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Prediction of Brain Age Suggests
Accelerated Atrophy after Traumatic

Brain Injury

James H. Cole, PhD, Robert Leech, PhD, and David J. Sharp, PhD,

for the Alzheimer’s Disease Neuroimaging Initiative

Objective: The long-term effects of traumatic brain injury (TBI) can resemble observed in normal ageing, suggesting
that TBI may accelerate the ageing process. We investigate this using a neuroimaging model that predicts brain age in
healthy individuals and then apply it to TBI patients. We define individuals’ differences in chronological and predicted
structural "brain age," and test whether TBI produces progressive atrophy and how this relates to cognitive function.
Methods: A predictive model of normal ageing was defined using machine learning in 1,537 healthy individuals,
based on magnetic resonance imaging–derived estimates of gray matter (GM) and white matter (WM). This ageing
model was then applied to test 99 TBI patients and 113 healthy controls to estimate brain age.
Results: The initial model accurately predicted age in healthy individuals (r 5 0.92). TBI brains were estimated to be
"older," with a mean predicted age difference (PAD) between chronological and estimated brain age of 4.66 years
(610.8) for GM and 5.97 years (611.22) for WM. This PAD predicted cognitive impairment and correlated strongly
with the time since TBI, indicating that brain tissue loss increases throughout the chronic postinjury phase.
Interpretation: TBI patients’ brains were estimated to be older than their chronological age. This discrepancy
increases with time since injury, suggesting that TBI accelerates the rate of brain atrophy. This may be an important
factor in the increased susceptibility in TBI patients for dementia and other age-associated conditions, motivating fur-
ther research into the age-like effects of brain injury and other neurological diseases.
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Traumatic brain injury (TBI) causes long-term struc-

tural and functional alterations to the brain. Some of

these changes are thought to be progressive in nature,1,2

and potentially underlie the increased risk for early cogni-

tive decline3 and dementia4 observed in TBI patients. Sim-

ilar behavioral and anatomical changes are also associated

with normal ageing,5,6 raising the possibility that the

chronic consequences of TBI may contribute to the prema-

ture development of age-associated changes to the brain.2

Normal ageing can be considered as the progression

along a temporal trajectory, where individuals gradually

accumulate pathologies associated with physical decline,

cognitive impairment, and brain volume loss.7,8 Insults,

such as TBI, may trigger a sequence of neurobiological

events that alter that trajectory, prematurely causing brain

atrophy, and potentially manifesting as an early onset of

neurodegeneration.9 As illustrated in Figure 1, an envi-

ronmental insult like TBI might cause a one-off increase

in apparent "brain age," or could result in an ongoing

interaction between injury and ageing-related or other

neurodegenerative processes that cause progressive brain

atrophy.2 In the latter case, as more time passes since the

TBI occurred, the greater the discrepancy between chro-

nological age and estimated brain age will be. This
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possibility is consistent with the progressive decline asso-

ciated with TBI, even years after injury, as demonstrated

by neuropsychological,10 neuroimaging,11–14 and animal1

research.

Using neuroimaging, it is possible to predict age in

healthy individuals,15 allowing the discrepancy between

chronological age and predicted brain age to be calculated.

In clinical samples, this discrepancy can be considered as

an index of the deviation from a normal ageing trajectory.

Estimates of brain age, derived using machine learning,

have previously been used in a number of contexts. These

include measuring normal brain maturation during devel-

opment,16,17 predicting conversion from mild cognitive

impairment to Alzheimer disease,18 and in neurodevelop-

mental disorders such as schizophrenia and borderline per-

sonality disorder, where patients were shown to have

apparently "older" brains.19 The deviation from normal

ageing may reflect important neurological changes relating

to clinical features such as cognitive impairment. Charac-

teristic changes to cognition seen during normal ageing

affect the domains of executive function, memory, and

information processing speed.20 TBI patients show a simi-

lar pattern of cognitive deficits,10 further suggesting links

between TBI and ageing of the brain.

Here we developed and tested a predictive model of

brain age. Machine learning techniques were used to define a

model that accurately predicted chronological age in healthy

individuals. The model was then applied to brain images

from TBI patients, allowing a prediction of their brains’ ages

to be made. It was expected that TBI patients’ brains would

be older than their chronological age and that this discrep-

ancy would increase with longer time since injury (TSI),

reflecting a progressive atrophy of brain tissue. Furthermore,

we hypothesized that the discrepancy between chronological

age and predicted brain age would be reflected in cognitive

changes that would be consistent with age-related cognitive

impairment normally seen in older individuals.

Subjects and Methods

Participants

TRAINING SET. T1-weighted magnetic resonance imaging

(MRI) data from 1,537 healthy controls were obtained from 8

publically accessible neuroimaging initiatives (Supplementary

Table). This provided an unbiased source of data with which to

train the age prediction model that was entirely independent

from the TBI and control test data sets. Controls had no his-

tory of significant neurological or psychiatric problems, with

further specific recruitment criteria made by each independent

study. Exclusions were made due to poor data quality leading

to image processing failure, identified during imaging quality

assessment. All training set data had been previously anony-

mized, and ethical approval and informed consent were

obtained by each specific study.

TEST SET. Ninety-nine patients with persistent neurological

problems after TBI (72 males, mean age 6 standard deviation

[SD]: 37.98 6 12.43 years) were recruited (Table 1). A comparison

group of 113 healthy controls assessed on the same scanner was

used to validate the accuracy of the age prediction model (49

males, 43.3 6 20.24 years). All patients were scanned at least 1

month post-injury (mean 5 28.4 months), with a range of 1 to

563 months. This variation allowed us to examine the influence of

TSI on brain changes. The severity of TBI was classified using the

Mayo Classification System criteria, with 17% being classified as

mild (probable) and 83% being moderate/severe. Cause of injury

was reported as follows: road–traffic accident (RTA; 39%), fall

(24%), assault (23%), sport-related injury (6%), other (7%). Cere-

bral contusions were identified in 52 patients (53%) by an experi-

enced neuroradiologist. Exclusion criteria were as follows:

psychiatric or neurological illness, previous traumatic brain injury,

antiepileptic medication, current or previous drug or alcohol abuse,

MRI contraindication. All participants gave written informed con-

sent, and the local ethics committee approved the study.

FIGURE 1: Model of premature brain ageing in traumatic brain
injury. Illustration of the conceptual framework for the investi-
gation of brain age in traumatic brain injury (TBI). The short-
dashed line represents the trajectory of healthy ageing as age
(x-axis) increases, against a background gradient of increasing
susceptibility to age-related pathology (y-axis), such as cogni-
tive decline and dementia. Occurrence of TBI is indicated (black
arrow), with acute pathology causing an immediate departure
from a healthy brain state. Two alternative brain ageing trajec-
tories post-TBI are shown. The long-dashed "additive effects"
line depicts a trajectory assuming a one-off hit, with damage
leading to the patient’s brain structure resembling an older
individual, followed by a normal rate of subsequent ageing.
The dash–dot "interactive effects" line represents an acceler-
ated rate of brain atrophy caused by TBI and an interaction
with normal ageing processes, with the discrepancy between
normal ageing and pathological changes increasing the greater
the time since injury (TSI). Comparing predicted age difference
(PAD) scores (i; dashed black line) and (ii; solid black line) illus-
trates how a greater PAD score would be expected under the
interactive effects model with accelerating atrophy (i), com-
pared to the added effects model (ii), at equivalent TSI (figure
adapted from Smith and colleagues2). [Color figure can be
viewed in the online issue, which is available at wileyonline
library.com.]
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Neuropsychological testing was carried out using a stand-

ardized battery of tests previously shown to be sensitive to cog-

nitive abnormalities in TBI.11 These were the Trail Making

Task, Stroop color naming and word reading, Wechsler Abbre-

viated Scale for Intelligence (WASI) matrix reasoning and simi-

larities subscales, Choice Reaction task, People and Doors

immediate recall test, letter fluency, and task inhibition/

switching.

Procedures
A high-level overview of the methods is provided in Figure 2.

Methods are summarized below.

MRI ACQUISITION PARAMETERS. For the training set of

high-resolution T1-weighted magnetic resonance images, multi-

ple scanners were used, including different vendors, field

strengths, and acquisition protocols (see Supplementary Table).

For the test set, T1 images were acquired using a Philips 3T

Intera scanner (Philips Medical Systems, Best, the Netherlands)

with the following parameters: matrix size 5 208 3 208, slice

thickness 5 1.2mm, 0.94 x 0.94mm in-plane resolution, 150

slices, repetition time 5 9.6 milliseconds, echo time 5 4.5 milli-

seconds, flip angle 5 8�.

IMAGE PREPROCESSING. All MRI data were preprocessed

(see Fig 2A) using the Statistical Parametric Mapping (SPM8)

software package (University College London, London, UK).

This included tissue segmentation into gray matter (GM) and

white matter (WM) maps, then registration using the nonlinear

DARTEL algorithm21 to Montreal Neurological Institute space

and resampling with a 4mm smoothing kernel. Each tissue class

(ie, GM and WM) was processed independently after segmenta-

tion. The preprocessing procedure ensured that all images were

well aligned and appropriate for voxelwise analysis at the

machine learning stage.

MACHINE LEARNING PREDICTION OF AGE. Machine

learning analysis (see Fig 2B) was conducted using the Pattern

Recognition for Neuroimaging Toolbox (Pronto22) and run on

GM and WM separately. Data from all subjects were converted

to a similarity matrix kernel to improve computational effi-

ciency in Pronto by generating a vector representation of voxel-

wise intensity levels22 for all data and calculating the dot

product between each image. Next, the data were mean-

centered and a Gaussian Processes Regression (GPR) model was

defined using age as the dependent variable and the similarity

matrix of imaging data as the independent variables. GPR is a

machine learning extension of the classical regression model,

which incorporates nonlinear and Gaussian probabilistic ele-

ments to allow quantitative predictions to be made using con-

tinuous variables.23

MODEL VALIDATION. Model validation (see Fig 2C) pro-

ceeded in 3 stages to ensure independence between training and

test sets and to enable an unbiased demonstration of model gener-

alizability. The first stage involved running 10-fold cross-validation

on the training set, to determine the accuracy of the model. This

entailed randomly selecting one-tenth of the training data to be a

temporary test set, with the remainder used for model definition.

Using the learned pattern from this training set, age was predicted

on the temporary test set. This process was iterated until all images

had been included in the test set and had an age value predicted.

This was followed by permutation testing with 1,000 randomiza-

tions to derive a p-value for each model. The second stage involved

validating the model on the independent controls test data set.

Here, the model was defined using the entire training set

(N 5 1,537) and then used to predict the brain ages for the control

test data set. Finally, the trained model was applied to estimate pre-

dicted brain ages for the TBI patients (see Fig 2D).

TABLE 1. Details of TBI Patients

Characteristic TBI Patients Controls

No. 99 113

Age, yr 37.98 6 12.43 43.3 6 20.24

Sex, M/F 72/27 49/64

Time since TBI, mo 28.4 6 63.57 —

Mechanism of injury, RTA/fall/assault/sports/other 39/24/23/6/7 —

Mayo Clinic criteria, probable–mild/moderate–severe 17/82 —

Patient has contusions on MRI, present/absent 52/47 —

GCS 9.71 6 4.75 —

Patient medicated at first visit, medicated/not medicated 55/44 —

Values are reported in mean 6 standard deviation or absolute numbers.
F 5 female; GCS 5 Glasgow Coma Scale; M 5 male; MRI 5 magnetic resonance imaging; RTA 5 road–traffic accident;
TBI 5 traumatic brain injury.
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FIGURE 2: Overview of the study methods. Study data comprised 2 sets, training and test. The training set used structural
magnetic resonance imaging from 1,537 healthy individuals from multiple cohorts, whereas the test set included 2 groups, 99
traumatic brain injury (TBI) patients and 113 healthy controls, all scanned on the same scanner. (A) Conventional Statistical
Parametric Mapping (SPM) structural preprocessing pipeline was used to generate gray and white matter maps, normalized to
Montreal Neurological Institute (MNI) space and modulated to retain data relating to brain size. (B) Separately for gray and
white matter, all 1,749 data sets were converted to a kernel matrix based on voxelwise similarity using Pronto. (C) The training
data only were run through a supervised learning stage where a Gaussian Processes Regression (GPR) machine was trained to
recognize patterns of imaging data that matched a given age label. To assess model accuracy, 10-fold cross-validation was con-
ducted where 10% of samples were excluded from the training step and the ages of these samples were estimated. This was
iterated 9 further times to generate age predictions on all samples. (D) The trained GPR model was then applied to the 2 test
data sets, to assess accuracy of the model on healthy controls and then predict brain age of TBI patients. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Statistical Analysis
Model accuracy was assessed using Pearson correlation coeffi-

cients between predicted age and chronological age of the train-

ing subjects. The proportion of the variation explained by the

trained model (R2) was examined, as was the mean absolute

error (MAE) between predicted and chronological age. Accuracy

was also evaluated for the control test data set, using the above

parameters. Predicted age was subtracted from chronological

age, generating a predicted age difference (PAD) score per par-

ticipant. PAD scores were statistically analyzed in R (http://

www.R-project.org/) using an analysis of covariance (ANCOVA)

to test for group differences between TBI patients and controls,

while covarying for age and sex. Within the TBI group, PAD

was also assessed for Spearman nonparametric correlations with

age, TSI, neuropsychological measures, and differences between

subgroups based on TBI severity, mechanism of injury, and the

presence of contusions. Analysis of PAD score was repeated for

both GM and WM, and an exploratory analysis of the relation-

ship between the 2 brain tissue classes was also carried out.

Results

Chronological Age Can Be Predicted from
Structural Neuroimaging
The model was able to accurately predict chronological

age for both training and control test data sets. For the

training set (Fig 3), age was accurately predicted based

on both GM (predicted–chronological age correlation

r 5 0.921, R2 5 0.848, MAE 5 6.2 years) and WM

(r 5 0.922, R2 5 0.851, MAE 5 6.16 years). Permutation

testing resulted in a corrected p-value of 0.001 for both

GM and WM models. The mean PAD for the training

group was 20.003 years (67.82) for GM and 0.037

years (67.74) for WM. For the healthy control test data

set, age was accurately predicted for both GM

(r 5 0.931, R2 5 0.867, MAE 5 5.80) and WM

(r 5 0.931, R2 5 0.867, MAE 5 6.35). These results vali-

dated the generalizability of the GPR modeling

approach, as high accuracy was achieved when training

the model on one data set and testing on an entirely

independent data set.

TBI Patients Have Increased Brain Age
TBI patients (GM mean PAD 5 4.66 6 10.8; WM mean

PAD 5 5.97 6 11.22) showed increased PAD compared

to controls (GM mean PAD 5 0.07 6 7.41; WM mean

PAD 5 2.06 6 7.41; Fig 4). Comparing these PAD

scores between TBI and control groups showed signifi-

cant differences for both GM (F 5 14.8, p< 0.001) and

WM (F 5 9.7, p 5 0.002).

The discrepancy between predicted and chronologi-

cal age was related to the severity of injury (Fig 5A, B).

Patients with a moderate/severe classification showed

increased mean PAD score (GM mean 5 5.72 6 10.97;

WM mean 5 7.24 6 11.64), whereas mild (probable)

patients were not significantly different from controls

(GM mean 5 20.42 6 8.48; WM mean 5 20.14 6 6.1).

The presence of focal lesions had no influence on PAD

FIGURE 3: Machine learning model provides accurate age prediction in healthy training set. Predicted age for each healthy
individual in the training set (n 5 1,537) is shown, derived by running 10-fold cross-validation on the Gaussian Processes
Regression model. (A) Chronological age (x-axis) is plotted against predicted age (y-axis), for gray matter (dark gray circles). (B)
Chronological age and predicted age for white matter (light gray triangles). Diagonal dashed line represents the line of iden-
tity (x 5 y).
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score, as there were no significant differences between

those with and without contusions for either GM (mean:

5.99 vs 5.55, p 5 0.85) or WM (mean: 6.89 vs. 7.44,

p 5 0.83). Furthermore, when limiting the TBI patient

group to only moderate/severe lesion-free patients

(n 5 31), ANCOVA for GM and WM still showed sig-

nificantly greater PAD scores compared to controls

(p< 0.001). Although mean PAD score for TBI patients

and controls was greater for WM than GM, the relatively

high variability meant that this difference was not signifi-

cant (p> 0.1).

Brain Atrophy Correlates with Cognitive
Impairment
Performance on a number of cognitive measures corre-

lated strongly with PAD scores (Table 2). After correc-

tion for the multiple tests conducted (using the false

discovery rate24), measures relating to information proc-

essing speed and memory were significantly correlated

with GM and WM PAD, with increased reaction time

being related to increases in PAD score. Executive func-

tion measures were significantly correlated for GM PAD

scores, but not for WM. Scores on the WASI subscales

were not correlated with PAD scores.

Evidence for Accelerated Atrophy following TBI
There was a strong correlation between PAD score and

TSI for both GM (r 5 0.535, p< 0.001) and WM

(r 5 0.496, p< 0.001), controlling for age. This reflected

an increasing discrepancy between predicted and chrono-

logical age with a longer TSI (Fig 6). As there was also a

correlation between TSI and age (r 5 0.28, p 5 0.0047)

and between PAD score and age (GM: r 5 0.18,

p 5 0.068; WM: r 5 0.21, p 5 0.037), a partial correla-

tion approach was used to examine directly the relation-

ship between PAD score and time since TBI, to remove

variance associated with age. Three outliers in terms of

TSI were present in the TBI group (168, 206, and 563

months), defined as being 62 SD away from the mean

(mean 5 28.38 6 63.58, 2-SD range 5 0–155.54

months). These patients were not driving the association,

as the results were still highly significant after these

patients were removed (GM: r 5 0.506, p< 0.001; WM:

r 5 0.467, p< 0.001). Removing patients with focal

lesions also did not alter the association between TSI and

PAD score, as analysis in contusion-free patients (n 5 47)

was still significant (GM: r 5 0.353, p 5 0.01; WM:

r 5 0.342, p 5 0.016).

Brain "Ageing" Does Not Vary in Patients with
Different Mechanism of Injury
We assessed whether the mechanism of injury affected

brain ageing. Patients who suffered TBI due to RTA,

assault, or fall all showed increased mean PAD scores

(5.93, 6.15, and 4.11 for GM; 7.52, 4.42, and 6.51 for

WM), indicating that TBI patients’ brains appeared to

be older, irrespective of the cause of injury (see Fig 5C,

FIGURE 4: Traumatic brain injury (TBI) patients show increased predicted age difference (PAD) score for gray matter and white
matter. Boxplots of PAD score are shown, calculated by subtracting chronological age from predicted age for the test data
sets of 99 TBI patients and 113 healthy controls. (A) PAD scores derived from the gray matter model showing a significant
increase in TBI patients. (B) PAD scores from white matter also show an increase in TBI patients.
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D). There were no significant differences in PAD

between mechanism subgroups for either GM or WM.

The correlation between TSI and PAD was still present

for patients injured during RTAs and assaults, although

not for sufferers of falls. Mean TSI associated with falls

was only 19.8 (635.2) months, considerably less than

for RTA (33.2 6 43.1 months) and assaults

(41.5 6 120.7 months). This decreased duration and nar-

rower distribution may have led to lower sensitivity to

the effects of TSI on PAD in sufferers of falls.

Discussion

Using a multivariate method to investigate the spatial

patterns of age-associated brain atrophy, we show that

TBI produces a pattern of structural brain changes that

affects the apparent brain age of both GM and WM.

The predictive model we generated was highly accurate

at estimating chronological age in healthy participants,

based only on the appearance of T1 MRI scans. In con-

trast, following TBI, the model estimated brain age to be

on average >4 years older than the patient’s chronologi-

cal age. This discrepancy was only seen in patients with

more severe injuries, was independent of the mechanism

of injury, and was predictive of cognitive impairment.

These results support the theory proposed by Moretti

and colleagues3 that TBI may hasten the ageing process

and is in keeping with long-term structural and func-

tional brain abnormalities reported in neuroimaging and

neuropathology studies of TBI patients.11–13,25,26

Animal work demonstrates a progressive loss of

brain tissue after experimental TBI.1 A number of mech-

anisms for this have been proposed, including chronic

neuroinflammation,12,26 Wallerian degeneration of

WM,27 and the deposition of abnormal tau and

amyloid-b proteins.28 These processes lead to alterations

in cellular morphology, loss of trophic support, and even-

tual cell death and gross atrophy.2 It is also possible that

a reduction in brain volume might be due to the clear-

ance of tissue damaged at the time of injury. Previous

neuroimaging studies have typically shown atrophy when

FIGURE 5: Gray matter (GM) and white matter (WM) predicted age difference (PAD) score, stratified by injury severity and
injury mechanism. Boxplots of PAD score in the traumatic brain injury (TBI) patient group are shown, stratified by clinical char-
acteristics. (A) GM PAD score distributions for each Mayo classification: probable/mild, moderate/severe, indicating that brain
age is only increased in moderate/severe patients, not in mild TBI. (B) Mayo classification for WM. (C) GM PAD score by mech-
anism of injury (assault, fall, road–traffic accident [RTA]), indicating that similar levels of increased brain ageing occur independ-
ent of mechanism of injury. (D) Mechanism of injury for WM.
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comparing acute and chronic scans, making it difficult to

disentangle these possibilities.14 One longitudinal study

has shown that GM volume decreases continue between

1 and 4 years after TBI, demonstrating that tissue loss

continues well beyond the stage when clearance of

acutely damaged tissue is likely to have finished.29 This

suggests a progressive process, which is supported by our

observation that patients who were assessed further from

their injury (high TSI) showed more atrophy. This sup-

ports the idea that tissue loss accelerates over time, in

keeping with a progressive neurodegenerative process

triggered by the injury (see Figs 1 and 4 and reviews by

Smith and colleagues2 and Bigler9).

Our model explained much of the variation in

chronological age, in line with previous research showing

that multivariate brain imaging analysis can accurately

predict chronological age.15,30 Much like outwardly visi-

ble signs of age such as the presence of wrinkles or gray

hair, this shows that the brain also varies in its apparent

age. Discrepancies between brain and chronological age

appear to be biologically informative, perhaps reflecting

important differences in susceptibility or resistance to

age-related pathology. This possibility is supported by

the relationship we observed between PAD score and

cognitive function. Our structural imaging measures cor-

related with cognitive impairment in domains typically

affected by TBI,10,11 namely information processing

speed, memory, and executive function. As the vast

majority of these patients were at least 3 months postin-

jury, it is likely that such impairments are persistent,

rather than acute and transient, implying that there is a

relationship between the observed brain changes and the

chronic post-TBI cognitive profile. Intriguingly, these are

the same cognitive domains often affected by age-related

cognitive decline, which leads us to speculate that PAD

score may be relevant to the effects of ageing in a

broader sense. In particular, the strongest associations

with our measure of brain ageing were found with

TABLE 2. Relationship between Neuropsychological Measures and PAD in TBI Patients

Cognitive
Domain

Neuropsychological Test No. Mean GM PAD,
rho

p WM PAD,
rho

p

Processing
speed

Trail Making Test A, s 90 29.59 (12.15) 0.338 0.001a 0.379 <0.001a

Trail Making Test B, s 90 68.79 (39.79) 0.343 0.001a 0.271 0.009a

Stroop color naming, s 90 34.47 (8.83) 0.279 0.007a 0.281 0.006a

Stroop word reading, s 90 23.93 (5.49) 0.269 0.009a 0.306 0.003a

Choice reaction task
median reaction
time, ms

66 478 (124) 0.331 0.005a 0.243 0.047

Executive
function

Trail Making
Test B minus A, s

90 39.15 (32.51) 0.262 0.011a 0.154 0.146

Inhibition/switching, s 89 69.54 (22.18) 0.247 0.018a 0.205 0.053

Inhibition/
switching minus
baseline Stroop
performance, s

89 37.24 (18.41) 0.213 0.043 0.168 0.115

Letter fluency total 89 39.01 (12.73) 20.271 0.009a 20.133 0.214

Intellectual
ability

WASI similarities 90 37.04 (5.22) 20.160 0.132 20.136 0.200

WASI matrix reasoning 88 26.34 (5.53) 20.104 0.336 0.013 0.908

Memory People Test
immediate recall

90 22.94 (7.33) 20.253 0.015a 20.254 0.014a

Correlations with PAD score were conducted with variance accounting for chronological age partialed out, using the Spearman
rank-order approach.
aDenotes statistical significance after false discovery rate correction for multiple comparisons.
GM5 gray matter; PAD 5 predicted age difference score; TBI 5 traumatic brain injury; WASI 5 Wechsler Abbreviated Scale for
Intelligence; WM 5 white matter.
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information processing speed measures, and impairments

in this domain have been posited as central to the cogni-

tive decline associated with typical ageing.20 The nature

of our sample did not permit an exhaustive examination

of TBI-related and age-related cognitive dysfunction;

however, our interpretation of results supports the idea

that the pattern of brain changes detected in TBI

patients has similar functional consequences to normal

ageing, albeit occurring in an accelerated form. Measures

of age discrepancy might be useful for screening clinical

and population samples to identify those at increased

risk of age-associated pathologies, for quantifying the

effects of vascular risk factors or neuropsychiatric diseases

on general brain health, and for stratifying patients for

targeted treatments or clinical trial enrollment.

As predicted, the degree of apparent ageing reflects

the severity of initial injury. In contrast to moderate/

severe TBI, patients with minor TBI showed no brain

atrophy. This suggests that a significant biomechanical

force is necessary to trigger ongoing neurodegenerative

processes that lead to progressive atrophy. In addition,

the mechanism of injury did not influence PAD score,

with those suffering falls, assaults, and RTAs showing

similar levels of atrophy. That widely varying mecha-

nisms of TBI result in similar patterns of premature atro-

phy is important, as it suggests that the underlying

differences in brain structure are unlikely to be secondary

to nonspecific neurological or demographic factors that

might be expected to vary across individuals with TBI

from very different causes. For example, a possible con-

found is that patients predisposed to TBI might have

smaller brains prior to injury. However, there is no evi-

dence from other studies that this is the case, and it is

highly unlikely that patients with such contrasting mech-

anisms of injury would also show the same systematic

bias in brain size.

It is unclear whether the brain atrophy we observe

after TBI reflects ongoing neurodegeneration triggered by

the injury or an interaction with normal ageing. In part,

this reflects the complexity of defining ageing. Rates of

ageing vary between individuals, but also can affect dif-

ferent tissues in the same person at different rates.31 This

makes comprehensively modeling age challenging. One

limit of the work is that we focus only on a single facet

of ageing, demonstrating that individuals have more

brain atrophy after TBI. We are unable to disentangle

the degree to which this atrophy results from an accelera-

tion of processes seen in healthy ageing, whether the

injury triggers new neurodegenerative processes, or the

extent to which these two possibilities are inter-related.

FIGURE 6: Gray matter and white matter predicted age difference (PAD) score increases with greater time since injury
(TSI). Scatterplots depicting the relationship between PAD score (x-axis) and TSI (y-axis) are shown. Plotted values are the
residuals derived from a linear regression with PAD score or TSI, regressing out chronological age. (A) Gray matter (dark
gray circles) PAD scores, with dashed lines representing the locally weighted scatterplot smoothing (lowess) line calculated
(dashed gray line). B) White matter (light gray triangles) PAD scores with lowess line (dashed light gray line). Both analy-
ses were conducted after the removal of 3 outliers, identified based on having a TSI of 62 standard deviations from the
mean.
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Processes involved in neurodegeneration such as inflam-

mation and the accumulation of misfolded proteins are

also seen to varying degrees in healthy ageing, and com-

parative studies focusing on these factors will be neces-

sary to define to what extent TBI patients resemble

healthy older individuals or should be viewed as having

distinct neuropathology.

A number of other potential limitations of the

study should also be noted. First, some TBI patients

have small focal lesions that could potentially cause prob-

lems with the image registration techniques that our age

prediction requires. However, we use advanced registra-

tion algorithms that perform well in our patient group,

and our results are similar when the analysis is restricted

to patients without focal lesions. Second, the estimates of

age were variable, indicating a degree of residual mea-

surement error, which is to be expected as we were using

only brain structure to predict chronological age. Never-

theless, the large sample size meant we were sufficiently

powered to detect statistically significant group differen-

ces in PAD score.

We exploited the wide range of TSI to explore the

chronic effects of TBI. Our analysis indicated both that

increased atrophy is present after TBI, and also that the

amount of atrophy increases over time. Removing the

patients with the greatest TSI did not alter the results,

implying that this apparent acceleration is a robust effect

even over a relatively short time period. As there are a

number of potential confounds inherent with cross-

sectional analyses, our evidence for accelerating atrophy

should be interpreted with caution. For example, brain

ageing is likely to be in part genetically mediated,32 so

information about genotype should be added in future

studies to potentially explain even greater amounts of

variance in age. In addition, the severity of the initial

injury will influence the extent of brain atrophy. We only

observed increased atrophy in patients with moderate/

severe injuries, which shows the expected impact of

injury on apparent brain age. However, within the mod-

erate/severe group there will be variations in injury sever-

ity, and these could potentially confound the relationship

between TSI and brain atrophy. Individual indices of

injury severity such as Glasgow Coma Scale score and

duration of post-traumatic amnesia are known to be

crude measures of injury severity.33 Therefore, large lon-

gitudinal studies will be necessary to completely resolve

these issues, ideally with individual follow-up at multiple

time points to allow longitudinal within-subject analysis

that incorporates other genetic and biomarker informa-

tion about the ageing process.

In summary, our study is the first empirical in vivo

demonstration that TBI causes structural brain changes

that resemble the atrophy seen during ageing. The accel-

erated trajectory of brain atrophy we observed is in keep-

ing with a progressive neurodegenerative process

triggered by the injury. The effects of age and injury are

likely to act synergistically, leading to deficits in informa-

tion processing speed and other neuropsychological meas-

ures known to be impaired in normal ageing. Future

studies could use PAD score as a predictor of clinical

outcome or as a surrogate marker of treatment efficacy.

The work gives insight into the etiology of the long-term

chronic effects of TBI and has implications for the long-

term care and potential future treatments for TBI

patients, as methods that attenuate the negative effects of

ageing may also be effective treatments for patients who

have suffered a TBI.
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