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Determining BPP is one of the critical parameters for developing oil and 
gas reservoirs, and has this parameter requires a lot of time and money.. As 
a result, this study aims to develop a new predictive model for BPP that uses 
some available input variables such as solution oil ratio (Rs), gas specific 
gravity (γg), API Gravity (API). In this study, two innovatively combined 
hybrid algorithms, DWKNN-GSA and DWKNN-ICA, are developed to 
predict BPP. The study outcomes show the models developed are capable 
of predicting BPP with promising performance, where the best result was 
achieved for DWKNN-ICA (RMSE = 0.90276 psi and R2 = 1.000 for the 
test dataset). Moreover, the performance comparison of the developed 
hybrid models with some previously developed models revealed that the 
DWKNN-ICA outperforms the former empirical models concerning 
perdition accuracy.  In addition to presenting new techniques in the present 
study, the effect of each of the input parameters on BPP was evaluated using 
Spearman's correlation coefficient, where the API and Rs have the lowest 
and the highest impact on the BPP. 
 

Introduction 

The phase behavior and volumetric changes of reservoir fluids, typically multiphase, are a 
function of the pressure and temperature of the reservoir and the composition of fluid. During 
the petroleum recovery period, the temperature of the reservoir is often maintained at an 
approximately constant value. Bubble point pressure (BPP) is the pressure at which the first gas 
bubble appears at a certain temperature [1], that is regarded as one of the critical parameters in 
reservoir engineering since it is used to assess the basic parameters of the reservoir necessary 
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for development, completion and optimization of oil and gas fields [2-6]. This property can be 
obtained in two ways: a) using experiments and sampling from bottom hole, b) or through 
experimental equations where the information related to these equations is gathered from field 
data [7]. Reservoir properties can be obtained through laboratory tests using the PVT test, which 
in turn is time-consuming, costly, and also the necessary conditions for this must be provided. 
For this reason, to avoid the cost and time-consuming nature of these laboratory tests, field data 
are used to predict bubble point pressure because these field data are taken routinely, quickly, 
and cheaply. However, Laboratory devices and conditions are not always available (sampling 
for testing and PVT test) [8]. Due to the great importance of developing and completing oil and 
gas fields, one of the tasks that have been done in recent years is applying field data to calculate 
and predict, as well as to determine the parameters used in the oil and gas industry, for example 
in The following areas have been addressed: reservoirs [9]; formation damage [10], wellbore 
stability [11], rheology and filtration [12], production [13-15]; drilling fluid [16-20], nano clay 
[21], well blowout [22], carbon dioxide-nitrogen gas mixtures [23-30]. 
 

Literature Review 

In the oil and gas industry, predictions are made to obtain valuable information using a large 
amount of routine data, primarily to obtain the properties of oil and gas fluids. Some researchers 
have also used a series of equations derived from the equation of state (EOS) to get this valuable 
information [31-33]. 

Due to the high importance of PVT determination from 1940 onwards, many researchers 
have begun to predict and determine many equations. First in 1947, Standing  [34] established 
two correlations to predict oil formation volume factor (OFVF) and BPP with input data 
parameters temperature (T), solution gas-oil ratio (Rs), gas specific gravity (γg) and oil density 
(API) which were obtained using the laboratory analyzes carried out on 105 Data set from 22 
different samples of crude oils obtained from California. 

Then, in 1980 Glaso [35] used 45 oil samples from the North Sea region to predict 
correlations to determine  BPP and several other parameters (OFVF, Rs, and dead oil viscosity 
(µOD)) where an average error of  20.43% was reported for BPP prediction. In 1988 Al-Marhoun 
[36] proposed two correlations for predicting BPP and OFVF. He used Middle Eastern crude 
oil using 160 data records from oilfields across the region. 

In 1992, Dokla and Osman [37] presented an equation based on Al-Marhoun equations using 
51 UAE crude oil test data to predict BPP. a year later, in 1993,  Macary and El-Batanoney [3] 
provided equations for the BPP prediction, using previously proposed by Saleh et al. [38], 
Petrosky and Farshad [38] presented some equations for predicting BPP, Rs, and OFVF using 
90 well-test data records from the Gulf of Mexico (U.S.A.). All the above-mentioned 
experimental equations are reported in detail, and the publication date and the number of data 
used in Table 1. 

In recent years, many researchers have applied artificial intelligence to predict desired 
parameters in the different sectors of the oil and gas industry [39, 40]. 

Studies have shown that the accuracy of empirical equations for crude oils in a region is low, 
but crude oils of different geographical areas with different compositions may not be accurately 
predicted by empirical correlations and cause a substantial error [41, 42]. As a powerful tool, 
artificial intelligence have been widely used for forecasting PVT and other parameters in 
various sectors of oil and gas industry.  For instance, in 1999, Gharbi et al. [43] using 5200 
laboratory PVT analysis on 350 different crude oils using artificial neural network (ANN) 
model with error rate APD = -2.13%, AAPD = 6.48%, SD = 7.81 and R2 = 0.9891. 
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In 1999, 2002 and 2003 Boukadi et al. [44], Al-Marhoun & Osman [45] and Goda et al. [35] 
using 92, 282 and 160 data for predicted BPP using artificial neural network (ANN) model was 
used where the error rate of APD% = 645, -0.2215, -0.0078, AAPD% = 6.50, 5.8915, 0.03070, 
SD = -, 8.6781, - and R2 = 0.99, -, 0.9981 of region Oman, Saudi and Middle East.  Rafiee-
Taghanaki et al. [46] used the ANN and LSSVM methods to establish a mopdel for BPP 
prediction, where the best results showed APD = -0.36%, AAPD = 5.06%, RMSE = 146.62, 
and R2 = 0.98.   

In 2013, Salehinia et al. [47] used the NARX-HW, ANFIS-GP, and ANFIS-FCM methods 
for training the BPP prediction model using 755 data collected from Iran. Their best results 
presented APD = -0.97%, AAPD = 15.06% and R2 = 0.94. Seyyedattar et al. [48], utilized 
LSSVM-CSA and ANFIS methods for establishing a prediction model for BPP using ; where 
the best results reported displayed APD = -0.267%, AAPD = 0.917% and R2 = 0.9962. most 
recently, in 2020, 79 data collected from Iran was used by  Ghorbani et al. [49] for developing 
some BPP prediction models by employing different methods, including   MLP, RBF-GA, 
CHPSO-ANFIS, and LSSVM methods. Where the CHPSO-ANFIS model showed the best 
result that included APD = 0.846, SD = 0.0126, for RMSE = 43.21 and R2 = 0.9902. 

Table 1. Empirical correlations used to predict bubble point pressure (BPP) [49-51] 

Author Date Origin 
Error 

parameter 

Data 

No. 
Correlation 

Standing [34] 1947 California APD% = 4.8 105 
Pb = a1 ∗ [(Rsγg)a2 ∗ 10a3∗T−a4∗API − a5] 
a1=18.2, a2=0.83, a3=0.00091, 

a4=0.0125, a5=1.4 

Glaso [35] 1980 North Sea 
APD% = 1.8 
SD = 6.98 

41 

Pb = 10a1+a2∗log(G)−a3(log(G))2 G = (Rsγg)a4 ∗ Ta5 ∗ APIa6 

a1=1.7669, a2=1.7447, a3=0.3021, 
a4=0.86, a5=0.172, a6=-0.989 

Al-Marhoun 
[36] 

1988 
Middle 
East 

APD% = -0.01 
SD = 1.18 

160 

Pb = a1 ∗ Rsa2 ∗ γga3 ∗ γoa4∗ (T + 460)a5 
a1=0.00538, a2=0.715082, a3=-1.8774, 

a4=3.1432, a5=1.326 

Dokla & 

Osman [37] 
1992 UAE 

APD% = 0.45 

SD = 10.37 
51 

Pb = a1 ∗ Rsa2 ∗ γga3 ∗ γoa4∗ (T + 460)a5 
a1=0.83638E4, a2=0.724047, a3=-
1.01049, a4=0.107791, a5=-0.95258 

Macary & 
El-Batanony 

[3] 

1993 
Gulf of 
Suez 

APD% = 7.04 
 

90 

Pb = a1K[Rsa2 − a3] 𝐾 = 𝐸𝑋𝑃[a4T − a5γo − a6γg] 
a1=204.257, a2=0.51, a3=4.7927, 
a4=0.00077, a5=0.0097, a6=0.4003 

Petrosky & 

Farshad [38] 
1993 

Gulf of 

Mexico 

APD% = -0.17 

SD = 2.56 
90 

Pb = a1 ∗ [Rsa2 γga3⁄ ∗ 10X − a4] X = a5 ∗ Ta6 ∗ a7APIa8 
a1=112.727, a2=0.5774, a3=0.8439, 
a4=12.340, a5=4.561e-5, a6=1.3911, 

a7=7.916e-4, a8=1.5410 

 
In this study, two hybrid models, DWKNN-ICA and DWKNN-GSA, were developed for 

BPP prediction by innovatively combining the DWKNN with two optimization algorithms, the 
ICA and GSA. To evaluate the accuracy performance of two hybrid models developed, the 
computational error for the DWKNN-ICA and DWKNN-GSA in BPP prediction was compared 
to those of five previously established artificial-intelligence-based empirical models. The 
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results obtained demonstrate that the DWKNN-ICA and DWKNN-GSA can predict the BPP 
with significantly high accuracy that was much higher than those of the other previously 
proposed empirical models listed in Table 1. To authors' best knowledge, the developed hybrid 
models in the present study have not been applied for BPP prediction so far. The impressive 
performance and accuracy observed for the DW KNN-ICA and DW KNN-GSA models in BPP 
prediction suggest potential employment for prediction of other parameters. 

Methodology 

Work Flow 

A quick and eye-catching view of the whole article is one of the best and most important 
methods for readers to present using workflow (Fig. 1). In this method, in order to determine 
the minimum and maximum, data must be normalized and then presented for input to the 
network (Eq. 1). Fig. 1, with a quick overview of the workflow for the paper presented in this 
study is that, 70% of the data were used for training and 30% of the data for testing in this study. 
To optimize the prediction, inputs were used to find better outputs from machine learning and 
deep learning. To avoid data range biases in the calculations, the variable values of all data 
records are normalized to a scale between -1 and +1 for their entire dataset distributions 
applying Eq. 1. 𝑥𝑖𝑙 = ( 𝑥𝑖𝑙 − 𝑥𝑚𝑖𝑛𝑙𝑥𝑚𝑎𝑥𝑙 − 𝑥𝑚𝑖𝑛𝑙) ∗ 2 − 1    (1) 

where 𝑥𝑖𝑙 represents the value of attribute 𝑙 of data record i, 𝑥𝑚𝑖𝑛𝑙 and  𝑥𝑚𝑎𝑥𝑙 are the minimum 
and maximum values of the attribute 𝑙 among all the data records.    

 

Fig. 1. Schematic diagram of the workflow sequence applied for comparing the prediction performance of 
machine learning algorithms and empirical models 
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Machine Learning Algorithm 

Today, artificial intelligence is rooted in various industries and sciences and has found 
several of applications in various fields. The oil and gas industry has long been the focus of the 
whole world, and the reason is that the extracted oil and gas have changed the world. Many 
people did much work to optimize and find important and key parameters in the oil and gas 
industry, including: reservoir characterization [9, 49, 52]; production characterization [53-57]; 
drilling characterization [58-61]; fluid processing [62-64].  

Artificial Neural Network 

Distance-Weighted K-nearest Neighbor (DWKNN) algorithm 

K-nearest neighbor (KNN) non-parametric, well-constructed, and data mining algorithm, 
which is known to be simply implemented [65]. This algorithm, a supervised method of 
machine learning, finds a group of K samples in the training subset closest to the testing sample 
than all training data in the data record, and calculates the average value of this K sample, and 
considers it as the estimated value. Three key points of this method are: i) a set of samples with 
labeled output data ii) a similarity or distance unit for calculating the distance between two 
samples iii) a K value to determine the number of neighborhoods. In DWKNN algorithm, for 
each testing sample, each sample of K set, based on how far it is from the testing sample, is 
given as a coefficient for the sample, so that if Indeed, this coefficient determines the magnitude 
of influence of the sample on the prediction output, farther samples have less influence on the 
output while closest samples have the greatest impact [66]. First, the distance between the test 
sample and all the training samples is calculated using Eq. (2).  

𝐷𝑖 = (∑|𝑋𝑖𝑗 − 𝑋𝑗|2𝑀
𝑗=1 )1 2⁄  , 𝑖 = 1,2, … ,𝑁 (2) 

where 𝐷𝑖 is the Euclidean distance between the test sample and training sample, M stands for 
the number of features, 𝑁 is the number of samples, 𝑋𝑖𝑗 and 𝑋𝑗 are the training and testing 

samples, respectively. Then, K number sample of the training subset that has the lowest 𝐷𝑖  
values are chosen for estimating the value of dependent variable value for test data record X, 
using Eq. 3.  𝐶𝑝 = 1𝐾∑𝐶𝑡𝐾

𝑡=1  (3) 

where 𝐶𝑝 stands for the dependent variable predicted value for the testing data record, 𝐶𝑡 
represents the values of the dependent variable for the tth nearest neighbor, and K is the number 
of identified nearest neighbors. Eq. 2 is used for KNN method, while in WKNN method, a 
weight is assigned to the dependent variable value of the nearest neighbor according to Eq. 4.  𝑤𝑖 = 1 𝐷𝑖⁄∑ (1 𝐷𝑖⁄ )𝑘𝑗=1  , 𝑖 = 1,2, … , 𝐾 (4) 

where 𝑤𝑖 represents the weight variable of the dependent variable to be excreted for ith nearest 
neighbor using Eq. 5.   Cun =∑wiCik

i=1  (5) 
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Optimization Algorithms 

In this study, gravitational search algorithm and imperialist competitive algorithm, which 
are considered two evolutionary optimization algorithms capable of efficiently searching for 
convincible solution space, are employed to enhance the prediction performance.  

  Gravitational Search Algorithm (GSA) 

In 2009, the GSA algorithm was proposed by Rashedi et al. [67] as a novel algorithm based 
on gravity laws. This algorithm considers the agents as objects that have masses. The agents 
are attracted to each other through gravitational force. The quality of attraction is directly 
related to gravity force, where the stronger the gravity results in, the greater quality [68]. In 
other words, the objects with more massive masses represent a stronger positional solution than 
those of lighter objects. As a result, the agent's position with a heavier mass is regarded as the 
optimal solution space. The fully detailed calculation steps for GSA employment is described 
by [69].  

Imperialist Competitive Algorithm (ICA) 

ICA is a population-based optimization algorithm that is inspired by colonial competition. 
In this algorithm, each population’s individual constitutes a country; some countries are chosen 
as best countries or imperialists and others as poor or colonial countries [70]. The countries of 
the population are indeed possible solutions to the problem. Imperialist countries attract the 
colonial ones by applying assimilation policy in the direction of different optimization axes. 
Imperialist competition along with assimilation policy form the core of the ICA algorithm. This 
algorithm converges towards an optimal solution for its objective function) is through evolving 
by several iterations. The objective function applied is typically mean square error (MSE) to 
avoid getting trapped in local minima. The details of calculation step for employing GSA are 
described by Abdi et al. [71].  

Hybrid Machine learning optimization algorithms 

Two hybrid-optimizer machine learning models were developed and analyzed in this study, 
which are GSA-DWKNN is ICA-DWKNN. Since all the features do not equally influence the 
final solution, a weight coefficient was assigned to each feature to improve the perdition 
accuracy, and these weights were optimized using the optimization algorithms. The flowchart 
that describes the steps of generic implementation for the hybrid optimizer-DWKNN models is 
shown in Fig. 2.  
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Fig. 2. Flow diagram of required implementations steps for the developed hybrid-optimizer machine learning 

models 

The implementation steps of the hybrid-optimizer machine learning models involving are 
described in the following. 

 Selection of the testing and training samples  

First, to assess the performance of the model, the data records were divided into two subsets, 
testing and training subsets. In the KNN method, the selection of the training data is important; 
the more general the selected data, the more the model's prediction accuracy. As a result, the 
training samples were selected so that the selected training subset has a promising uniformity 
in terms of the distance between the data records.   

 Normalization of all data records  

Since each of the features (inputs) to the models may have ranged between different 
numbers, this reneges difference could have a negative effect on the distance criteria that may 
result in a considerable reduction of the model accuracy. To overcome that difficulty, 
normalization was employed as a proper solution. The data were normalized by transferring all 
the features into the fixed two reneges between 0 and 1 and 1 to -1 applying Eq. 6.          𝑥𝑖𝑙 = ( 𝑥𝑖𝑙 − 𝑥𝑚𝑖𝑛𝑙𝑥𝑚𝑖𝑛𝑙 − 𝑥𝑚𝑎𝑥𝑙) ∗ 2 − 1 (6) 

where  𝑥𝑖𝑙 represents 𝑙𝑡ℎ  feature value of 𝑖𝑡ℎsample, 𝑥𝑚𝑖𝑛𝑙 and 𝑥𝑚𝑎𝑥𝑙stand for the minimum 
and the maximum values of the 𝑙𝑡ℎ  feature in the whole data set.  

 Finding the best weights for the features using GSA or ICA optimization algorithms 
First, the distance equation is defined as Eq. 7.      

𝐷𝑖 = (∑𝑤𝑓𝑗|𝑋𝑖𝑗 − 𝑋𝑗|2𝑀
𝑗=1 )1 2⁄  , 𝑖 = 1,2, … ,𝑁 (7) 

Eq. 7 resulted in a new vector, W, that measures the influence of the features on the final 
distance value (see Eq. 8). Then, the optimal values of the weights' vectors were calculated 
using the optimization algorithms.   
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 Finding the nearest neighbor K for all testing data records 

Once the optimal weights' vectors were calculated, K nearest neighbor in all the training 
samples was determined using the trial and error method for each testing data record. In this 
analysis, the best results were achieved when K was assigned to be 8. 

 Determination of weighted predictions for all the testing data  

For each test data record, the weighted predictions were made based on nearest neighbor k, 
applying Eqs. 4 and 5.   

Finally, the prediction accuracy for both models, GSA-DWKNN and ICA-DWKNN, was 
calculated, applying MSE (see Eq. 8).  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 100 −∑|�̂�𝑖 − 𝑦𝑖||𝑦𝑖| ∗ 100𝑁

𝑖=1  (8) 

where �̂�𝑖 and 𝑦𝑖 stand for the predicted and the measured values of 𝑖𝑡ℎ testing data records.  
Tables 2 and 3 list the value of applied control parameters used in the machine learning and 

optimizer algorithms. These values were determined by trial and errors for the analyzed dataset. 
 

Table 2. DWKNN-GSA algorithm parameters. 
GSA parameter's control Value DWKNN algorithm Value 

Euclidean distance adjustment 
factor 

0.1 K-value (number of nearest neighbor)  8 

Gravitational alpha exponent 2   
Maximum number of iterations 100   
Number of initial k-best agent used 3   
Population size 50   
Initial gravitational constant 10   

 
Table 3. DWKNN -ICA algorithm parameters 

ICA parameter's control Value DWKNN algorithm Value 

Selection pressure 1 K-value (number of nearest neighbor)  8 
Revolution rate 0.1   

Colonies mean cost coefficient 0.2   
Number of empires/imperialists 10   
Maximum number of iterations 100   

Revolution probability 0.05   
Assimilation coefficient 1.5   
Population size 50   

 

Data Collection & Data Analysis 

In this study, a data set, a mixture of data samples from different parts of the world, was used 
to determine an optimal model for BPP. The parameters that affect the determination of BPP 
are temperature (T), solution gas-oil ratio (Rs), gas specific gravity (γg), and API. Table 4 
summarizes the statistical distributions of these four data variables for the 567 data records 
compiled, where 398 records were used for training the model and 169 records were used for 
testing. 

Table 4. Data record statistical characterization of the variables in this study 

Parameters Temperature 
Solution 

gas oil ratio 

Gas specific 

gravity 
API 

Bubble point 

pressure 

Units (F) SCF/STB - - psi 

N 
Valid 567 567 567 567 567 

Missing 0 0 0 0 0 
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Mean 193.86 637 1.198 35.10 1931.968 
Std. Deviation 51.99 406 0.455 6.00 1261.449 

Variance 2698.71 164350 0.207 35.93 1588447.707 
Minimum 74 26 0.159 19.4 79.000 
Maximum 306 2496 3.445 56.5 6741.000 

 
There are special diagrams that make it easier to check the normality of data distribution. 

One of these graphs is the normal probability plot. For each data value, the graph shows the 
observed value (X axis) and the percentage of the expected value (when the sample data has a 
normal distribution) (Y axis) (Fig. 3). In the following, the input variables and output variable 
are described: this figure show that T (~ 10% not normal), API (~ 20% not normal) and BPP (~ 
10% not normal) are a normal distribution but γg (~ 70% not normal) and Rs (~ 40% not normal) 
are not normal distribution. This figure shows the mean, Stdv, N, AD and P-value for each 
variable too. 

 
Fig. 3. Probability plot of the variables displayed are: temperature (T), solution gas oil ratio (Rs), Gas 

Specific Gravity (γg) and API and bubble point pressure (BPP) 

Based on Fig. 4, input variables T and API are normal distribution, but the other input 
variables (Rs and γg) and output (BPP) are not normal. This figure also shows approximately 
what data index of the variable has amount content. 

Performance accuracy assessment of the two-hybrid machine-learning-optimization 
algorithms and other empirical equations is computational errors between measured and 
predicted BPP. The statistical measures of prediction accuracy used are percentage deviation 
(PDi), average percentage deviation (APD), average absolute percentage deviation (AAPD), 
standard deviation (SD), mean squared error (MSE), root-mean-square error (RMSE), and 
coefficient of determination (R2). The computation formulas for the statistical accuracy 
measures used are expressed in Eq. 9 to Eq. 16. 
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Fig. 4. Variable value versus dataset index number highlighting the ranges and extreme values associated 

with each variable recorded for the dataset. The variables displayed are temperature (T), solution gas oil ratio 
(Rs), Gas Specific Gravity (γg), API and bubble point pressure (BPP) 

 
Percentage difference (PDi): PDi = ξ(Measured)−ξ(Predicted)ξ(Measured) x100                                                                       (9) 

Average percent deviation (APD): (10) APD = ∑ PDni=1 in                                                                                                      

Absolute average percent deviation (AAPD):   AAPD = ∑ |PDi|ni=1n                                                                                                  (11) 

Standard Deviation (SD):  SD = √∑ (Di−Dimean)2ni=1 n−1                                                                                        (12) Dimean = 1n∑ (ξMeasuredi − ξPredictedi)ni=1                                                         (13) 

Mean Square Error (MSE):  MSE = 1n∑ (ξMeasuredi − ξPredictedi)2ni=1                                                             (14) 

Root Mean Square Error (RMSE):   

where n is a number of data records, 𝑥𝑖 is measured dependent variable value for the ith data 
record and, yi is predicted dependent variable value for the ith data record.  RMSE = √MSE     =√∑ (xi−yi)2ni=1 n                                                                                              (15) 

Coefficient of Determination (R2):  R2 = 1 − ∑ (ξPredictedi−ξMeasuredi)2Ni=1∑ (φPredictedi−∑ ξMeasuredinI=1 n )2Ni=1                                                                 (16) 



Journal of Chemical and Petroleum Engineering 2021, 55(2): 203- 222. 213 

Results and discussion 

BPP is an essential parameter for the development and management of the gas and oil 
reservoir. However, the archive of this parameter does not have economic efficiency, so other 
routine parameters, including T, Rs, γg, and API, can be employed to predict BPP. In this study, 
two innovatively combined methods, DWKNN-ICA and DWKNN-GSA, are applied to 
determine BBP and the performance of those compared with previously developed BPP models. 
Tables 5 to 7 show the performance of the developed hybrid models and some equations based 
on five statical errors established to predict BPP. The statistical error metrics for training and 
testing subsets and the total data set are listed in Tables 5 to 7, respectively. Comparing the 
statistical metrics shown in Tables 5 to 7 demonstrates the lowest error and best accuracy of 
were achieved by DWKNN-ICA (the RMSE = 0.90276 psi and R2 = 1.000 for the test dataset), 
while for empirical models, Standing’s model had an excellent accuracy RMSE = 11.981 psi 
and R2 = 0.8977.  

Table 5. BPP prediction performance compared to the developed hybrid models applied to the training subset 
for the worldwide dataset 

Performance of the developed regression models based on six statistical error metrics for BPP (Train Data) 

Authors APD% AAPD% SD MSE RMSE R2 

Standing -4.123 16.830 4.093 113.701 10.663 0.8295 
Glaso 4.831 21.555 14.799 128.236 11.324 0.8833 
Al-Marhoun 4.831 18.083 4.800 1445.066 38.014 0.3458 
Dokla & Osman -4.531 22.312 4.500 188.302 13.722 0.7041 
Macary & El-Batanony -66.422 68.085 65.762 782.758 27.978 0.7729 
Petrosky & Farshad -37.395 90.987 37.040 1766.964 42.035 0.7408 
DWKNN-GSA 0.041 0.402 0.039 1.429 1.195 0.9092 
DWKNN-ICA 0.003 0.019 0.003 0.324 0.569 0.9342 

Table 6. BPP prediction performance compared to the developed hybrid models to the testing subset for the 
worldwide dataset 

Performance of the developed regression models based on six statistical error metrics for BPP (Test Data) 
Authors APD% AAPD% SD MSE RMSE R2 

Standing -35.603 42.245 35.357 143.546 11.981 0.8977 
Glaso 28.231 31.686 23.780 313.194 17.697 0.9284 
Al-Marhoun 28.231 31.098 28.032 312.021 17.664 0.9073 
Dokla & Osman -16.567 34.034 16.459 186.712 13.664 0.8986 
Macary & El-Batanony -203.191 203.191 201.765 2895.998 53.814 0.8694 
Petrosky & Farshad 12.675 76.582 12.647 1186.880 34.451 0.9250 
DWKNN-GSA 0.471 1.737 0.472 1.035 1.017 0.9270 
DWKNN-ICA -0.081 0.157 0.081 0.815 0.903 0.9583 

 

Table 7. BPP prediction performance to the developed hybrid models applied to the total subset for the 
worldwide dataset 

Performance of the developed regression models based on six statistical error metrics for BPP (Test Data) 

Authors APD% AAPD% SD MSE RMSE R2 

Standing -13.506 24.405 13.389 113.701 10.663 0.8525 
Glaso 11.806 24.575 17.469 128.236 11.324 0.9051 

Al-Marhoun 11.806 21.962 21.866 1445.066 38.014 0.4048 
Dokla & Osman -8.119 25.806 25.913 188.302 13.722 0.7782 

Macary & El-Batanony -107.187 108.355 106.216 782.758 27.978 0.8147 
Petrosky & Farshad -22.471 86.693 22.302 1766.964 42.035 0.8096 
DWKNN-GSA 0.041 0.402 0.041 3.155 1.776 0.9181 

DWKNN-ICA 0.032 0.193 0.030 0.716 0.846 0.9463 

Fig. 5 reveals that the hybrid machine-learning-optimizer models evaluated, DWKNN-GSA 
and DWKNN-ICA, deliver accurate and credible BPP prediction for test data. 
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Figs. 6 and 7 show the relative deviation (%) of empirical equations and the developed hybrid 

models for predicted BPP. Based on these figures for empirical equations and machine hybrid 
models, DWKNN-ICA has a perfect accuracy that the ranges from -0.0001 < PDi < 0.00015. 
They are considering the results provided in Figs. 5 and 6 and Tables 5 to 7 show that the hybrid 
machine models have better accuracy compared to other models. 

 

 

Fig. 5. Cross plot of BPP versus data index for the input variables: hybrid models (DWKNN-GSA and 
DWKNN-ICA) with the four independent T, Rs, γg and API for the worldwide sample 
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Fig. 6. Relative deviation (%) for predicted BPP values compared for all 398 training subset data records and 
169 testing subset records for the empirical models evaluated 

 

Fig. 7. Relative deviation (%) for predicted BPP values compared for all 398 training subset data records and 
169 testing subset records for the two hybrid models evaluated 

Iteration diagrams are used to analyze the BPP prediction as well as to reach an optimal 
RMSE value. As shown in this diagram, 100 iterations were used for this study (Fig. 8). 

Initially, the amount of RMSE for the DWKNN-ICA model is higher than the DWKNN-GSA 
model. However, after iteration 40 onwards, the RMSE value of the DWKNN-ICA model 
becomes less than that of the DWKNN-ICA model. The comparison of RMSE for the 



216 
 

 
developed models suggests that combining the ICA optimizer with DWKNN could make better 
and more accurate BPP predictions than the GSA optimizer. 

 

Fig. 8. Comparison of iterations for two hybrid machine-learning -optimizer methods applied to the training 
subsets 

One of the best and most useful ways to determine each parameter's effect on the prediction 
model's output is Spearman's correlation. For this purpose, Eq. 17 was used to assess each of 
the input variables' impact on the model's output (BPP). 𝜌 = ∑ (𝐻𝑖 − �̅�)(𝑍𝑖 − �̅�)𝑛𝑖=1√∑ (𝐻𝑖 − 𝐻)2∑ (𝑍𝑖 − �̅�)2𝑛𝑖=1𝑛𝑖=1  

(17) 

where Hi  is the value of data record i for input variable H, �̅� is the average value of the input 
variable H, Zi is the value of data record i for input variable Z,�̅� is the average of the input 
variable Z, and, n is the number of data points in the population. 

After examining the necessary Haas on the input variables, it is determined that Rs have a 
positive effect, and other input variables (γg, T, and API) have a negative impact. The magnitude 
of parameters’ influence, the Rs, has the highest impact on the output, while the lowest effect is 
for API (Fig. 9). 

 

Fig. 9. Spearman’s correlation coefficient for the input variable to the prediction of BPP. In terms of influence: 
Rs >γg > T > API 
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Conclusion 

Determining the bubble point pressure is one of the main factors in the development and 
progress of oil and gas reservoirs. This research uses 567 datasets from worldwide, where input 
variables are solution gas-oil ratio (Rs), gas specific gravity (γg), API gravity (API) that are 
readily available in the industry. The bubble point pressure, which is a key and costly parameter, 
is predicted by two innovative combined hybrid algorithms, which are among the latest 
algorithms that researchers have not yet used to predict BPP. 

In this research, two novel algorithms named DWKNN-GSA and DWKNN-ICA were 
developed for predicting the BPP. A distinctive, unique feature of these algorithms is their high 
accuracy. 

The best algorithm in terms of accuracy is DWKNN-ICA, where RMSE = 0.90276 psi and 
R2 = 1.000 for the test dataset. To compare the developed hybrid models’ performance, some 
previously established empirical correlations were applied to the data set evaluated in this work.  
Among empirical models used, Standing model showed the best accuracy RMSE = 11.981 psi 
and R2 = 0.8977. Comparison of the hybrid models developed with former empirical models 
showed that hybrid models have better performance and can predict BPP with much more 
accuracy than the empirical models. Moreover, Spearman's correlation coefficient assessment 
for the input variables demonstrated that the Rs and API have the highest and the lowest impact 
on the output (BPP).  

Acknowledgements  

The authors are grateful to Ms. Kalaei for his technical support and efforts in collecting the 
data needed for this study. 

Nomenclature 

AAPD Absolute average percent deviation 
ANN Artificial Neural Network 
APD Average percent deviation 
API Oil density 
BPP Bubble point pressure 
DWKNN Distance-Weighted K-nearest neighbor algorithm  
GORs Solution gas oil ratio 
GSA Gravitational Search Algorithm 
Hi The value of data record i for input variable H 
ICA Imperialist Competitive Algorithm 
MSE Mean square error 
n The number of data points in the population 

OFVF Oil formation volume factor 
PDi Percentage difference 
R2 Coefficient of determination 
RMSE Root mean square error 
SD Standard deviation 
T Temperature 
Zi The value of data record i for input variable Z 

γg Gas specific gravity �̅� The average value of the input variable H �̅� The average of the input variable Z 𝑥𝑖 Measured dependent variable value for the ith data record 𝑦𝑖 Predicted dependent variable value for the ith data record 
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µOD Dead oil viscosity 
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