly which is because of the large number of

hyperparameters.

Previous studies that utilized traditional models did not

consider data imbalance, leading to problems with model

precision and poor performance in independent testing. Most

of the existing data lack BBB- samples, which poses a prob-

lem for accurate predictions on independent data. One such

model was built by Dmitry A et al. and Konovalov [27] where

328 compounds in vivo were tested for BBB permeability and

predicted by logBB value, which calculated a classification

accuracy at only 0.766. The best model developed by Andrey

A.Toropov et al., which tested 41 compounds, only had an

accuracy of 0.896 accuracy [28].Martins et al. used a series of

support vector machines (SVM) and RF classificationmodels

based on the Bayesian method. The results from these models

has an accuracy of 0.947 [29].

To reconcile the discrepancies created by data imbalance,

our study uses several resampling methods, such as upsam-

pling [30], adaptive synthetic sampling(ADASYN) [31],

Ra-ndomUnder Sampler(RUS) [32], SMOTE+ENN(edited

nearest neighbor) [33] and Synthetic Minority Oversampling

Technique(SMOTE) [34]. In this study, the data set was

obtained from a recent study [35], which contains 2354 com-

pounds, including 1807 BBB+ samples and 547 BBB-

samples for model construction and 92 CNS+ chemicals

retrieved from a related article to the external data set

for the independent evaluation. Our model has dramati-

cally improved the accuracy of classification predictions

for 2356 compounds by using these resampling methods.

Although the resampling method dramatically improves the

model’s accuracy in the test set, its prediction performance

on independent data sets needs to be evaluated separately to

avoid issues of over fitting.

II. MATERIAL AND METHODS

A. DATASETS

In this study, the data set was obtained from the recent

study [35], which was integrated by the last four stud-

ies [36]–[39], In dataset, if it includes the compounds such

as noncovalent, inorganic, mixtures, salt, or those with MW

greater than 1000 Da, they were removed from the dataset

depends on real cases. The researchers used LogBB as the

criterion to divide compounds into BBB + and BBB- if

LogBB >1 and LogBB < −1, respectively [35]. The data

set contains 2354 compounds for model constructed and

92 CNS+ chemicals retrieved from a related article to the

external data set for the independent evaluation. The full data

set includes a self-generated set ID, the generic name as

referred to in the literature, the canonical SMILES derived

from the literature, the canonical SMILES for each com-

pound, the binary classification of the BBB (‘‘p’’ stands for

BBB+ and ‘‘n’’ for BBB-), and the reference ID of the related

articles. The added 92 CNS+ samples contain their PubChem

CID, name, and canonical SMILES.

B. FEATURE SET

We used the java packages called PaDEL-Descriptor [40]

to generate 4 different molecular fingerprints, namely,

MACCS(166 features), PubChem(881 features), Substruc-

ture(307 features), and Klekota Roth(4860 features) and 2D

descriptor(1444 features). Finally, we extracted 7658 chem-

ical features in total. We initially removed the 25% features

with the lowest variance. The variance represents the aver-

age of the squared differences from the mean value of each

feature. The features with smaller variance are supposed to

contribute less than other features. These features are not

representative between two groups and thus are considered

as non-significant.

C. DATA PREPROCESSING

There are several issues to be addressed before the down-

stream analysis. First, the quantification of each chemical

feature is scaled in different intervals. The Z test was applied

to normalize all the chemical features, and thus all the features

were scaled into the same distribution with a mean value of

zero and standard deviation of one. We first calculated the

mean value and standard deviation of each feature. Then we

calculated the Z score of each feature using the difference

between original value and mean value by the standard devi-

ation. Second, outliers may exist and have a considerable

impact on the classifiers. Therefore, we computed a confi-

dence interval using the mean value and three times the stan-

dard deviation for each feature and removed all the outliers

beyond the corresponding confidential interval. The last issue

is about the imbalanced samples in two groups. The number

of positive molecules is over three times larger than that

of negative molecules. We resample the data before feature

selection, which is different from the existing research. We

think it is more reasonable. We used six types of methods to

solve the problem of imbalanced data sets.

1. Upsampling: Upsampling is the process of randomly

duplicating observations from theminority class to rein-

force its signal.

2. RUS: The idea of RUS is also relatively simple, which

is to select some randomly frommost classes of samples

and eliminate them

3. Weight parameter: Set the weight parameters for each

sample and adjust the prediction error loss of a few
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classes to be greater than that of most classes. When we

use the machine learning model in the sklearn package,

we set the best weight parameters to get the best results.

4. SMOTE: The SMOTE algorithm’s basic idea is to

analyze the minority samples and synthesize new sam-

ples according to the minority samples to add them

to the data set. For each sample in the minority class,

the Euclidean distance is used as the standard to cal-

culate the distance from it to all the samples in the

minority sample set and get its k-nearest neighbor [41].

According to the unbalanced proportion of samples,

a sampling ratio is set to determine the sampling rate n.

for each minority sample, several samples are randomly

selected from its k-nearest neighbors, assuming that the

selected nearest neighbor is [34].

5. SMOTE+ENN: SMOTE method is used to generate

a new minority class sample to obtain the expanded

dataset. For each sample, if more than half of its K

nearest neighbors do not belong to the majority class,

the sample will be rejected [33].

6. ADASYN: It uses a mechanism to automatically deter-

mine how many composite samples each minority class

sample needs to produce, instead of synthesizing the

same number of samples for each minority class sample

like SMOTE [31].

D. FEATURE SELECTION

Given the large number of features, we compiled a pipeline

of different feature selection methods. In other words, we use

the following procedure method to filter features layer by

layer, instead of using the best way to filter once, which is

why we can achieve better accuracy with fewer (33) fea-

tures. We applied a multilayer screening process composed

by four independent feature selection methods. And this

screening process was performed layer by layer. As different

feature selection methods focus on diverse aspects and even-

tually screen different features, we combined multiple feature

selection algorithms. After a multilayer screening, we can

guarantee that all the retained features are considered to

be significant by all feature selection methods. In this way,

the feature set is supposed to be more robust and stable any

using any of the single feature selection method.

1. Variance threshold (VT):For each value of feature

variance, we deleted all features whose variance was

not higher than the threshold. The features were ranked

in descending order based on the variance. Finally,

we removed all but the top 200 highest scoring features.

2. Tree-based feature selection: The prediction model

based on a decision tree can be used to calculate the

importance of features, so it can be used to remove

irrelevant features.

3. Univariate feature selection: Univariate feature selec-

tion selects the best feature based on univariate statisti-

cal testing. It can be regarded as a preprocessing of the

prediction model.

4. Recursive feature elimination (RFE): The recursive

feature elimination method uses a machine learning

model to carry out multiple rounds of training rounds.

After each round of training, the features corresponding

to some weight coefficients are eliminated, and then the

next round of training is carried out based on the new

feature set[42]

E. CLASSIFIER CONSTRUCTION

We investigated different machine learning classifiers,

including the Logistic regression, Naive Bayes, SVM, RF,

and XGBoost. All the models were constructed using the

sklearn [43] python package. Then we compared all models’

performance in terms of precision, recall, F1 score, and other

criteria, including AUC, ACC and G-means. All the models

were initially constructed with default parameters. The best

model was selected based on the performance, and afterwards

we applied the parameter optimization using grid search.

1. Logistic regression: Logistic regression is a statistical

model that in its basic form uses a logistic function

to model a binary dependent variable, although many

more complex extensions exist [21], [44], [45].

2. Naive Bayes: Naive Bayes classifiers are a family of

simple ‘‘probabilistic classifiers’’ based on applying

Bayes’ theorem [46] with strong independence assump-

tions between the features. They are among the simplest

Bayesian network models [23].

3. SVM: It is a supervised learning model with associated

learning algorithms that analyze data for classification

and regression analysis. In addition to performing linear

classification, SVMcan efficiently perform a non-linear

classification using the kernel trick, implicitly mapping

their inputs into high-dimensional feature spaces [22].

4. RF: RF is an ensemble learning method for classi-

fication, regression and other tasks that operate by

constructing a multitude of decision trees at train-

ing time and outputting the class that is the mode

of the classes (classification) or mean/average predic-

tion (regression) of the individual trees [24], [47]–[53].

5. XGBoost: XGBoost is an optimized distributed gradi-

ent enhancement library designed to be efficient, flexi-

ble and portable, and is a tree integration model. It sums

up the K (tree number) tree results as the final prediction

value [25], [54]–[56].

6. MLP:MLP is a kind of artificial neural network with a

forward structure, which maps a set of input vectors to a

set of output vectors. MLP can be regarded as a directed

graph, which is composed of several node layers. Each

layer is connected to the next layer. Except for the input

node, each node is a neuron with a nonlinear activation

function [26].

F. PARAMETER OPTIMIZATION

To achieve better fitting, we applied the grid search algo-

rithm [57] to optimize the best model parameters. In this
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study, we chose the essential parameters of models and

searched for the best combination. The optimized parameters

include the gamma, learning rate, and max depth. The param-

eter optimization process was done using the GridSearchCV

function in the python sklearn[43] package.

G. MODEL EVALUATION

To comprehensively analyze models’ performance under dif-

ferent conditions, we investigated the model’s performance

based on all possible combinations. The combination compo-

nents include additional models, other resampling methods.

We use our test set to evaluate the performance of different

feature selection and unbalanced learning methods. Besides,

10-fold cross-validation [58]–[66] is used to verify the accu-

racy of the model to find the best algorithm to improve test

data classification. In this study, we selected 10-fold instead

of 5-fold in order to obtain robust performance. The area

under of the Receiver Operating Characteristic curve (AUC),

Accuracy (ACC), recall, F1-score were used to evaluate the

model’s accuracy. These metrics have been widely used in

the recent bioinformatics studies [67]–[75]. To validate the

performance of our selected chemical features and the pre-

cision of the model, we applied an independent external data

for validation. The external data are drugs of 92 CNS+. Since

the external data only contains CNS+ samples, we simulated

the CNS- samples based on the smote algorithm. Eventually,

we obtained balanced CNS+ and CNS- samples in the exter-

nal data.

The general workflow is shown in the illusive graph.

We began with the parsing the smile strings and obtained

7658 chemical features in total. Then we applied the fea-

ture selection methods to screen the most significant sig-

natures. Eventually, we received 33 features that present

significant performance distinguishing positive and negative

molecules. We constructed multiple classifiers and compared

different machine learning algorithms. Finally, we selected

the XGBoost model as the best model according to the

F1-score. The trained model was validated using an indepen-

dent external data.

III. RESULTS

A. DATA PREPROCESSING

The use of different resampling methods directly impacts the

number of BBB+ and BBB- samples in the data. The total

increased number of positive and negative samples in the

training set after using resamplingmethods is shown in Fig. 2.

We choose to resample the data before feature selection,

which is more reasonable in our opinion. In this study,

we used 75% of all samples as the training set and the rest

25% as the test set, and 92 CNS+ chemicals retrieved from

a related article to the external data set for the independent

evaluation.

B. THREE-STEP FEATURE SELECTION PROCESS

A three-filters composed feature selection pipeline was

introduced to screen the most significant features, and the

distribution can be seen in Fig 3A.

FIGURE 2. Distribution of the number of positive and negative chemicals
in the training set. The x-axis represents the preprocessing method
composed of no method, upsampling, RUS, ADASYN, SMOTE and
SMOTE+ENN. The y-axis represents the number of samples in each group.

FIGURE 3. Feature selection process. (A) The top 30 features and
corresponding importance scores are shown. (B) The process of feature
selection using a recursive feature selection algorithm.

The features were ranked according to their importance

in descending order. It suggests that the feature importance

follows a long tail distribution, which means small partial

features have contributions, while most features do not make

sense.

Fig. 4 shows the distribution of features in three datasets.

The x-axis represents the feature value, and the y-axis

represents the corresponding probability. The blue bars rep-

resent the overall distribution of each feature. We used

lines of different colors to indicate the distribution in each

dataset accordingly. As seen from the figure, given a spe-

cific feature, positive and negative distributions have sig-

nificant differences. Meanwhile, the training dataset and

external dataset also present diverse distribution. This may

be attributed to the batch effect

To illustrate the two groups of molecules present various

distributions on these features, we visualized the distribution

of molecules from three datasets, as shown in Fig.5A. The

positive and negative molecules have significant differences.

Some features also present interactions, and thus, we com-

puted the internal correlation between any pair of features,

as shown in Fig. 5B. The heatmap indicates diverse intensity

of interaction. As expected, some features have significant

interactions and present darker colors. Moreover, we found

that our significant features are different from the existing

studies, which may be due to the resampling before feature

selection and the use of triple-feature screening to obtain

essential features.
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FIGURE 4. Distribution of features in three datasets. The positive and
negative samples in the train set are marked using orange and blue lines,
respectively. The red line indicates the positive samples in the external
dataset. The barplot represents the overall distribution of all samples in
the train set.

FIGURE 5. Significant features interaction (A) The positive (purple) and
negative (yellow) molecules are marked in different colors. Using
principal component analysis, the two groups of molecules are grouped
into separate clusters. (B). The correlation heatmap shows the internal
correlation between each pair of features.

Thenwe applied the selected features to train the classifiers

based on different algorithms. The construction process was

done using the sklearn with default parameters. 75% of all

samples were randomly selected as a train set.

C. DATA PREPROCESSING

Table 1 shows the six machine learning models’ performance

on the training set without any resampling method, and n

stands for BBB- dataset, p stands for BBB+ dataset. The

global accuracy like ACC and AUC only reflect the overall

performance rather than independent accuracy. Therefore,

we investigated the models’ performance on each group,

in terms of precision, recall and F1 score. In this way, it’s clear

that whether a model is more sensitive to predict each group.

Table 1 shows the performance of different models regarding

positive and negative groups, independently. We find that the

prediction accuracy of the six models for BBB + compounds

is much lower than that for BBB- compounds. And the

performance of XGBoost is the best among the six models.

However, this accuracy is not as high as we expected, and the

prediction accuracy on BBB + is not as good as expected,

so it is necessary to use the resampling method.

TABLE 1. Performance of all models.

D. PERFORMANCE UNDER DIFFERENT COMBINATIONS

Besides, we also wanted to further investigate the model’s

differential performance under different combinations of

machine learning models and resampling methods. We pre-

processed the train set in each variety using a specified

method, including ADASY, RUS, SMOTE, etc. Then we

selected a model from the Logistic, random forest, Naive

Bayes, SVM and XGBoost. Finally, the classifier can be

weighted or not to calibrate the imbalance between the two

groups. A series of criteria were adopted to estimate the

model’s performance, such as AUC, ACC, F1score and ACC

on external data.

After combining the six machine learning algorithm mod-

els with resampling methods, we find that most of them

improve the test set’s accuracy, and only a few reduce the

accuracy. In the combination of accuracy improvement, many

of the independent test accuracy of external data is extremely

low, overfitting. However, when the independent test accu-

racy of external data is high enough and similar, we prefer

to choose the combination that performs better on the test

set because it may have better performance for other external

data.

As shown in Table 2, the combination of smote + ENN

and logistic regression performs well on the test set. Still,

the accuracy of external data is inferior, which is the apparent

overfitting, and so is the combination of smote and RF. The

combination of ADASY and Naive Bayes does not perform

well in the test set but has good results in the accuracy

of external data. Still, this combination is also unreliable

because it can not guarantee that it has such high accuracy

in the case of low test set accuracy for other external data.

Finally, our best combination is upsampling and XGBoost,

which has good performance in both test sets and external

data.
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TABLE 2. The combination of machine learning models and resampling
methods with typical results.

TABLE 3. Performance of the four models.

E. OPTIMIZED MODEL AND VALIDATION ON EXTERNAL

DATASETS

We find that although the resampling method can get a high-

precision model in the training set, it may have poor per-

formance in external data testing, which may be caused by

data overfitting. Even in some cases, the resampling method

will reduce its performance on the training set, resulting

underfitting in the final model.

Finally, the obtained best model is to use the method of

upsampling to deal with data imbalance and build a model

based on XGBoost. Because the combination of the XGBoost

model and upsampling achieves the best performance, as we

compare the results of other resampling methods based on

XGBoost.

Four representative models are used to model, and the per-

formance on the training data is shown in Table3. As shown

in Table 3, model A and model B’s accuracy on the test set

is not high, but model, C and model D, have high precision,

especially model D.

To facilitate describing the four models, we represented

them as A, B, C and D. The accuracy of model A and model

B is not satisfactory in the external data set, but model D’s

accuracy is also very low. Considering the excellent perfor-

mance of model D in the training set, model D is supposed to

be overfitted, and model D has good performance in both the

test set and external data set. This consequence suggests the

potential negative effect of SMOTE and ENN preprocessing.

Any additional data preprocessing arises the chance of over-

fitting.

The optimized model is model C. The model can finally

get 0.95 accuracy on the training set. In order to verify the

stability of the model, we also introduce an external data,

the accuracy of the model on the external data is 0.96. Our

model’s performance is comparable to the previously pub-

lished methods. [18], [27], [29], [35]

IV. DISCUSSION

To find the most optimized model, we emphasized resam-

pling over feature selection. In feature selection, several fea-

ture selection methods (VT, Tree-based, Univariate feature

selection, Recursive feature elimination) are used to filter

layer-by-layer. The combination of each model and resam-

pling method was then used to find the optimized model.

In this study, we applied a multilayer screening process

composed by different feature selection methods. The fea-

tures obtained after multilayer screening are different from

those obtained by existing studies. This may be since our

method emphasized resampling first over feature selection.

Moreover, we found that many models in training set greatly

improved in accuracy after resampling, but the accuracy

rate in the independent validation on external data remained

extremely low. We use SMOTE usage data based on SVM

and obtained good results in the test set with an AUC equal

to 0.95, ACC equal to 0.9, and F1 score of 0.99. However,

in the independent verification of external data, ACC was

only 0.44 and g-means was only 0.29 due to overfitting.

This discrepancy was not rare. It’s worth mentioning that,

we also observed that after using resamplingmethods, the risk

of overfitting is also increased. It implies that the artifi-

cial interfere may introduce unexpected negative effect on

the model fitting. Therefore, some algorithms perform well

with unbalanced data such as Bayesian. These models gen-

erally provide an additional parameter like ‘weighted class’.

The weighted models are also included in our combination

comparison.

Additionally, some models’ accuracy on the test set was

very low, but their performance in independent testing was

excellent. For example, the ADASY + Naive Bayes model’s

accuracy on the test set is not satisfactory, with AUC calcu-

lated at 0.73 and ACC estimated at 0.66. Still, the accuracy

of external data was as high as 0.82. This model is supposed

to be accurate due to its performance on external data for

independent testing. This model may perform well on this

external data but may not achieve the expected effect due to

its lack of fitting in other data sets.

When compared to the existing research on predictingBBB

permeability, our study applied the resampling method to

solve data imbalance. We adjusted the resampling method’s

timing, chose the most critical 33 features by multiple fea-

ture selection, and paid attention to the problem of model

overfitting. Still, these studies rarely involve the imbalance

of BBB data samples, or if they did take into account the

problem of inequality, these methods were not effective in

their solution. The advantage of our method comprehensively

considered the imbalance of data samples, a large number

of samples were appropriately synthesized, and all original

samples were deleted. Moreover, existing research that uses

a resampling method for modeling poses several problems,

including ignoring the issue of overfitting and inaccuracy due
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to filtering features before resampling, which may not con-

form to real situations and is not reasonable. Current research

uses one feature regarding feature selection compared with

various feature selection methods, while we integrate sev-

eral methods for layer-by-layer selection. This multi-layer

approach to feature selection might be one reason why we

were able to achieve high accuracy with few features.

Finally, our best model has the best performance in the

independent verification of training set and external data

and achieved an accuracy rate of 0.96 on the test set and

0.96 in the independent verification of external data. The

optimized parameters of the best model are base_score= 0.5,

booster = ’gbtree’, colsample_bylevel = 1, gamma =

0.001, gpu_id = −1, importance_type = ’gain’, interac-

tion_constraints = ’’, learning_rate = 0.1, max_delta_step =

0, max_depth = 50.

V. CONCLUSION

We used six machine learning algorithms, four feature selec-

tion methods, and six resampling methods where the machine

learning method was combined with the resampling method.

The timing of resampling was adjusted accordingly. The

accuracy of the model on the test set is verified by 10-fold

cross-validation. Finally, it was found that the best model can

be obtained by using a combination of upsampling and the

XGBoost model. Furthermore, we only used 33 features to

build the model, which is less than other research needs and

different from other features.

To ensure the model’s accuracy, we used 92 CNS + to

verify performance after obtaining our best model indepen-

dently. Finally, we found that the accuracy rate was as high

as 0.96. Its performance was also excellent in the training

set, with ACC equal to 0.95, AUC equal to 0.98, sensitivity

similar to 0.983 and specificity equal to 0.93.

Our model can screen the drug candidates obtained from

the experiment, greatly reducing the cost and time consump-

tion of drug development.

We are confident that our model developed from the

research is helpful to predict whether drugs can penetrate the

BBB.We can use our model to quickly and accurately predict

all types of small molecular compounds with MW less than

1000 Da.
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