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Synopsis

The cell size distribution in a thermoplastic foam to a large extent determines its mechanical and
thermal properties. It is difficult to predict because of the many physical processes involved, each
affected in turn by an array of factors and parameters. The two most important processes are bubble
nucleation and diffusion-driven bubble growth. Neither has been thoroughly understood despite
intensive and long-standing research efforts. In this work, we consider foaming by a physical
blowing agent dissolved in a polymer melt that contains particulate nucleating agents. We propose
a nucleation model based on the concept that heterogeneous nucleation originates from pre-existing
microvoids on the solid particles. The nucleation rate is determined by a bubble detachment time.
Once nucleated, the bubbles grow as the dissolved gas diffuses through the polymer melt into the
bubbles, a process that couples mass and momentum transport. By using the Oldroyd-B constitutive
equation, we explore the role of melt viscoelasticity in this process. Finally, we integrate the
nucleation and growth models to predict the evolution of the bubble size distribution. A cell model
is employed to simulate the effects of neighboring bubbles and the depletion of blowing agents. The
latter also causes the nucleation rate to decline once growth of older bubbles is underway. Using the
physical and operating parameters of a recent foam extrusion experiment, we are able to predict a
cell size distribution in reasonable agreement with measurements. ©2004 The Society of
Rheology. @DOI: 10.1122/1.1645518#

I. INTRODUCTION

The foaming of a polymer melt is an important process because of its practical and
scientific values. Whether the product is used for its mechanical strength or thermal
insulation, the cell size distribution~CSD! is a critical determinant for the quality of the
product. Despite long-standing interest and research effort, the problem is far from being
fully resolved. Many processes affect the final CSD of a foam, including bubble nucle-
ation, growth, deformation, and possibly coalescence and burst. Each of these in turn
depends on a host of factors, such as melt rheology, solubility of the blowing agent,
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temperature, pressure, and the use of nucleating agents. The literature is chiefly con-
cerned with the first two stages of foaming: nucleation and growth. The former provides
the initial condition for the latter. The stability of a foam against collapse is a more
difficult problem, and appears to have received relatively few studies.

Nucleation is a well-studied problem, playing an essential role in a variety of pro-
cesses ranging from boiling to crystal growth. The classical nucleation theory is based on
the Gibbs free energy required for creating a void in a liquid, and centers around the
concept of thecritical bubble in mechanical and thermodynamic equilibrium with the
surrounding liquid~Cole 1974; Hodgson 1984!. Bubbles larger than the critical bubble
grow further while smaller ones dissolve. Despite its success in problems such as boiling
of low-molecular-weight liquids, the classical theory does not apply to polymer foaming.
Calculations have shown that when applied to polymers under typical foaming condi-
tions, the rate of homogeneous nucleation is negligible~Han and Han 1990b; Saunders
1991!. Numerous adaptations of the classical theory have been proposed. The free energy
has been modified to account for changes in the polymer free-volume~Colton and Suh
1987!, the presence of solid surfaces~Cole 1974; Colton and Suh 1987!, supersaturation
of the blowing agent~Han and Han 1990b!, polymer-solvent interactions in foaming a
solution ~Han and Han 1990b!, and surface tension reduction due to dissolved gas~Lee
and Flumerfelt 1996!. In addition, shear-induced nucleation has received much attention,
with the general conclusion that shear increases the nucleation rate~e.g., Lee 2000; Chen
et al. 2002; Guo and Peng 2003!. Yarin et al. ~1999! proposed a model based on the
intriguing idea of stress-induced secondary nucleation.

From our perspective of studying the final CSD, these models have three shortcom-
ings. First, they predict a nucleation rate of the critical bubbles at radiusRcr . But a
critical bubble will neither grow nor shrink. The nucleation models thus fail to provide an
initial condition for subsequent bubble growth. Recognizing this problem, Shafi and
Flumerfelt~1997! attempted to derive an initial condition that corresponds to the ‘‘upper
bound of the critical region,’’ where thermal fluctuation cannot drive a supercritical
bubble to subcritical. Though an interesting idea, its implementation is not straightfor-
ward. Shafi and Flumerfelt’s~1997! mathematical procedure is incorrect in treating a
singular perturbation as a regular one. Second, without a proper bubble growth model,
these nucleation models cannot be easily tested against experiments, which invariably
measure larger ‘‘grown-up’’ bubbles. Thus, the merit of the various new features added to
the classic theory is not readily ascertainable. Finally, the picture of critical bubbles
spontaneously arising in the bulk is irrelevant to most polymer foaming processes. Non-
homogeneity and impurities are ubiquitous in commercial resins, and nucleating agents
are commonly added to promote nucleation in the foaming process~Park et al. 1998!.
The classic theory handles heterogeneous nucleation by simply adding a prefactor in front
of the free energy; its effect is insufficient by far to account for the high nucleation rates
in reality ~Cole 1974!.

Thus, the first task of our study is to develop a more realistic nucleation model. We
have come to understand that pre-existing microbubbles on the surface of particulate
nucleating agents are an important route for nucleation in polymer foaming. These mi-
crobubbles are trapped in surface cavities or crevices, and act as the seed for nucleation
when the pressure or temperature becomes favorable~Griffith and Wallis 1960; Cole
1974; Rameshet al.1994a, b!. This picture is formulated into a heterogeneous nucleation
model to be discussed in the next section. Note that this is unrelated to prior heteroge-
neous nucleation models that represent the effect of solid surfaces by a reduction in the
Gibbs free energy~Colton and Suh 1987; Shafiet al. 1997!.
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In comparison with nucleation, bubble growth is a much better defined problem. There
have been studies on diffusion-driven bubble growth in Newtonian, power-law, and vis-
coelastic melts, with the mass and momentum transfer properly coupled~Rameshet al.
1991; Arefmanesh and Advani 1991; Venerus and Yala 1997; Veneruset al. 1998!.
Bubbles are assumed to remain spherical during growth. Bubble-bubble interaction is
accounted for, to a limited extent, by a cell model where the influence of other bubbles is
represented by a finite shell of polymer melt. Our interest in the bubble growth model is
twofold. First, it is a critical part in our endeavor to predict the CSD of a foam. We need
to develop an accurate numerical scheme for computing bubble growth. Second, we wish
to delineate clearly the effect of viscoelasticity on bubble growth; this important issue has
not been adequately elucidated in the past.

The final task of our study is to integrate the nucleation and growth models into a
consistent theory capable of predicting the evolution of the bubble size distribution dur-
ing foaming. Using parameter values corresponding to a recent foam extrusion experi-
ment~Kieken 2001!, we obtain a CSD in reasonable agreement with that measured in the
experiment. In this study, we have assumed that the temperature remains constant, as do
all the material properties except for the gas density in the bubble. In particular, we
neglect changes of melt density and viscosity due to the loss of blowing agent. Further-
more, spatial homogeneity is assumed when calculating the CSD, neglecting any macro-
scopic spatial gradients related to the geometry of actual processing units. Some of these
factors are obviously important in reality, and the simplifications are made to render the
problem tractable.

II. NUCLEATION MODEL

It has been long established in the boiling literature that crevices and depressions on
solid surfaces harbor microbubbles that will serve as nuclei for boiling~Griffith and
Wallis 1960; Cole 1974!. In polymer foaming experiments, Tatiboue¨t et al. ~2002! ob-
served that dissolved gas tends to aggregate on the surface of the nucleating agents, and
surmised that such aggregations will become nucleation sites during foaming or degas-
sing. Using electron microscopy, Rameshet al. ~1994a! confirmed the existence of mi-
crovoids on rubber particles added to polystyrene as nucleating agents. They further
proposed a nucleation model from which our nucleation model draws certain elements.

The Rameshet al. ~1994a, b! model is based on three key assumptions:

~1! Each particle produces one bubble from its largest microvoid. Bubbles created by
smaller voids, if any, are absorbed by the largest one during the onset of bubble
growth.

~2! The size of the nucleated bubbles scales with the size of the particle.
~3! There is a minimum sizeR* for the bubble to be viable; larger ones grow further

while smaller ones disappear.

Much of the effort in Rameshet al. ~1994a, b! is devoted to determining the cutoffR*
for a postulated lognormal distribution for the initial bubbles. This procedure appears to
suffer from several inconsistencies. The criterion for the survival of the bubble is a force
balance between the bubble pressurePg and resisting forces due to surface tension and
elastic stresses.Pg is calculated from a mass conservation by assuming that the gas
concentration outside remains uniform and in equilibrium withPg . This is tantamount to
assuming an infinitely large gas diffusivity in the melt. Besides, the elastic stress should
be due to the polymer melt surrounding the bubble. Subsequently, however, the stress is
computed using therubber particle’smodulus since ‘‘the nucleation is considered to be a
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local event occurring inside the rubber particle.’’ Finally, the particles have a lognormal
size distribution with the finer particles unable to produce viable bubbles. This cutoff
implies that the bubbles should have a ‘‘truncated’’ lognormal size distribution instead of
the full lognormal assumed by Rameshet al. ~1994a!.

Our nucleation model adopts their Assumptions 2 and 3, but determinesR* by bor-
rowing the picture of bubble formation on a rough surface in classical boiling theory
~Griffith and Wallis 1960; Cole 1974!. In this picture, a bubble grows from a dormant
vapor microbubble trapped in a surface crevice or depression modeled as a conical cavity
~Fig. 1!. The pre-existing microbubble is initially saturated with vapor at pressureP0 .
When the ambient pressure is reduced abruptly fromP0 to Pa , the microbubble starts to
expand toward the mouth. The radius of curvaturer increases with bubble volume until
the contact line reaches the lip of the cavity, whenr 5 r 1 is at a maximum. Thenr
decreases as the bubble bulges out to form a ‘‘cap.’’ When the interface is at the proper
contact angle with theoutsideportion of the solid surface,r 5 r 2 is at a minimum.
Griffith and Wallis ~1960! assumed a contact angle ofu 5 p/2 and thusr 2 5 r m , the
radius of the mouth of the cavity. Here comes in the classical concept of the critical
bubble: If r 2 > Rcr , the bubble will grow further and eventually detach. Otherwise it
will stay at r 2 . The existence of such seed microbubbles and their role in boiling have
been well established by experiments~Cole 1974!, and the criterion for active nucleation
sitesr m > Rcr turns out to be approximately valid over a wide range of contact angles.

In our case, we assume that the radius of the detached bubbleR0 , to be used as an
initial condition for subsequent growth, is related to the particle sizeRp . The exact
relationship, however, depends on the detachment process, of which we have no detailed
knowledge. Furthermore, because of their tiny size, there is no information on the shape
and dimension of the microvoids on filler particles; hencer m is essentially unknown. We
circumvent these two difficulties by making the followingad hocassumption: the initial
bubble created by a particle shall have a radiusR0 proportional to the particle radiusRp .

R0 5 eRp , ~1!

where the phenomenological coefficiente is to be determined by comparison with
experiments.1 Presumably,e depends on the shape, size, and surface property of the
particle and the cavity. These effects can be clarified by measuringR0 on various well-

1If one ignores the cavity and considers the detachment of a gas cap from a smooth sphere,e can be calculated
from the contact angle. In our context, however, it is treated as a phenomenological constant.

FIG. 1. The nucleation of a bubble from a pre-existing microvoid on the surface of a solid particle.
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defined cavities. As will be shown in Sec. IV, however, the predicted CSD is not very
sensitive toe over a reasonable range. Based on Eq.~1!, the size distribution of the solid
nucleating agents is readily transformed into a size distribution for the initial bubbles.
Only those with a radius greater thanRcr will survive, grow, and contribute to the final
CSD.

Another feature of our nucleation model is that we abandon the Assumption 1 of
Rameshet al. ~1994a! and allowcontinuous nucleationfrom the same site. Assumption 1
is based on the premise that a larger bubble encounters a lower interfacial tension and
grows faster, thereby annexing the smaller bubbles nucleating from the same solid par-
ticle. Our simulations show that, for typical processing conditions, the viscoelastic stress
in the melt contributes much more resistance to bubble growth than the interfacial ten-
sion. Consequently, the growth rate shows only a weak dependence onR0 . More impor-
tantly, experiments show the total number of bubbles to be several times more than that
of the solid particles~Kieken 2001!. These have led us to believe that bubbles are
continuously produced by a particle, from one or several active cavities. The rate of
production depends on adetachment time, which in turn depends on the gas diffusivity
and cavity geometry among other factors. The most relevant time scale appears to be the
diffusion time tD 5 R0

2/D, D being the diffusivity of the blowing agent in the melt.
Thus, we take the detachment time to be proportional totD . Furthermore, we anticipate
the nucleation to slow down in time as bubble growth gradually uses up the dissolved gas
in the melt. A similar idea was used in the nucleation model of Shafiet al. ~1997! to
account for simultaneous nucleation and growth. Here we quantify the effect by desig-
nating the first bubble produced by a particle the ‘‘primary bubble.’’ As the primary
bubble grows, a gas concentrationcs representative of the neighborhood, to be defined in
Sec. IV in the cell model, decreases in time. Assuming alinear dependence of the
nucleation rate oncs , we write the number of secondary bubbles produced by the particle
in unit time as

Q~R0,t! 5 g
Dcs~R0,t!

R0
2 , ~2!

whereg is to be determined from experimental measurements on the total number of
bubbles. Note thatg lumps all the factors that are not explicitly accounted for, including
the amount of initially trapped air, the depletion effect of nearby bubbles, and the inho-
mogeneity of the gas concentration in the neighborhood. The linearity of Eq.~2! in cs is
motivated by scaling arguments based on the governing equations for bubble growth to
be presented in the next section. This turns out to underpredict the suppression of nucle-
ation by a decliningcs ; we will revisit this point at the end of Sec. IV. We further assume
that all secondary bubbles have the same radiusR0 as the primary one, and follow the
same growth curveR 5 R(R0 ,t2t0), wheret0 is the instant of nucleation.

As initial conditions for computing the ensuing bubble growth, we have the bubble
radius in Eq.~1!. The initial velocity of bubble expansion is taken to be zero. The initial
condition for the bubble pressure requires somewhat more involved considerations. Han
and Yoo~1981! and Arefmanesh and Advani~1991!, among others, have assumed that the
initial bubble pressure is equal to the initial vapor pressure

Pg~0! 5 P0. ~3!
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This ensures thermodynamic equilibrium for the dissolution of gas at the bubble’s sur-
face. SinceR0 . Rcr , however, the surface tension can no longer withstandP0 , and the
bubble will expand with a nonzero acceleration. An alternative is to postulate~Venerus
et al. 1998!

Pg~0! 5 Pa1
2s

R0
, ~4!

which maintains the force balance, but incurs a discontinuity in the gas concentration at
the interface and thus immediate diffusion of gas into the bubble. Our picture for the birth
of bubbles in Fig. 1 is a nonequilibrium process. The detachment occurs after the bubble
has grown out of the cavity. The internal pressure should have relaxed somewhat from the

FIG. 2. Effects of the pressure initial condition on subsequent growth as predicted by the model described in
Sec. III. The dimensionless parameters, to be defined in that section, have the following values: Pa* 5 1,
Re 5 1026, Ca5 2.5, b 5 0.1, k* 5 0.01, A* 5 9.9, and De5 1. ~a! Bubble growth as indicated by its
radiusR(t); ~b! evolution of the bubble pressurePg(t). The nondimensionalization ofR, t, and Pg will be
given in Sec. III. The abscissa is taken to bet1/2 to reflect the diffusion-controlled dynamics at larget ~Venerus
et al. 1998!.
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initial vapor pressure, yet should still be higher than that in Eq.~4! so further growth is
maintained. Thus our nucleation model implies an initialPg(0) between Eqs.~3! and~4!.
Numerical experiments show that the influence ofPg(0) is largely limited to the initial
moments of bubble growth~Fig. 2!; the difference is qualitatively unimportant in later
times. We have adopted Eq.~4! in all subsequent calculations since the initial force
imbalance due to Eq.~3! causes an unnatural initial acceleration. Incidentally, Blander
and Katz ~1975! discussed the effect ofPg(0) on the free energy of homogeneous
nucleation, with the conclusion that using Eq.~3! or ~4! produces a negligible difference
in the nucleation rate.

III. DIFFUSION-INDUCED BUBBLE GROWTH

There have been numerous studies of diffusion-induced growth or collapse of bubbles
in a fluid. Veneruset al. ~1998! presented a complete set of equations for bubble growth
in an infinite expanse of viscoelastic fluid and examined the various approximations used
in the literature. Arefmanesh and Advani~1991! considered the growth of a bubble
enclosed in a shell of liquid containing a finite amount of dissolved gas. This ‘‘cell
model’’ approximates the situation in polymer foaming where the depletion of the blow-
ing agent and proximity of nearby bubbles prevent the bubbles from growing indefinitely.
Both articles have reviewed earlier work on the topic. Given this wealth of previous
research, we have a twofold purpose in this section. First, we wish to establish the
validity and accuracy of our numerical scheme by comparison with previous results.
Second, we will shed some light on the effect of viscoelasticity in the bubble growth
process. Both serve as preparations for the prediction of CSD to be discussed in the next
section.

A. Bubble growth in an unbounded Oldroyd-B fluid

A gaseous blowing agent is dissolved into a polymer melt under high pressureP0 to
saturation concentrationc0 5 kP0 , wherek is Henry’s constant. Then the pressure is
suddenly reduced toPa and the blowing agent becomes super-saturated. Nucleation
occurs, and a viable bubble proceeds to grow as the dissolved gas diffuses into the
bubble. For this process of coupled momentum and mass transfer, we assume constant
temperature and a spherical shape for the bubble, and use the same governing equations
as in Veneruset al. ~1998! with the infinitely dilute solute assumption. Melt viscoelas-
ticity is represented by the Oldroyd-B model. Veneruset al. ~1998! tested the Phan-
Thien-Tanner model and found that the more complex rheology has only a minor effect
on bubble growth. In dimensional forms, the governing equations are as follows:
~a! Momentum equation:

Pg2Pa 5 rSRR̈1
3

2
Ṙ2D1 2s

R
1

4msṘ

R
22E

R

` trr2tuu

r
dr, ~5!

where Pg(t) and R(t) are the instantaneous bubble pressure and radius,s is surface
tension,ms is the Newtonian viscosity andt rr andtuu are the viscoelastic normal stress
components. The dot overR indicates time derivative. The terms on the right-hand side
represent resistance to bubble growth due, respectively, to inertia, surface tension, vis-
cous, and viscoelastic normal stresses.
~b! Mass balance for gas in the bubble:
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d

dt
~PgR

3! 5 3DAR2
]c

]r
U
r 5 R

, ~6!

whereA is a constant for the isothermal ideal gas:Pg 5 Arg , andD is the gas diffu-
sivity in the melt.c(r ,t) is the mass concentration of the gas in the melt.
~c! Mass balance for gas in melt:

]c

]t
1vr

]c

]r
5

D

r2

]

]r Sr2
]c

]r D, ~7!

wherev r (r ,t) 5 R2Ṙ/r 2 is the radial velocity in the melt.
~d! Oldroyd-B constitutive equations:

trr1lSdtrr

dt
1

4R2Ṙ

r3 trr D 5 2
4mpR

2Ṙ

r3 , ~8!

tuu1lSdtuu

dt
2

2R2Ṙ

r3 tuuD 5
2mpR

2Ṙ

r3 , ~9!

where l is the polymer relaxation time andmp the polymer viscosity. A biaxial-

extensional kinematics has been assumed, withv r (r ,t) 5 R2Ṙ/r 2 being the only non-
vanishing velocity component.d/dt 5 ]/]t1v r]/]r is the material derivative.

These equations are supplemented by the following initial and boundary conditions:

c~r,0! 5 c0 , ~10!

c~R,t! 5 kPg~t!, ~11!

c~`,t! 5 c0, ~12!

R~0! 5 R0, ~13!

Ṙ~0! 5 0, ~14!

Pg~0! 5 Pa12s/R0, ~15!

trr~r,0! 5 0, ~16!

tuu~r,0! 5 0, ~17!

where thermodynamic equilibrium is assumed at the bubble surface and Henry’s law is
applied.

As in Veneruset al. ~1998!, we useR0 as the length scale andR0
2/D as the time scale.

Pressure and the stresses are scaled bymD/R0
2, wherem 5 ms1mp , and the gas con-

centrationc by its initial valuec0 . Then we have the following dimensionless equations
~same symbols are used for the variables; some dimensionless groups are indicated by an
asterisk!:

Pg2Pa* 5 ReSRR̈1
3

2
Ṙ2D1 2

Ca

1

R
1

4bṘ

R
22E

R

` t rr 2tuu

r
dr, ~18!
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d

dt
~PgR

3! 5
3

A*k*
R2

]c

]r
U
r 5 R

, ~19!

]c

]t
1v

]c

]r
5

1

r2

]

]r Sr2
]c

]r D , ~20!

trr1DeS dt rr

dt
1

4R2Ṙ

r 3 t rr D 5 24~12b!
R2Ṙ

r 3 , ~21!

tuu1DeS dtuu

dt
2

2R2Ṙ

r 3 tuuD 5 2~12b!
R2Ṙ

r 3 , ~22!

with the following initial and boundary conditions:

c~r,0! 5 1, ~23!

c~R,t! 5 k* Pg~t!, ~24!

c~`,t! 5 1, ~25!

R~0! 5 1, ~26!

Ṙ~0! 5 0, ~27!

Pg~0! 5 Pa*12/Ca, ~28!

trr~r,0! 5 0, ~29!

tuu~r,0! 5 0, ~30!

where the dimensionless groups are

Pa* 5
PaR0

2

mD
, ~31!

Re 5 rD/m, ~32!

Ca 5
mD

sR0
, ~33!

b 5 ms/m, ~34!

k* 5
kmD

c0R0
2, ~35!

A* 5 A/k, ~36!

De 5 lD/R0
2. ~37!

To solve the governing Eqs.~18!–~22! on the domainr P@R,`), we adopt the coor-
dinate transformation used by Duda and Vrentas~1969! and Veneruset al. ~1998!:
u 5 12exp@2a(r/R21)#, where the constanta controls the ‘‘compression’’ of the spa-
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tial coordinate as the domain transforms from@R,`) to @0,1#. We use a nonuniform grid
over theu-domain with denser grid points at the bubble; the grid size increases by a
factor ~typically 1.01! alongu between neighboring nodes. The diffusion and constitutive
Eqs.~18!–~20! are then discretized on the grid, resulting in a system of coupled ordinary
differential equations~in time! for R, Pg and the values ofc, t rr , andtuu on each grid
point. These have been solved by two different methods: a fourth-order Runge-Kutta
explicit scheme and an implicit scheme using Newton iteration and the Woodbury algo-
rithm for fast matrix inversion~Presset al. 1992!. The results are nearly identical. In
terms of spatial resolution,tuu is the most demanding. Shortly after the bubble starts to
expand,tuu develops a very steep boundary layer outside the bubble, which requires a
much more refined grid than is sufficient to resolve thec(r ) profile. Figure 3~a! illustrates
the resolution of thetuu boundary layer on four different meshes att 5 1.5, when
tuu(R) peaks in time. For the explicit solver, upwinding is necessary to prevent oscilla-
tions in thetuu(r ) profile. Remarkably, poor resolution oftuu on a coarser mesh has

FIG. 3. Mesh refinement for the solution of a bubble growing in a Oldroyd-B fluid.N is the total number of
nodes, anda is a parameter in the coordinate transformation~see text!. The dimensionless parameters corre-
spond to those used by Veneruset al. ~1998!: Pa* 5 1, Re5 1026, Ca5 2.5, b 5 0.1, k* 5 0.01,
A* 5 9.9, and De5 1. ~a! Resolution of the stress boundary layer att 5 1.5; ~b! bubble growth is insensitive
to how well the stress boundary layer is resolved.
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little effect on the growth of the bubbleR(t) @Fig. 3~b!#. This is evidently because the
boundary layer is too narrow to contribute much to the stress integral in Eq.~18!. Later
in time, the stress boundary layer subsides and its resolution becomes easier. The gas
concentration profilec(r ) is well resolved by even the coarsest grid (N 5 401,
a 5 0.3) over the entire time. Subsequent computations are mostly done on an interme-
diate grid withN 5 801 anda 5 0.8.

To further benchmark our numerical method, we compared our solutions to previous
numerical and experimental results. For diffusion-controlled and diffusion-induced
bubble growth in a Newtonian fluid (b 5 1), our solutions are indistinguishable from
those in Duda and Vrentas~1969! and Venerus and Yala~1997!. For Oldroyd-B fluids, our
results are in good agreement with those of Veneruset al. ~1998!. Furthermore, we
compared our predictions with the experimental measurements of Han and Yoo~1981!.
These authors recorded the growth of bubbles during injection molding of a polystyrene
foam with CO2 as the blowing agent. The physical and operating parameters in the
experiment are converted into our dimensionless parameters, and the model predicts a
bubble radius in reasonable agreement with the measurements~Fig. 4!. That the bubble
grows more slowly in the experiment is probably because the foam is a multibubble
system enclosed in a cavity. The bounding walls and the depletion of blowing agent in the
melt by neighboring bubbles both tend to hamper the growth of the bubbles.

B. Bubble growth in a shell of Oldroyd-B fluid

The cell model, with a single bubble growing within a shell of polymer melt contain-
ing a finite amount of dissolved gas, is motivated by the fact that a multitude of bubbles
grow in close proximity in actual foaming. Growth will be arrested once the dissolved
gas in the melt is exhausted. The behavior of a single cell was studied by Amon and
Denson~1984!, Arefmanesh and Advani~1991!, and Rameshet al. ~1991!. Amon and
Denson~1986!, Arefmaneshet al. ~1990!, and Koopmanset al. ~2000! have attempted to
predict macroscopic flow fields during foam molding and extrusion on the basis of the
local cell model. Our interest in the cell model derives from the fact that to predict the

FIG. 4. Comparison between model prediction ofR(t) and experimental measurement of Han and Yoo~1981!.
The dimensionless parameters are: Pa* 5 0.04605, Re5 1.21310210, Ca5 78.57, b 5 0, k* 5 4.686,
A* 5 2.983, and De5 495.0.
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cell size distribution, some account of cell-cell interaction has to be incorporated. Be-
sides, the depletion of blowing agent enters our nucleation model@Eq. ~2!# as well.

The bubble growth model discussed in the last subsection is easily adapted to the cell
model by replacing the Dirichlet conditionc(`,t) 5 1 @Eq. ~25!# by a Neumann condi-
tion

]c

]r
U
r 5 S~t!

5 0, ~38!

where S(t) indicates the expanding outer boundary of the shell. To track the time-
dependent computational domain, a Lagrangian coordinate is advantageous~Arefmanesh
and Advani 1991!

y 5 r32R~t!3. ~39!

In terms of y, the computational domain is once again time-independent. An added
benefit is that the material derivatives in the gas diffusion equation and constitutive
equations are computed directly and no spatial differentiation or upwinding is necessary.
A new difficulty arises, however, from they-mesh. As the bubble and shell expand, the
y-grid is carried along, resulting in a squeezing of the corresponding mesh in the physical
domain. This causes the time step to drop rapidly in an explicit scheme. We have cir-
cumvented this difficulty by periodically coarsening they-grid for the gas-diffusion equa-
tion @Eq. ~20!#. The constitutive equations contain no spatial derivative and require no
coarsening; in fact, a fine mesh is necessary to resolve thetuu boundary layer at the
bubble. As an example, Fig. 5 plots the growth curve of a bubble in a shell computed on
two different meshes. Convergence with mesh refinement is evident. Initially, the shell-
to-bubble radius ratio isS/R0 5 20. At the end, this ratio has dropped to a mere 1.033,
indicating the severe squeeze that the melt was subjected to. Also shown in Fig. 5 is the
growth curve of a bubble in an infinite sea of melt under the same conditions. For some

FIG. 5. Bubble growth in a shell of Oldroyd-B fluid. The shell has an initial radiusS 5 20R0 , R0 being the
initial bubble radius. The dimensionless parameters are: Pa* 5 1, Re5 1026, Ca5 2.5, b 5 0.1,
k* 5 0.01, A* 5 9.9, and De5 100. Because of the nonuniformity of the mesh, increasingN from 401 to
501 reduces the minimum grid size at the bubble by nearly a factor of 3. The growth curve in an infinite sea of
melt is also shown for comparison.
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intermediate period (2, t , 5), the bubble in the shell grows faster than that in an
infinite melt. This is because the stress profiles have developed by then, and the addi-
tional contribution from the far-away melt to the stress integral@Eq. ~18!# hampers the
growth in an infinite melt. Later, the trend is reversed because the finite amount of
blowing agent dissolved in the shell is being exhausted. The bubble in the shell eventu-
ally approaches an equilibrium size.

C. Effects of viscoelasticity

With the model and numerical method properly validated, we turn now to the physical
question of the effect of melt viscoelasticity on bubble growth. There seems to be a
consensus in the literature that viscoelasticityenhancesbubble growth, for a single
bubble in an infinite sea of melt~Street 1968; Han and Yoo 1981; Veneruset al. 1998! as
well as in the cell model~Arefmanesh and Advani 1991; Rameshet al. 1991!. Yet, this
contradicts the intuition informed by experiments that increasing the ‘‘melt strength,’’ by
way of increasing the molecular weight~MW! or adding a high-MW foaming aid, pro-
duces smaller and more uniform bubbles~Sandleret al. 2000; Azimipour 2002!.

There are in fact two layers to this question. The first is the effect of the Deborah
number De~or dimensionless relaxation time! within the theoretical framework of a
certain constitutive equation. The second is the relevance of this effect to the actual
process of polymer foaming. To address the first, we systematically varied De using the
Oldroyd-B model while keeping the other dimensionless parameters unchanged. This
amounts to changing the relaxation time of the polymer melt alone. The results, shown in
Fig. 6, reveal an interesting crossover. For a small De, a bubble grows faster than in a
Newtonian melt with the same viscosity. With increasing De, the growth is faster initially,
but is suppressedat some later time and falls below the Newtonian curve. Furthermore,
the larger De is, the later the suppression occurs.

Viscoelasticity affects bubble growth via the normal stress integral in the momentum
equation@Eq. ~18!#. The expansion of the bubble subjects the melt to a biaxial extension,
producing a positivetuu and a negativet rr , both opposing the bubble growth. The
tensile stresstuu is greater than the compressive stressut rr u by over two orders of

FIG. 6. Effects of De on bubble growth in an infinite expanse of Oldroyd-B melt. All other parameters are the
same as in Fig. 5.
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magnitude. Thus, the viscoelasticity is manifested mainly bytuu . As mentioned before,
tuu develops a steep boundary layer at the bubble, and Fig. 7 plots the temporal evolution
of tuu at the bubble surface for three different De. A larger De corresponds to a longer
relaxation timel. Thus,tuu grows more slowly after the onset of deformation, but attains
a higher maximum value at a time roughly equal to the relaxation time. The crossover in
Fig. 6 is simply because the polymer stress takes time to build up~Bousfieldet al.1988!.
A crossover takes place in cell-model calculations as well~Fig. 8! if the shell contains
sufficient dissolved gas to sustain bubble growth over a period longer thanl. A similar
behavior was reported by Bousfieldet al. ~1986! for the growth of capillary instability on
viscoelastic filaments. Previous computations on bubble growth missed it mostly because
they were not carried on long enough. Possible inaccuracy due to poor mesh resolution
may also have masked the crossover.

FIG. 7. Evolution of the tensile stresstuu on the bubble surface at different De. Since the same diffusion time

scaleR0
2/D is used to construct De and the dimensionless timet, tuu attains a maximum att ' De.

FIG. 8. Effects of De on bubble growth in a shell of Oldroyd-B melt. All other parameters are the same as in
Fig. 5.
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The second issue is the practical relevance of the viscoelastic behavior discussed
above. The relaxation time for polymer melts used for foaming is typically on the order
of seconds. The process time for extrusion and molding easily exceeds 10 s~Han and Yoo
1981; Rameshet al. 1991!. This is long enough for the stiffness of the polymer chains to
be felt, and for the crossover to be practically significant. In reality, however, it is im-
possible to increase the relaxation time of the melt while keeping its viscosity unchanged.
With increasing molecular weightM, the viscosity increases asM3.4 ~Doi and Edwards
1986, p. 237!, and would easily overwhelm the initially soft reaction of longer molecules.
This is demonstrated in Fig. 9. Curves~a! and ~b! differ only in De and a crossover
occurs. Curve~c! corresponds to a doubledM; the higher viscosity dampens bubble
growth and prevents a crossover with curve~a!. The common practice of adding a
high-MW additive to increase melt strength~Sandleret al. 2000; Azimipour 2002! has a
similar effect. This is modeled by including a second Oldroyd-B mode, with a longer
relaxation time, in the polymer stress

trr21De2S dt rr 2

dt
1

4R2Ṙ

r 3 t rr 2D 5 24b2

R2Ṙ

r 3 , ~40!

tuu21De2S dtuu2

dt
2

2R2Ṙ

r 3 r uu2D 5 2b2

R2Ṙ

r 3 . ~41!

With increased viscosity, curve~d! in Fig. 9 shows that the second mode diminishes the
rate of bubble growth, as has been documented in experiments~Sandleret al. 2000!. The
longer relaxation time of the second mode does not cause a crossover with curve~a!.

IV. CELL SIZE DISTRIBUTION

To predict the final cellular structure of a foam, one needs to integrate the two pro-
cesses discussed separately in the preceding sections: bubble nucleation and growth. The

FIG. 9. Effects of the polymer molecular weightM and a high-MW additive on bubble growth in an infinite
expanse of melt.~a! De 5 100; ~b! De 5 200; ~c! De 5 200 withM doubled and the viscosity increased by a
factor of 23.4; ~d! with a second mode added to~a!: De2 5 200,b2 5 2. All other parameters are the same as
in Fig. 5.
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only such efforts, as far as we know, have come from Flumerfelt and coworkers~Shafi
et al., 1996, 1997; Joshiet al. 1998!. They used the classical nucleation theory to esti-
mate the nucleation rate, and determined the initial bubble radiusR0 . Rcr as the
‘‘upper bound of the critical region’’~Shafi and Flumerfelt 1997!. Simultaneous nucle-
ation and growth is modeled by introducing an ‘‘influence volume’’ surrounding a bubble
inside which the gas concentration is too low for nucleation to occur. Nucleation takes
place only in the residue volume, which dwindles in time to zero as the bubbles and their
influence volume expand. Regardless of their time of birth, all bubbles have the same
initial radius and growth curve, and the final cell size distribution~CSD! is largely a
result of different times of nucleation. For Newtonian melts~Shafiet al. 1996, 1997!, the
predicted CSD does not resemble the lognormal shape indicated by experiments~Han and
Han 1990a; 1990b; Kieken 2001!. In particular, the size distribution function seems to
show a minimum for an intermediate bubble size. With a viscoelastic model~Joshiet al.
1998!, the minimum disappears; the cumulative CSD assumes a smooth tail for smaller
bubbles but still ends abruptly for the largest bubbles. No comparison is made with
experiments.

We believe that the failure to predict a realistic CSD is due to their nucleation model.
First, it is well known that the classic nucleation theory grossly underpredicts the nucle-
ation rate~Saunders 1991!, and does not apply to polymer foaming processes where
nucleation is dominated by particulate impurities or added nucleating agents. In addition,
Shafi and Flumerfelt’s~1997! perturbation procedure for deriving the initial conditions
for bubble growth is in error. As described in Sec. II, our nucleation model is based on
bubble formation from pre-existing microvoids on solid particles, with an initialR0
determined by the size of the solid particle@Eq. ~1!#. But our treatment of simultaneous
nucleation and growth, via the primary and secondary bubbles@Eq. ~2!#, is in fact in-
spired by the influence volume of Shafiet al. ~1996!.

Since the nucleation rate for secondary bubbles depends on the blowing agent con-
centrationcs(t) in the vicinity of the nucleating site, andcs(t) in turn depends on the
growth of the primary bubble, we need to compute the growth curves for the primary
bubbles. This task has two prerequisites: the initial radiusR0 for the primary bubble, and
a means to account for neighboring bubbles competing for the dissolved gas. For the first,
an initial size distribution forR0 can be obtained if the solid particle size distribution is
known. For the second, we use the cell model~Amon and Denson 1986; Arefmanesh
et al. 1990; Koopmanset al., 2000!. By assuming that the cells are spherical and uni-
formly distributed in space, we can determine the amount of melt assigned to each
bubble, primary and secondary alike, if the total number of bubbles is known. Thus, both
prerequisites require experimental input in the end, a consequence of the phenomenology
introduced into Eqs.~1! and ~2!.

For this purpose, we will use the foam extrusion experiment of Kieken~2001!. The
polymer is a commercial polystyrene and the blowing agent is a hydrochlorofluorocarbon
HCFC-142b. Talc particles of a known size distribution are added as nucleating agents,
and the mixture is extruded at temperatures ranging from 130 to 150 °C. The expansion
of the foam is recorded as a function of the distance from the die exit. The final bubble
number density and size distribution are determined by microscopically examining the
solidified foam; the measured CSD will serve as the benchmark for our prediction. The
talc particle size distribution~PSD! is well represented by a lognormal distribution, as is
usually the case for powders produced by crushing and grinding~Filio et al., 1994!
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cp~Rp! 5
1

A2psRm
p

expF2 ~ln Rp2ln Rm
p !2

2s2 G, ~42!

with Rm
p 5 1.028mm, s 5 1.094. The cumulative particulate size distribution is written

in terms of the error function

Yp~Rp! 5
1

2F11erfSln Rp2ln Rm
p

&s
DG. ~43!

Using Eq.~1!, cp(Rp) andYp(Rp) easily translate to an initial size distribution for the
primary bubbles

c0~R0! 5
1

A2psRm

expF2 ~ln R2ln Rm!2

2s2 G, ~44!

Y0~R0! 5
1

2F11erfSln R2ln Rm

&s
DG, ~45!

where Rm 5 eRm
p @cf. Eq. ~1!#. Since only particles larger than a threshold (Rp

. Rcr /e) nucleate viable bubbles (R0 . Rcr), the PSD tail for finer particles does not
contribute to the foaming process. Thus,c0 andY0 differ from the true initial CSD by
the small bubbles (R0 , Rcr) that are never nucleated. Thanks to the large disparity
between the average particle size andRcr ~given below!, however, this difference is
negligible.

From Kieken’s~2001! data on foam expansion and the final bubble number density,
we determine the amount of melt for each bubble, which produces an initial radius of the
polymer shell S0 5 22.43R0 . The material properties and processing conditions in
Kieken ~2001! give the following dimensional parameters:P0 5 5.243106

Pa, Pa 5 1.013105 Pa, s 5 0.03 N/m, ms 5 0, mp 5 6.613104 Pa s,
r 5 1168.5 kg/m3, k 5 2.4531025 s2/m2, A 5 2.9331025 s2/m2, andl 5 1.65 s.

FIG. 10. Growth curves for the primary bubbles computed using the Kieken’s~2001! experimental parameters
for threeR0 values.
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The diffusivity of HCFC-142b in polystyrene is found in Albouyet al. ~1998!: D 5 3
310213 m2/s. Bothl andmp reflect the amount of dissolved blowing agent in the resin.
The foaming time isT 5 3.68 s, long enough for the viscoelasticity of the material to be
manifested. Under these conditions, the critical bubble radius isRcr 5 1.17
31022 mm.

We have chosen some 30 values ofR0 , from Rcr to several microns, and computed the
growth curvesR 5 R(R0 ,t) as in Sec. III B. Three examples are shown in Fig. 10. The
growth curves generally exhibit two interesting features. First,R is not very sensitive to
R0 . R0 enters the calculation through Eqs.~13! and ~15!. Since typically
Pa @ 2s/R0 , R0 has only a small effect onPg(0) and henceR(t). This suggests that a
primary bubble cannot dominate the neighborhood of a solid particle as Rameshet al.
~1994a! surmised, and that nucleation continues while the primary bubble grows@cf. Eq.
~2!#. Second, the bubble growth tends to reach an upper bound towards the end of the
simulation, with the effect of narrowing the size distribution of the primary bubbles. This

FIG. 11. ~a! Gas concentration profile at the end of the run,t 5 3.68 s and R 5 72.34mm, for
R0 5 1 mm. ~b! Temporal decline of the gas concentrationcs(t) at the outer edge of the shell.
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is evidently because the blowing agent dissolved in the shell is being exhausted. Figure
11 shows a typical gas concentration profile in the shell at the end of the simulation as
well as the decline of the gas concentration at the outer edge of the polymer shell.

For determining the nucleation rate of the secondary bubbles, we identify the gas
concentration at the outer edge of the polymer shell, plotted in Fig. 11~b!, with cs(R0 ,t)
in Eq. ~2!. Now we can calculate the CSD of the foam using the initial size distribution
of the primary bubblesc(R0) @Eq. ~44!#, their growth curvesR(R0 ,t) ~Fig. 10!, and the
nucleation rate of secondary bubblesQ(R0 ,t) @Eq. ~2!#. If the total number of solid
particles isNp , then the number of primary bubbles with radius betweenR0 and R0
1dR0 is Npc(R0)dR0 . Over timedt, the number of secondary bubbles produced near
these primary bubbles is (Qdt)Npc(R0)dR0 . Thus the total number of bubbles in the
final foam is

Mtotal 5 E
Rcr

` F11
gD

R0
2 E

0

T
cs~R0 ,t !dtGNpc~R0!dR0

5 Np@12Y0~Rcr!#1NpgDE
Rcr

` S E
0

T
cs~R0 ,t !dtD c~R0!

R0
2 dR0 , ~46!

with the two terms representing the number of primary and secondary bubbles, respec-
tively. Note thatc(R0) depends on the phenomenological constante via Rm . We have
tested several values ofe in the range of 0.1 to 0.5. For each, we equateM total to the
measuredtotal number of cells to determine the growth rate constantg. Results show that
g increases withe from roughly 0.01 to 0.1. This is easily understandable since a larger
e activates smaller particles for nucleation. This shifts the most productive particles with
Rp just aboveRcr /e, toward the tail of the PSD. With the number of most productive
particles diminished, a largerg is required to produce the same number of secondary
bubbles. Withe increasing from 0.1 to 0.5, the fraction of small inviable bubbles ne-
glected in Eqs.~44! and ~45! drops from 2.3 to 0.027%.

Using theg value for eache, we calculate the number of bubblesM (R̄) below a

certain radiusR̄. Then the cumulative CSD of the foam is simply

Y~R̄! 5 M~R̄!/Mtotal. ~47!

Figure 12 illustrates the bubble growth curves from a range of initial radii. LetR̄ corre-

FIG. 12. Schematic showing the procedure for calculatingM (R̄) using the growth curves.
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spond to a primary bubble with an initial radiusR̄0 : R̄ 5 R(R̄0 ,T). Bubbles smaller

thanR̄ at the end of foaming fall into two groups:~I! those that have originated from an

initial radius R0 , R̄0 , and ~II ! those that have an initial radiusR0 . R̄0 but have
been born late. The first group, indicated by the lighter area in Fig. 12, consists of
primary bubbles, which have grown for the entire timeT, and secondary bubbles that are
nucleated after the inception of foaming and thus have grown for shorter periods of time.
The total number of bubbles in group I can be calculated in a similar fashion to Eq.~46!

MI 5 E
Rcr

R̄0F11
gD

R0
2 E

0

T
cs~R0 ,t !dtGNpc~R0!dR0

5 Np@Y0~R̄0!2Y0~Rcr!#1NpgDE
Rcr

R̄0S E
0

T
cs~R0 ,t !dtD c~R0!

R0
2 dR0 . ~48!

Group II contains secondary bubbles only since a primary bubble starting from an initial

radiusR0 . R̄0 will have grown beyondR̄ at t 5 T, and thus will not be counted in

M (R̄). Furthermore, these secondary bubbles have to be so young that they have not had

time to grow beyond the radiusR̄ by the end of foaming. More specifically, for each

growth curve originating from an initial radiusR0 . R̄0 , we can find a timet , T

such thatR̄ 5 R(R0 ,t) ~cf. Fig. 12!. Then the secondary bubbles with initial radiusR0

and final radiusR , R̄ must not have grown for longer thant. In other words, they must
have nucleated in the intervalT2t < t < T. Thus, the number of bubbles in group II
can be calculated as

MII 5 NpgDE
R̄0

` S E
T2t~R0!

T
cs~R0 ,t !dtD c~R0!

R0
2 dR0 . ~49!

The total number of bubbles belowR̄ at the end isM (R̄) 5 M I1M II .
Using the above procedure, the cumulative cell size distribution is calculated, and Fig.

13 compares those for twoe values with the measured cumulative CSD att 5 3.68 s.

FIG. 13. Comparison between the cumulative CSD measured by Kieken~2001! and our model predictions
usinge 5 0.1 and 0.5. ‘‘Linear’’ refers to the nucleation rate in Eq.~2! whereas ‘‘quadratic’’ refers to Eq.~50!.
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The predicted distributions present a few interesting features. First, the median bubble
radius agrees with the measurement to remarkable accuracy; the experimental value
Rm 5 60mm is only about 8% larger than the predictionsRm 5 55.3– 56.4mm. The
only ‘‘free parameter’’ of the model ise, the ratio between the size of an initial bubble
and the particle that has produced it. For the same nucleating particles, a largere in-
creases the initial and thus the final bubble size. But increasinge from 0.1 to 0.5, a
reasonable range considering the probable size of cavities on the particle~cf. Fig. 1!, has
only a very weak effect onY(R); it shifts the lower portion of the CSD slightly toward
largerR. This is becauseR is relatively insensitive to the initial radius as noted before.
Thus our theory predicts the median bubble size to within 8% essentially without the help
of fitting parameters. Considering the large number of parameters and the complexity of
the experimental conditions, this degree of agreement is perhaps fortuitous. For instance,
the rheology of the gas-containing melt depends on the gas concentrationc and the
temperature. Both experience large variations in the actual extrusion, which are not
accounted for in the constitutive model.

The second feature is that the theoreticalY curves have two distinct parts. The gently
sloped lower portionY , 0.8 is due mainly to the nucleation of secondary bubbles,
whereas the steep upper portion is due to the growth of the primary bubbles. As compared
with the experimental CSD, the predicted size distribution is too wide in the lower
portion but too narrow in the upper portion. The prevalence of small secondary bubbles
in the CSD is a result of late nucleations. Whereas our nucleation rate in Eq.~2! declines
linearly with cs @cf. Fig. 11~b!#, nucleation drops off more drastically in the experiment
once bubble growth is underway. The linear model is based on considerations of bubble
growth before detachment. In dimensionless terms, the far-field concentrationc0 enters
k* @Eq. ~35!#, which affects the bubble mass balance@Eq. ~19!# and the boundary con-
dition for gas concentration outside the bubble@Eq. ~24!#. From Eq.~19!, one reasons that
the time needed for a bubble to gain a certain mass scales inversely withc0 . ThusQ is
made linearly proportional tocs in Eq. ~2!. The fact that this linear relationship under-
estimates the suppression of nucleation by a decliningcs is not entirely surprising since
k* also affects]c/]r ur 5 R in Eq. ~19! via the boundary condition in Eq.~24!. A lower
cs or larger k* raises the gas concentration outside the bubble for the same bubble
pressure, and thus reduces]c/]r and the mass diffusion into the bubble. This can be a
considerable effect, but it is not obvious how to model it. We have tested a nucleation rate
with a quadraticdependence oncs :

Q 5 g
Dcs

2

R0
2 . ~50!

This indeed narrows the lower portion of the CSD in Fig. 13 and brings it closer to the
experimental curve. One must note that the distinction of primary and second bubbles is
somewhat artificial, andQ depends on the collective effect ofall bubblesthat are con-
suming the blowing agent in the neighborhood. Thus, Eq.~50! demonstrates the correct
trend but is far from a perfect model; a more rational approach to theQ ; cs relationship
is needed.

Toward the other end of the CSD, the narrow distribution for the primary bubbles is
directly related to the upper bound forR(t) in Fig. 10, and is therefore a consequence of
the cell model. It is not clear how well this upper bound represents reality, where bubbles
deform into polyhedra separated by a network of polymer films. Furthermore, bubble
coalescence may have occurred in the later stage of foaming in the experiment, causing
the CSD to broaden for the largest bubbles.
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V. CONCLUSION

In this study, we aim to accomplish three tasks, which, along with their respective
outcome, are summarized below.

~i! To formulate a nucleation model that highlights the role of nucleating agents. We
combine elements of the Rameshet al. ~1994a! nucleation model and classical boiling
theory to form a picture of pre-existing microbubbles growing and detaching from solid
particles. Continuous nucleation is modeled by assuming a detachment time that scales
with the diffusion time. The effect of decreasing gas concentration on the nucleation rate
is also incorporated.

~ii ! To clarify the role of viscoelasticity in bubble growth in a polymer melt. If the
process time is shorter than the relaxation time of the polymer, melt strength is not fully
exhibited and this has led previous researchers to conclude that viscoelasticity enhances
bubbles growth. In typical foam molding and extrusion operations, however, the process
time is long enough for the polymer chains to be substantially extended. Then the el-
evated elongational viscosity tends to suppress bubble growth. The well-known effect of
high molecular-weight additives to produce smaller bubbles, however, has to do with an
increased zero-deformation viscosity rather than viscoelasticity.

~iii ! To integrate bubble nucleation and growth and predict the final cell size distribu-
tion. The predictions are in reasonably good agreement with experimental measurement.
The prevalence of small bubbles in the theoretical CSD suggests that our nucleation
model under-estimates the effect of older bubbles to inhibit further nucleation. On the
other hand, the larger bubbles have too narrow a distribution, probably due to the lack of
coalescence in the model.

We close by emphasizing the limitations of this work. The treatment of simultaneous
nucleation and growth via the concept of primary and secondary bubbles needs to be
improved so the two factors merge into each other more smoothly than in Fig. 13.
Underlying this inadequacy are the limitations of the cell model. By reserving a fixed
amount of virgin melt for each primary and secondary bubble, the cell model assumes
that a bubble’s growth is determined by its immediate neighborhood and the melt farther
out remains saturated until a bubble nucleates there. In reality, however, younger bubbles
will have a smaller supply of dissolved gas. Thus, our using the same growth curve for all
bubbles is self-consistent within the cell model but may not reflect reality. Making the
nucleation rateQ depend on the gas concentrationcs @Eqs.~2! and ~50!# in fact breaks
away from the cell picture. A fundamental resolution of these issues calls for a direct
simulation of a multibubble system with simultaneous nucleation and growth.

The Oldroyd-B model is only a qualitative representation of the melt viscoelasticity
during biaxial extension~Khan and Larson 1987!. Furthermore, it does not reflect evolv-
ing degrees of plasticization and a changing temperature in real processes, both influen-
tial determinants of the melt rheology. Geometrically, the modeling is restricted to a
single spherical bubble. Thus, bubble-bubble interactions, including deformation and coa-
lescence, are not properly accounted for. Finally, spatial homogeneity is assumed so the
macro-scopic spatial variations in pressure, temperature, flow velocity, and bubble distri-
bution are not considered~Arefmaneshet al. 1990; Koopmanset al. 2000!. These issues
present an interesting array of opportunities for future work.
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