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Abstract

In order to automatically identify a set of effective mammographic image features and build an 

optimal breast cancer risk stratification model, this study aims to investigate advantages of 

applying a machine learning approach embedded with a locally preserving projection (LPP) based 

feature combination and regeneration algorithm to predict short-term breast cancer risk. A dataset 

involving negative mammograms acquired from 500 women was assembled. This dataset was 

divided into two age-matched classes of 250 high risk cases in which cancer was detected in the 

next subsequent mammography screening and 250 low risk cases, which remained negative. First, 

a computer-aided image processing scheme was applied to segment fibro-glandular tissue depicted 

on mammograms and initially compute 44 features related to the bilateral asymmetry of 

mammographic tissue density distribution between left and right breasts. Next, a multi-feature 

fusion based machine learning classifier was built to predict the risk of cancer detection in the next 

mammography screening. A leave-one-case-out (LOCO) cross-validation method was applied to 

train and test the machine learning classifier embedded with a LLP algorithm, which generated a 

new operational vector with 4 features using a maximal variance approach in each LOCO process. 

Results showed a 9.7% increase in risk prediction accuracy when using this LPP-embedded 

machine learning approach. An increased trend of adjusted odds ratios was also detected in which 

odds ratios increased from 1.0 to 11.2. This study demonstrated that applying LPP algorithm 

effectively reduced feature dimensionality, and yielded higher and potentially more robust 

performance in predicting short-term breast cancer risk.

Index Terms

Breast cancer; short-term breast cancer risk; bilateral mammographic tissue density asymmetry; 
breast cancer risk prediction; computer-aided detection of mammograms; locally preserving 
projection (LPP) based data reduction

1. INTRODUCTION

In spite of the heterogeneity of breast cancer, mammographic screening is widely considered 

the most effective approach to detect breast cancer at an early stage and help reduce the 
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cancer mortality rate (Narol et al 2014). Among the existing screening methods, 

mammography is the only clinically accepted screening modality applied to the general 

population to date (Saslow et al 2007). Despite significant advantages of mammography 

screening (i.e., relatively lower cost, wide accessibility and short examination time), 

controversy about the population-based mammography screening remains (Berlin et al 2010) 

because of its lower sensitivity among a number of groups of women (i.e., women who are 

younger than 50 years old and have dense breasts (Carney et al 2003)) and high false-

positive recall rates (Hubbard et al 2011). Thus, in order to improve efficacy of 

mammography screening, establishing a new personalized breast cancer screening paradigm 

has recently been attracting extensive research interests (Brawley et al 2012). One of the 

important prerequisites for realizing this goal is to identify and develop effective clinical 

markers or prediction tools, which have higher discriminatory power to predict the risk or 

likelihood of individual women having or developing image-detectable cancer in a short-

term (i.e., < 2 to 5 years after a negative screening) (Zheng et al 2012).

Although a number of epidemiology-based breast cancer risk prediction models (i.e., Gail 

(Gail et al 1989) and Tyrer-Cuzick (Tyrer et al 2004) models) have been developed and used 

to identify high risk women, these models have low positive predictive values to help 

determine who should be screened in the short-term and who can be screened at longer 

intervals in order to increase cancer detection yield and reduce unnecessarily frequent 

screening and the associated false-positive recalls with mammography (Gail et al 2010). 

Therefore, it requires identifying and developing more effective cancer risk prediction 

markers including those generated from genomic tests (Van Ziteren et al 2011) and image 

analysis (Wei et al 2011). In the medical imaging field, breast density assessed from 

mammograms is considered an imaging marker or risk factor with much higher 

discriminatory power than the most of other risk factors used in the existing breast cancer 

risk prediction models (Amir et al 2010). However, subjectively rating mammographic 

density by radiologists based on the Breast Imaging Reporting and Data System (BIRADS) 

guideline is often not reliable due to large intra- and inter-reader variability (Berg et al 

2000). In order to produce more robust results in assessing mammographic density and 

identifying new imaging markers to predict breast cancer risk, a number of computer-aided 

image processing schemes have been developed to segment and compute Volumetric Breast 

Density (VBD) from mammograms to predict breast cancer risk (e.g., (Damases et al 2016)). 

However, whether the computed mammographic density can accurately represent breast 

density remains controversial (Kopans et al 2008). The assessed mammographic density 

may vary due to the change of the imaging machines, imaging acquisition protocol and life 

cycle of the women.

In order to avoid or minimize the impact of inconsistency when using mammographic 

density as a breast cancer risk factor, we recently explored a new breast cancer risk factor or 

a quantitative imaging marker based on the bilateral asymmetry of mammographic tissue 

density between the left and right breasts to predict short-term breast cancer risk (Zheng et al 

2012, Zheng et al 2014). Since two bilateral mammograms are acquired from the same 

woman at one mammography screening, the relative mammographic density asymmetry is 

likely to remain highly consistent. From bilateral mammograms, we are able to compute a 

large number of image features to represent difference of mammographic tissue density 
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patterns. Thus, how to identify and assemble an optimal set of effective and non-redundant 

image features from the initial feature pool with a large number of computed image features 

remains a technical challenge. In order to address this challenge, the objective of this study 

is to develop and apply a new machine learning approach to create a small effective feature 

vector for the purpose of building an optimal machine learning classifier using a relatively 

small training image dataset. Inspired by the deep learning technology, which directly uses 

input images to generate an efficient feature vector for classification (Shen et al 2017), we 

proposed to apply a locally preserving projection (LPP) based feature combination algorithm 

(He et al 2004) to reduce dimensionality of feature space and then build a new image 

features based short-term breast cancer risk prediction model. Unlike the conventional 

feature selection methods that filter and select a set of existing optimal features from the 

initial feature pools, LPP generates a new optimal feature vector involving features that are 

different from any original features in the existing feature pool. The details of the proposed 

LLP approach, our image dataset, experiment and data analysis results are presented in the 

following sections of this article.

2. MATERIALS & METHOD

2.1. Image Dataset

A testing image dataset was retrospectively assembled for this study, which includes two 

sets of sequential full-field digital mammography (FFDM) images acquired from 500 

women participated in mammography screening. In the first set of FFDM screening, all 

images were determined negative by the radiologists. These negative images are named as 

“prior” images in this study. In the second set of FFDM screening, 250 cases were positive 

with cancer detected by the radiologists and verified by biopsy and histopathology tests, 

while other 250 cases remained negative. All negative cases remained cancer-free for at least 

two more subsequent FFDM screenings. Images in the second set of screening are named as 

“current” images. The time interval between the “prior” and “current” mammography 

screenings ranged from 12 to 18 months. Although all “prior” FFDM screenings were 

negative, we divided 500 cases into two classes. The first class includes 250 high-risk cases 

in which cancer was developed and detected in the “current” FFDM screening. The second 

class includes 250 low-risk cases that remained negative in the “current” FFDM screening.

Table 1 summarizes additional dataset information, which includes distribution of women 

age and mammographic density rated by radiologists based on BIRADS guidelines. In this 

dataset, age ranged between 38 and 88 years old. This is also an age-matched image dataset 

(≤ 1 year difference between the two classes of the cases). Thus, it has no statistically 

significant difference of ages between the high and low risk case classes (p = 0.12). There is 

also no significant difference in BIRADS based mammographic density ratings between two 

classes. In this study, two “prior” negative FFDM images acquired from bilateral cranio-

caudal (CC) view of left and right breasts were selected and used.

2.2. A Computer-aided Imaging Processing Scheme

We developed and applied a computer-aided image processing scheme to automatically 

segment dense fibro-glandular breast tissue regions depicted on each mammogram, and then 
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computed bilateral mammographic tissue density and feature asymmetry between the left 

and right CC view images. Figure 1 shows a graphic user interface (GUI) of the image 

processing scheme. After a user selects a testing case by pointing the computer mouse to one 

image name of the case and clicking the mouse button, a pair of two bilateral CC view 

images is uploaded into the GUI simultaneously. From each originally digital mammogram, 

the scheme automatically segments breast region and generates several image maps.

First, a fibro-glandular tissue (FGT) density map is generated from each original 

mammogram as shown in Figure 2(a). The percentage of FGT on each mammogram can be 

quantitative computed. In addition, since mammograms are two-dimensional projection 

images, each pixel value (or gray level) represents a percentage of the fibro-glandular tissues 

along the projection line (or path) of the X-ray. In order to increase the visual sensitivity to 

the tissue density variation, a pseudo color coding is applied to the FGT density map 

displayed in GUI. Second, from the FGT map, the scheme searches and segments focally 

dense regions as shown in Figure 2(b). Third, the scheme generates a local density 

fluctuation map as shown in Figure 2(c) using the method reported in our previous studies of 

developing computer-aided detection (CAD) scheme of mammograms (Zheng et al 2006) 

and mammographic image feature based cancer risk prediction model (Wang et al 2011). 

Last, the scheme applies a difference of Gaussian (DOG) bandpass filter to generate a map 

showing the distribution of locally isolated small dense regions (or blobs). A similar DOG 

filtering map has been used in the previous CAD scheme of mammograms as the first step to 

detect suspicious lesions (Zheng et al 1995).

2.3. Image Feature Computation

Since early breast cancer usually develops in one breast, the bilateral asymmetry of 

mammographic tissue density or feature patterns is typically the first importantly visual sign 

for radiologists to detect breast abnormalities that have a high risk of leading to the cancer 

development. Based on the observation of how radiologists read and interpret mammograms, 

we identified a new quantitative imaging marker to predict short-term breast cancer risk. Our 

previous study has demonstrated a trend of increasing bilateral asymmetry of the computed 

bilateral mammographic density features as the time lag between the negative and positive 

mammography screening reduces (Tan et al 2016).

First, our computer-aided scheme calculated a series of global statistical image features 

related to the pixel value distribution of each image or map, which include mean, standard 

deviation, skewness and kurtosis of pixel value distribution in one original digital 

mammogram (as shown in Figure 1) and 4 sets of computer-processed image maps (as 

shown in Figure 2). Then, the scheme computed each bilateral asymmetry (or difference) of 

the image feature value by combining two corresponding feature values computed from the 

two bilateral images or maps between the left and right breasts. Typically, for each feature, 

scheme computes and generates three combined features. First, an average feature value, 

, represents a global mammographic density related feature of each 

testing case. For example, a case with dense breasts has higher average pixel values 

computed from the original mammograms and FGT maps than a case of fatty breasts. 

Second, an absolute feature difference value, Fad = |Fleft − Fright|, or difference ratio, Fadr = |
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Fleft − Fright|/(Fleft + Fright), indicates bilateral feature asymmetry between left and right 

breasts. Third, a multiplication value of above 2 features, FM = Fave × Fad, considers the 

contribution of these two factors. For example, the contribution of the bilateral asymmetry 

levels to the cancer risk at breasts with different mammographic density may be different. 

Table 2 lists the 44 computed image features and their definition.

2.4. Machine Learning Generated Imaging Marker

Applying a machine learning method to generate an optimal and robust multi-feature fusion 

based imaging marker or prediction model depends on two factors namely, (1) a set of 

effective and non-redundant image features, and (2) a relatively large and diverse dataset. 

Figure 3 compares 3 types of machine learning methods. First, in the conventional machine 

learning as shown in Figure 3(a), segmentation and feature extraction steps are 

indispensable. A specific number of features from the initial feature pool are selected based 

on a predefined evaluation method and index. Then, the selected features are used to build 

the classifier. Second, a deep learning technique does not require handcrafted features 

computed from the well-segmented regions. It automatically identifies features by directly 

learning and analyzing input images as shown in Figure 3(b). However, in order to achieve 

robust results, the deep learning method typically requires a very large training dataset, 

which is often not available in the cancer imaging field.

It is clear by comparing between conventional and deep machine learning methods, each has 

advantages and disadvantages. Conventional machine learning uses handcrafted image 

features, wherein it is often difficult to identify an optimal set of features that can be most 

effectively fused together to achieve the best performance. However, conventional machine 

learning is relatively easy to train using small dataset. Deep learning has the capability to 

automatically determine more effective features and their combination by directly learning 

from the input images, but its performance heavily depends on the size and diversity of 

training dataset.

Figure 3(c) shows a new two-step approach tested in this study, which aims to take 

advantages of both conventional and deep machine learning approaches. Similar to a 

conventional learning method, this approach includes a regular region segmentation and 

feature extraction step to compute image features and build an initial feature pool. Then, the 

approach applies an LLP algorithm to learn and analyze the initially computed image 

features and automatically regenerate a new feature vector. This is similar to the deep 

learning approach, which is possible to extract new features using a deep convolution neural 

network (CNN) model for direct image feature learning and pass the CNN-generated 

features to the input layer of a conventional machine learning model, such as a support 

vector machine (SVM), to perform a specific classification task. However, comparing to the 

direct image based deep learning technique, the number of inputs (44 features as shown in 

Table 2 as comparing to large pixel number of an input image) is significantly reduced in 

this study, so that a conventional machine learning classifier embedded with the LPP image 

feature regeneration algorithm has potential to be more robustly trained and tested using a 

relatively small dataset.
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Thus, we first used a locally preserving projection (LPP) based feature combination 

algorithm (He et al 2004) to generated new features. LPP is an unsupervised subspace 

learning method and a linear approximation of non-linear Laplacian eigenmap. It involves 

linear projective maps to find a graph of embedding in a specific way to preserve local 

structure information. It has been tested and demonstrated high performance and advantages 

in feature dimensionality reduction, information retrieval and pattern classification or 

recognition. It models the manifold structure directly by constructing the nearest-neighbor 

graph of neighborhood information of the dataset. This graph reveals neighborhood relations 

of data samples. By using the Laplacian technique, transformation matrix of the dataset is 

generated to map the originally big feature space to a much compact and more effective 

subspace. This linear procedure also preserves local neighborhood information of the input 

dataset. The procedure of LPP can be summarized as the following three steps (He et al 

2004).

1. Construct adjacent graph using ε-neighborhood or k-neighborhood.

a. ε-neighborhood. The system connects nodes i and j by an edge if |xi − 

xj|
2 < ε.

b. k-neighborhood: The system connects nodes i and j by an edge if i is in 

k NNs of j or j is in k NNs of i.

2. Compute weight matrix W by using either uniform weight or Gaussian weight of 

Euclidean distance. If nodes i and j are connected, then:

(1)

where parameter t is a positive constant and t ∈ R, and Nk(Xi) or Nk(Xj) denotes 

a set of the k NNs of the sample xi or xj.

3. Construct the final Eigenmap. The transformation matrix P is optimized by 

computing the minimum eigenvalue solution to the generalized eigenvalue 

problem as (2):

(2)

where D is a diagonal matrix. A summation on the column of W makes elements 

of D, Dii = ΣWjj. L = D − W is the Laplacian matrix. In this equation P is 

composed of the optimal r projection vectors corresponding to the r smallest 

eigenvalues, i.e. λ1 ≤ λ2 ≤ ··· ≤ λr.

Next, we applied a conventional machine learning tool to generate a new imaging marker by 

optimally fusing the LPP-created new features. The learning tool was trained using our 

limited image dataset. In this study, we chose and compared two popular machine learning 

tools used in medical imaging informatics field. They are a k-nearest neighbor (KNN) 

algorithm and a support vector machine (SVM), which use totally different learning concept 
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(Mitchell 1997). KNN is an instance-based “lazy” machine learning method to build an 

optimal classification function locally. It searches for the k nearest training examples to 

classify the test sample in a pre-determined feature space and presents the class membership 

as the output (Weinberger et al 2009). In the KNN classifier, each test case is classified by a 

voting technique of its neighbors. Then, based on a distance measurement function, the case 

is assigned to the class most common among its k nearest neighbors. The Euclidean distance 

is used to search for the similar or nearest neighbor cases, which uses the following equation 

to compute distance between a queried or test case (xq) and a selected nearest neighbor case 

(xi) in a multi-feature (n) dimensional space:

(3)

A weighting factor is defined as:

(4)

Then, a risk prediction score or probability of the test case being a high risk (HR) case is 

computed as:

(5)

In Equation (5), K indicates the number of selected nearest neighbors in the KNN prediction 

model and I(xi = HR) = 1, when this selected nearest neighbor (xi) is a high risk case; 

otherwise, I(xi ≠ HR) = 0. Therefore, the risk prediction scores range from 0 (if all nearest 

neighbors are low risk cases) to 1 (if all nearest neighbors are high risk cases).

On the other hand, SVM is an “eager” machine learning method, which is trained using the 

entire training samples to build a global model of fitting the training data to predict whether 

a new test sample falls into one class or another (Leng et al 2013). Each SVM model is a 

representation of the data samples as points in the multi-feature space. In this space, the 

cases in each class are divided or separated using a hyperplane with margin of support 

vectors in two classes as wide as possible. Then, a new testing case is mapped to a class 

based on its location and distance to the hyperplane of the SVM model. Specifically, for a 

training data xi; (i = 1, …, N), function of classifier f(xi), is introduced as (6):

(6)
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where yi is the output of system corresponding to xi. f(x) can be a linear function or other 

types of nonlinear functions. For instance, in linear classification, f(x) can be considered as 

(7):

(7)

where W is weight vector and b is the bias. Among many “eager” types of machine learning 

classifiers (i.e., artificial neural network), SVM has advantages of building a more robust 

global optimization model.

In order to compute a risk prediction score of a testing case (xq) using a SVM based 

prediction model, the case is projected onto the hyperplane normal of the model. The sign 

distance from xq to the decision boundary of the SVM hyperplane represents the risk 

prediction score of the testing case, which is computed by (8):

(8)

In this equation aj(j = 1, …, n), b are the estimated parameters of the SVM model, and G(xj, 

xq) represents the dot product between xq and the (n) support vectors (xj). Thus, the 

computed risk prediction score in SVM for each testing case is its sign distance to the 

hyperplane. The risk prediction scores are then normalized to the range from 0 to 1 based on 

the maximum margin determined by the support vectors of two classes in the feature space. 

The higher score also indicates that the testing case is a higher risk case.

We took the following steps to combine LPP algorithm and a machine learning classifier 

(either a KNN or a SVM). First, we applied LPP algorithm to decrease dimensionality of the 

feature space and rebuild the most efficient structure of features. The LLP-generated new 

feature vector was used as input features to build a KNN and a SVM classifier. Second, in 

order to reduce bias in case partitions or selection, we used a leave-one-case-out (LOCO) 

based cross-validation method (Li et al 2006) to train the classifier and test its performance. 

In addition, to further reduce the possible bias in the feature or data reduction and classifier 

training, the LPP based feature or data reduction process was embedded in the LOCO based 

classifier training process to make the LPP-regenerated feature vectors independent to the 

testing cases. Thus, in each LOCO training and testing iteration, one case was selected from 

the dataset as a testing case that does not involve in the training process. LPP data reduction 

method was applied to the remaining training samples (i.e., 499 out of 500 samples in this 

study). The “best” or optimal group of features, which would be a mixture of input features 

to the classifier, was created by LPP to make an input feature vector for the classifier (i.e., 

KNN or SVM) in each training cycle. Then, the trained classifier was tested on an 

independent testing case by generating a risk prediction score. The higher score indicates the 

higher likelihood of the woman having or developing mammography-detectable breast 

cancer in the next subsequent mammography screening. As a result, output results are 

independent of input data and results are unbiased. Similar LOCO cross-validation method 
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with embedded feature selection or reduction has been applied and reported in our previous 

studies (Aghaei et al 2016, Yan et al 2016).

2.5. Experiments and Performance Evaluation

In order to demonstrate potential advantages of achieving higher prediction performance 

using the proposed new method, we conducted a number of experiments. First, without 

feature selection, we trained and built the KNN and SVM based machine learning prediction 

models using all 44 image features stored in the initial feature pool. Second, in order to 

remove low performed image features, we computed 44 AUC values when using each of 

image features to predict short-term cancer risk. By sorting the computed AUC values, we 

selected 10 features among the top 10 AUC value list and built a new machine learning 

classifier. Third, we performed an exhaustive search to determine the best size of the LPP-

generated feature vector. For example, in KNN, from each of K number (i.e., from 2 to 10), 

we systematically increased size of LPP-generated feature vector from 2 to 10 to search for 

the optimal learning parameters. Last, we tested different parameters or learning kernels 

used in the machine learning classifier. For example, we tested different SVMs built based 

on different kernel functions including Linear, RBF, Gaussian, and Polynomial functions. 

Finally, the experimental results were tabulated and compared.

To evaluate performance of the new machine learning scheme-generated risk prediction 

model or imaging marker, we used following evaluation methods and indices. First, we 

conducted data analysis using a receiver operating characteristic (ROC) method. Area under 

ROC curve (AUC value) was computed and used as evaluation index. Second, by applying 

an operating threshold on risk prediction scores (T = 0.5) to the testing data, we generated a 

confusion matrix with 4 parameters namely, (1) TP – true positive (high risk), (2) TN – true 

negative (low risk), (3) FP – false positive, and (4) FN – false-negative. From the confusion 

matrix, we computed overall risk prediction accuracy using the following equation.

(8)

Third, we sorted the risk prediction scores in an ascending order and selected 5 threshold 

values to divide all 500 testing cases into 5 subgroups (100 each). We computed adjusted 

odds ratios (ORs) and the 95% confidence intervals based on a multivariate statistical model 

using a publically available statistics software package (R version 2.1.1, http://www.r-

project.org). An increasing trend between ORs and the classifier-generated breast cancer risk 

prediction scores was also computed and analyzed.

3. RESULTS

When using all 44 image features included in our initial feature pool to train KNN and SVM 

based risk prediction classifiers, Figure 4 plots the distribution of cancer risk prediction 

accuracy when the number of neighbors (K) in the KNN classifier increases from 2 to 10, 

while Table 3 compares the difference of cancer risk prediction accuracy of applying 4 
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SVMs using 4 different learning kernel functions. Results showed that using K = 5 and RBF 

based learning kernel yielded the highest prediction accuracy of 63.2% and 60.8% for KNN 

and SVM classifiers, respectively. Using these two parameters, AUC values were 0.62 and 

0.60 for KNN and SVM, respectively. Thus, KNN yielded higher prediction accuracy than 

SVM when applying to the image dataset assembled in this study. Next, after reducing the 

number of input image features from 44 to 10, which are listed as top performed features, a 

new KNN model yielded an increased risk prediction performance with AUC = 0.64 and 

overall accuracy of 64.7%.

Through the exhaustive search, we identified the best parameters to develop the proposed 

LPP-KNN based hybrid machine learning approach (as shown in Figure 3.c) in which (1) 

LPP regenerated a new feature vector with 4 features from the original feature pool of 44 

features and (2) the number of neighbors in the KNN model was K = 5. Table 4 is a 

confusion matrix generated by using the optimal LPP-KNN model. Using this new 

prediction model, the overall cancer risk prediction accuracy further increased to 68.2%. 

Figure 5 shows the ROC curve of using this optimal LPP-KNN model with AUC = 0.68 in 

comparison with initial KNN model of using all 44 features. The increased AUC value when 

using this LPP-embedded machine learning approach is demonstrated.

Table 5 summarizes several other parameters or assessment indices commonly computed 

and used in epidemiology studies to predict breast cancer risk. Using the threshold of (T = 

0.5) to divide all testing cases into two risk classes, the odds ratio is 4.60 with a 95% 

confidence interval of [3.16, 6.70]. The data may indicate that women in the high-risk group 

have more than 4 times higher short-term breast cancer risk or probability of having or 

developing mammography-detectable cancer in the next subsequent breast cancer screening, 

which means 12 to 18 months after the “prior” negative screening of interest, than the 

women classified in the low risk group.

In addition, after dividing 500 testing cases into 5 subgroups of 100 cases based on the LPP-

KNN model generated cancer risk prediction scores (as shown in Table 6), the adjusted odd 

ratios increased from 1.0 in the 1st baseline subgroup of 100 cases with low risk prediction 

scores to 11.2 in the 5th subgroup of 100 cases with the high-risk scores. Regression analysis 

result also demonstrated an increasing trend of the odds ratios with the increase in LPP-

KNN model-predicted risk scores. The slope of the regression trend line between the 

adjusted odds ratios and the predicted risk scores is significantly different from the zero 

slope (p < 0.01).

4. DISCUSSION

In this study, we proposed and tested a new approach to develop a computer-aided image 

processing, quantitative feature analysis and machine learning scheme for predicting short-

term breast cancer risk, or the likelihood of women having or developing imaging detectable 

early breast cancer in the next subsequent mammography screening. This study has a 

number of unique characteristics compared to the previous studies reported in the literature 

to help improve efficacy in predicting short-term breast cancer risk and/or eventually 

establish a more effective personalized breast cancer screening paradigm.
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First, as shown in Figure 3(a) and (b), two types of machine leaning methods are commonly 

applied in medical imaging informatics field to date. The main disadvantage of a 

conventional machine learning method is requiring many subjectively defined or 

“handcrafted” image features. Although deep learning (DL) can automatically define DL-

generated image features by directly learning from the sample images, which may more 

effectively define or represent internal structure of image data, training a robust DL model 

typically requires a very large image dataset. In this study, we tested a third approach, which 

partially takes advantage of deep learning while also maintains advantage of the 

conventional machine learning to be trained using a relatively small image dataset. In our 

approach as shown in Figure 3(c), a LPP-based feature regeneration algorithm was used to 

automatically learn and generate a small set of new features from a relatively large pool of 

initially computed image features. This process is different from the conventional feature 

selection, which selects optimal features from the initial feature pool (i.e., using a sequential 

forward floating selection (SFFS) feature selection method (Tan et al 2014)). LPP aims to 

learn and redefine the effective features, which are different from any of the existing image 

features in the initial feature pool. Our study results demonstrated that using this LPP-based 

feature regeneration approach enabled us to create a smaller or compact new feature vector 

and yield higher prediction performance than using either all initial image features or a set of 

selected highly performed features.

Second, patient age is a well-known breast cancer risk factor with the highest discriminatory 

power in the existing epidemiology based breast cancer risk models (Amir et al 2010). Our 

previous studies may have bias by using the datasets in which the average age of women in 

the higher risk group was significantly higher than the average age in the lower risk group 

(Zheng et al 2012). In order to overcome this potential bias, we in this study assembled an 

age-matched image dataset (as shown in Table 1). As a result, we removed a potential biased 

impact factor. The study result is encouraging by comparing to the previous studies. 

Specifically, although the highest adjustable odds ratio yielded in this study was very 

comparable or slightly higher than the results reported in our previous studies (i.e., 11.2 vs. 

9.1 (Zheng et al 2014) or 11.1 (Tan et al 2016)), using an age-matched dataset in this study 

may be important to demonstrate the robustness of developing a new optimal imaging 

marker based on bilateral asymmetry of mammographic tissue density between the left and 

right breasts.

Third, although computer-aided image processing and breast cancer risk prediction schemes 

had been previously developed and tested by different research groups including our own 

using an “eager” machine learning methods or models (i.e., artificial neural network and 

support vector machine), we in this study also tested a “lazy” learning method using a KNN 

algorithm for the purpose of predicting short-term breast cancer risk. Our study results 

showed that KNN can be used not only to predict cancer risk, but also to yield higher 

prediction accuracy that an optimized SVM model using the same testing dataset and cross-

validation method. This result is quite interesting and may be worth further investigation. 

Using a local instance based learning method (i.e., a KNN algorithm) can provide great 

flexibility to develop a new machine learning based imaging marker or prediction mode 

because it will be relatively easy to periodically add new image data to increase size and 

diversity of the reference database for the instance-based learning model, without a 
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complicated retraining to produce a global optimization function, which is required by all 

other “eager” learning methods (Park et al 2007, Wang et al 2017).

In addition, we can also make a number of potentially interesting observations from our 

experimental results. For example, the highest AUC value using all 44 features was 0.62. 

While keeping K = 5 in the KNN learning model, removing 34 lower performed features 

enabled an increase of AUC value by 3.2% from 0.62 to 0.64. Furthermore, when adopting a 

LPP-KNN model using 4 LPP-regenerated features, AUC increased to 0.68 (representing a 

9.7% increase). Thus, the results confirmed that although a large number of image features 

can be initially computed, removing lower performed and redundant features, as well as 

generating more effective features, played an important role to increase performance of 

multi-feature fusion based machine learning models. Applying LPP does not only reduce the 

dimension of feature space, but also it is able to reorganize the new feature vector to achieve 

lower amount of redundancy and maximum variance. Hence, LPP-regenerated feature vector 

represents an optimal combination of the highly effective parts of all input features.

Fourth, although the size of our dataset is limited to 500 or 250 per class, applying the LPP 

feature regeneration approach also helped to increase the robustness of the testing result. 

Specifically, using the LPP approach increased the ratio between the training cases per class 

and image features from original 5.7 (250/44) using all 44 features in the initial feature pool 

to 62.5 (250/4) using only 4 LPP-regenerated features. Thus, based on the machine learning 

theory, increasing this ratio will increase the robustness of the machine learning classifier to 

reduce the risk of overfitting. In addition, we used a leave-one-case-out (LOCO) cross-

validation method to train and test the classifier, which also eliminates the bias of case 

partition or selection.

Despite the encouraging results, this is a proof-of-concept type study with several 

limitations, which needs to be addressed and/or overcome in future studies. First, although 

LPP is able to regenerate an optimal image feature vector, its ultimate performance depends 

on the quality of initial feature pool. The initial feature pool with 44 features used in this 

study may not have been an optimal feature pool. Thus, we will continue our efforts to 

improve the computer-aided image processing scheme to more accurately and robustly 

segment dense mammographic tissue regions and compute image features. Second, due to 

the potential compression difference between left and right breasts, breast sizes and density 

overlapping ratio (or pixel values) depicting on two bilateral images may not be the same. In 

order to reduce the potential errors in computing feature difference, we need to continue 

investigating new methods to compensate the difference and reduce the errors. Third, since 

the regions near breast skin and behind chest wall have high pixel values in mammograms, 

in order to avoid adding them into the dense fibro-glandular tissue volume, we need to 

develop a more accurate method to automatically remove these regions without losing 

significant information of breast area. Fourth, it is also important to more effectively detect 

and compensate other types of image noise, which may exist and vary in screening 

mammograms due to the variety of technical issues in conducting mammography 

examinations on different individual women. The goal is to develop a more robust computer-

aided image processing scheme to achieve high accuracy in mammographic dense tissue 

segmentation. Last, this study only used and analyzed images acquired from one “prior” 
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mammography screening. In the future studies, we will collect more cases with multiple 

“prior” mammography screenings and investigate the feasibility of improving performance 

of short-term breast cancer risk prediction by combining the image feature variation trend 

among the multiple mammography screenings into the risk prediction models.
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Figure 1. 
Illustration of the graphic user interface of our computer-aided imaging processing scheme 

to detect bilateral mammographic image feature asymmetry and predict short-term breast 

cancer risk.
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Figure 2. 
An example of showing the intermediate results of image processing steps including (a) 

computed breast tissue density maps, (b) detected focal density regions, (c) local density 

(pixel value) fluctuation maps, and (d) image maps generated using Gaussian bandpass 

filtering. Color bars show volumetric density level of the pixel values.
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Figure 3. 
Block Diagram of three types of risk model systems, (a) conventional systems for feature 

selection and classification, (b) deep learning techniques for feature generation and 

classification, (c) proposed method for feature extraction, regeneration, and classification.
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Figure 4. 
Accuracy of 44 elements feature vector with KNN classifier system for 10 different K
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Figure 5. 
Comparison of two ROC curves generated by the original KNN model using the initial 44 

features and the optimal LPP-KNN model using 4 features.
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Table 1

Distribution of age and density BIRADS of cases in the dataset

High Risk Class Low Risk Class

Age

Mean 58.84 57.39

> 65 years old 57 48

45–65 years old 174 170

< 45 years old 19 32

BIRADS

Extremely dense (4) 6 7

Heterogenous (3) 133 131

Scattered (2) 100 99

Fatty tissue (1) 11 13
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Table 2

Description of 44 computed image features in the initial feature pool

Image Feature Number Feature Description

Original FFDM image 1 – 3 Average and absolute difference of density values, and multiplication of above 2 features.

FGT map 4 – 7
Average and absolute difference of mean high density value, difference ratio and multiplication 
of the first 2 features.

8 – 10 Average and absolute difference of FGT volume, and multiplication of above two features.

11 – 13 Average and absolute difference of standard deviation of pixel values, and multiplication.

14 – 17 Average and absolute difference of skewness and kurtosis of pixel values.

Focal density map 18 – 21
Average and absolute difference of focal density value, difference ratio and multiplication of the 
first 2 features.

22 – 29
Average and absolute difference of mean, standard deviation, skewness, and kurtosis of detected 
and segmented focal density regions.

Local fluctuation map 29 – 33 Average of mean, standard deviation, skewness and kurtosis of pixel values.

34 – 37 Absolute difference of mean, standard deviation, skewness and kurtosis of pixel values.

38 – 41
Multiplication of average and absolute difference of mean, standard deviation, skewness and 
kurtosis of pixel values

DOG map 42 – 44 Average and absolute difference of mean pixel values, multiplication of above 2 features.
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Table 3

Accuracy (%) of the whole 44 feature vector for SVM classifiers with different kernel functions.

Kernel RBF Gaussian Polynomial Linear

Accuracy (%) 60.80 60.20 51.02 56.4
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Table 4

Confusion matrix of the proposed risk model on 500 cases with Threshold = 0.5

Actual low-risk Cases high-risk Cases

low-risk Cases 170 79

high-risk Cases 80 171
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Table 5

Odds and Risk Ratio of the proposed KNN-LPP method.

Significance level 95 %

Risk Ratio 1.7597< 2.1519 <2.6316

Absolute risk reduction 36.4%

Relative risk reduction 53.5%

Odds Ratio 3.1568< 4.5997 <6.7021

Phi 0.3600

Critical Odds Ratio (COR) 1.1006
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Table 6

Adjusted ORs and 95 % CIs for five subgroups of cases

Number of Cases (Positive- Negative) Adjusted OR 95 % CI

23–77 1.00 Reference

49–51 3.21 1.75–5.91

46–54 2.85 1.55–5.24

55–45 4.092 2.22–7.53

77–23 11.20 5.8–21.65
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