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Abstract

Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell,
different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming
complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods
to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated
the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support
vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and
commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated
from the datasets using a set of basic biochemical properties combined with features from the literature determined to be
relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced
training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater
classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary
biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-
penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was
selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these
peptides were shown to be penetrating.
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Introduction

Cell penetrating peptides (CPPs), also referred to as ‘‘Trojan’’

peptides, protein transduction domains, or membrane transloca-

tion sequences, are typically hydrophobic linear arrangements of

8–24 amino acids able to cross the lipid bi-layer membrane that

serves as the cell’s outer barrier and gain access to the interior of

the cell and its components [1]. Penetratin, an Antennapedia

derived peptide, and the HIV derived Tat peptide were some of

the first commonly studied CPPs, and along with transportan

peptides (derived from galanin receptor ligand proteins), make up

three major families of CPPs. The remainder of CPPs are classified

in a fourth, miscellaneous family [1].

Initially, cellular uptake of CPPs was believed to be through

endocytosis or protein transporters, but some evidence suggested

the mechanism may involve direct transport through the lipid bi-

layer of the cell, which takes into account the hydrophobic

properties of most of these peptides [2]. The current view is that

CPP internalization is accomplished predominantly by endocytosis

[2]. Historically, both flow cytometry and fluorescence microscopy

have been used to study the uptake of CPPs into cells. Care must

be used with these methods to avoid artifacts because traditional

methodologies for these techniques can incorrectly show a high

concentration of CPPs localizing to the cell nucleus or a higher

than actual concentration of CPPs being taken into the cell [2].

Cell penetrating peptides capable of transporting other active

molecules inside the cell have the potential to serve as drug

delivery peptides. Drug delivery peptides and CPPs allow

researchers to probe the mechanisms of peptide transport across

a lipid bi-layer membrane and may allow customizable drug

therapies for differing types of cells. Although there is some

controversy regarding CPPs as drug delivery systems because of

their lack of specificity for cell type, the general consensus among

researchers is that both general CPPs and cell-specific CPPs will be

developed into effective drug delivery systems in the future [3,4].

A classification system that can determine whether or not a

unique peptide sequence can serve as a CPP, and thus possibly be

a potential drug delivery peptide, can enable researchers to quickly

screen candidate molecules for their potential viability for use in a

customizable drug delivery regime.

Much of the previous work in the prediction of CPPs has

involved the use of a set of composite features assembled from
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primary biochemical properties through the use of principal

component analysis [5,6,7]. These composite features, or z-scores,

consist of a numerical value and an associated range. To predict

cell-penetrating capability of a candidate peptide, the z-scores are

computed for the peptide, and, if the z-scores fall within the range

of known CPP z-scores, the peptide is classified as cell-penetrating

[6,7]. While this method has a high accuracy (.95% correct

prediction of novel CPPs) for generating novel CPPs [6], it

performs rather poorly (68% correct prediction) when trying to

distinguish known non-penetrating peptides that are closely related

to known CPPs [7] and yields little information about exactly

which biochemical properties contribute to the difference between

these two classes. More recent work examines the use of

quantitative structure-activity relationship (QSAR) derived fea-

tures to predict penetration potential. The training process

iteratively removes sequences that are difficult to classify and thus

the classification accuracies reported are biased [8]. Further

research into this topic is necessary to allow potential drug delivery

peptides to be rapidly screened for usefulness.

Using the basic biochemical properties of peptides as features

instead of the widely used composite z-scores can potentially

provide more insight into the differences between the class of CPPs

and non-penetrating peptides when coupled with wrapper-based

feature selection and classifier training using a machine learning

technique such as a support vector machine. Additionally, once

trained, these machine learning classifiers can then be used for

rapid screening of candidate CPPs prior to their synthesis. This

study examines the available information on known CPPs and

their non-penetrating analogs in order to compile datasets used for

training and testing of support vector machine classifiers using

primary features derived from biochemical properties of each

peptide and evaluates the accuracy of these classifiers. An

experimental validation study was performed to determine the

effectiveness of these classifiers using an avian tissue culture

system.

Results/Discussion

The goal of this study was to develop a machine learning

approach for rapid screening of potential CPPs. We use features

representing primary biochemical properties directly rather than

using a transformation such as PCA that combines multiple

features into a single composite feature as reported by others

[5,6,7]. In addition, we have investigated the best approach for

constructing training datasets when there is a large disparity in the

number of positive and negative examples. Previous research has

shown that unbalanced datasets are problematic when construct-

ing classifiers [9]. We first identified known CPPs and known non-

penetrating peptides from the literature to serve as positive and

negative examples and calculated a number of primary biochem-

ical properties for each of these peptides. We then explored a

number of different approaches for addressing the problem of

unbalanced datasets and evaluated classification accuracy with the

different approaches. A wrapper based feature selection method

was utilized to reduce the number of features needed for

classification while providing insight into the biochemical

properties necessary to distinguish CPPs from non-CPPs. We

have used support vector machine classifiers because of their

ability to linearly separate classes in a high dimensional feature

space. Classifier accuracy on our training sets was assessed using

10-fold cross validation and then each classifier was tested again

using the unbalanced test set assembled from the literature. In

order to experimentally validate these results, a dataset of 250

peptides was created using a 0th order Markov model based on the

predicted chicken proteome [10], and these peptides were

classified as either penetrating or non-penetrating by our classifier.

Subsets of both predicted penetrating and predicted non-

penetrating peptides were selected from these classification results

and were synthesized. Experimental validation of cell penetration

capability was then determined using fluorescence microscopy and

a quantitative uptake study of the peptides was performed.

Dataset Construction Approaches
Because of the sensitivity of classifiers to unbalanced classes [9],

our first challenge was to generate datasets for training and testing.

Author Summary

Cell penetrating peptides (CPPs) are peptides that can
potentially transport other functional molecules across
cellular membranes and therefore serve a role as drug
delivery vehicles. The properties of a given peptide that
make it cell penetrating are unclear, and the rapid
screening of potential CPPs aids researchers by allowing
focus on those peptides most likely to be utilized in a
therapeutic capacity. This paper shows that basic features
representing primary biochemical properties of these
peptides can be used to train a classifier that can
accurately predict cell penetrating potential of peptides
and provide insight into the biochemical properties
associated with cell penetration.

Table 1. Confusion matrices for datasets generated using
different approaches.

Non-CPP CPP rClassified as

Dataset 1 – Unbalanced.

(total examples 145) 0 34 Non-CPP

1 110 CPP

Dataset 2 – Balanced with random peptides as negatives.

10-fold cross validation with
training data (total examples 222)

109 2 Non-CPP

7 104 CPP

Tested on unbalanced data
(total examples 145)

12 22 Non-CPP

6 105 CPP

Dataset 3 – Balanced with biological peptides as negatives.

10-fold cross validation with
training data (total examples 222)

108 3 Non-CPP

10 101 CPP

Tested on unbalanced data
(total examples 145)

10 24 Non-CPP

6 105 CPP

Dataset 4 – Balanced by sampling known negatives.

10-fold cross validation with
training data (total examples 222)

96 15 Non-CPP

10 101 CPP

Tested on unbalanced data
(total examples 145)

29 5 Non-CPP

7 104 CPP

doi:10.1371/journal.pcbi.1002101.t001

Prediction of Cell Penetrating Peptides by SVMs
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A set of 111 known CPPs were identified from the literature

[6,7,11]. However, only 34 negative examples could be found and

many of these are analogs of known CPPs [6,7]. Unbalanced

datasets present a number of different problems for machine

learning methods [9]. When only a comparatively small number of

examples are available for one class, the machine learning

algorithm will not have sufficient information to learn a function

to distinguish the classes. Reporting of classification accuracy is

also impacted by unbalanced datasets. For example, if a dataset of

100 peptides contains 80 CPPs and 20 non-CPPs, a classification

accuracy of 80% can be obtained by classifying all peptides as

positive. Most previous work in CPP prediction has ignored this

problem [7,8].

We designed an experiment to investigate the effect of

unbalanced datasets on CPP prediction and to find methods to

address the problem to evaluate classifier accuracy with precision.

For the CPP prediction problem, there are many more positive

examples than negative examples available. Five different

approaches were used to generate training datasets for investigat-

ing this issue:

1. Unbalanced: Composed of 34 known negative examples and 111

known positive examples.

2. Balanced with random peptides as negative examples. 111 random

peptides were generated using a 0th order Markov chain based

on the chicken proteome and combined with 111 known

positive examples. All random peptides were assumed to be

non-penetrating. This approach is based on the assumption

that the probability of randomly generating a CPP sequence is

very small.

3. Balanced with biological peptides as negative examples. All chicken

peptides of length 12–26 AA were downloaded from NCBI and

a sample of 111 was drawn without replacement. All were

assumed to be non-penetrating. This approach assumes that

most biological peptides are non-CPP and the probability of

drawing a CPP from this set is extremely low.

4. Balanced by sampling known negatives. Random sampling with

replacement from the 34 known negatives was used to yield a

set of 111 negative examples that was combined with the 111

positive examples.

5. Balanced by sampling known positives. Random sampling with

replacement from the 111 known positive examples to yield a

set of 34 positive examples that was combined with the 34

known negative examples.

Classifier Performance
The performance of all classifiers on the training data sets is

based on 10-fold cross validation. The confusion matrices for

classifiers trained using datasets based on approaches 1–4 are

shown in Table 1 and the classifier statistics are shown in Tables 2

and 3. The classifier trained on the unbalanced dataset (111

positive examples and 34 negative examples) has a classification

accuracy of only 75.86% compared to the naı̈ve approach of

classifying all examples as positive which would result in a

classification accuracy of 76.55%. The results for this dataset in

Table 1 show that the resulting classifier predicts almost all

examples to be positive. This highlights the problems encountered

when using an unbalanced dataset. The classifier cannot

distinguish positive and negative examples because the dataset

contains so many more positive examples than negative examples

and because many of the negative examples are analogs of the

positives.

The classifiers trained using both the dataset balanced with

random peptides for negatives (approach 2) and with biological

peptides for negatives (approach 3) had classification accuracies of

95.95% and 94.14% respectively, indicating that both classifiers

exhibit a high degree of accuracy in discriminating between known

cell-penetrating peptides and randomly generated or biological

peptides assumed to be negative. The confusion tables for these

classifiers on the training data sets (Table 1) show that most of the

mistakes are false negatives (CPPs incorrectly classified as non-

Table 2. Classifier performance with different training regimes - Performance from ten-fold cross validation with training data sets.

Unbalanced

Balanced with

random negatives

Balanced with

biological negatives

Balanced by sampling

from known negatives

Balanced by sampling

from known positives*

Accuracy 75.86% 95.94% 94.14% 88.73% 78.82%

True Positive Rate 0.759 0.959 0.941 0.887 0.7883

False Positive Rate 0.768 0.041 0.059 0.113 0.2117

ROC 0.495 0.959 0.941 0.887 0.7883

*- These values represent the averages for 10 datasets.
doi:10.1371/journal.pcbi.1002101.t002

Table 3. Classifier performance of each classifier with original dataset.

Unbalanced

Balanced with random

negatives

Balanced with biological

negatives

Balanced by sampling from

known negatives

Accuracy 75.86% 80.69% 79.31% 91.70%

True Positive Rate 0.759 0.807 0.793 0.917

False Positive Rate 0.768 0.508 0.553 0.127

ROC 0.495 0.649 0.620 0.895

doi:10.1371/journal.pcbi.1002101.t003

Prediction of Cell Penetrating Peptides by SVMs
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CPPs). The weakness of these training approaches is that some of

the assumed negative examples may in fact be cell penetrating and

known non-cell penetrating analogs of CPPs were not used as

negative examples. When we used these trained classifiers to

evaluate the known non-penetrating cell penetrating analog

peptides (our unbalanced test data set) these classifiers obtained

accuracies of 80.69% and 79.31% respectively. For both classifiers,

approximately one third of the known non-penetrating peptides

are classified as cell-penetrating. Most of the mistakes made by

these two classifiers on the test data seem to be false positives, that

is classifying a peptide with no cell penetrating potential as a CPP,

and this classification of known non-penetrating cell penetrating

analogs demonstrates that while these classifiers are very accurate

distinguishing the features strongly predictive of cell penetrating

potential from the vast majority of non-penetrating peptides, the

features used for classification do not serve to distinguish between

peptides more similar to CPPs that do not penetrate and those

peptides that can act as CPPs.

The classifier trained on the data set constructed using approach

4 (random sampling with replacement from the known negative

examples) has a classification accuracy of 88.74% on the training

data set when evaluated with 10-fold cross validation. When

compared to the classification accuracy of the dataset generated

using the unbalanced dataset, these results show that it is possible

to classify a set of CPPs and a set of known non-penetrating

peptides using our SVM based method when care is used to

construct balanced datasets. Tables 2 and 3 show that 60% of the

errors are false positives (non-CPPs incorrectly classified as CPPs).

When we evaluated the unbalanced test set on this classifier, an

accuracy of 91.72% was obtained. The classifiers trained on the

smaller datasets using approach 5 have an average classification

accuracy of 78.82% using 10-fold cross validation.

Approach 2 using randomly selected biological peptides as the

negative examples gives the best 10-fold cross validation accuracy

while approach 4 with random selection from the negative

examples gives the best accuracy for the unbalanced training set.

Table 4. Comparison of SVM based CPP classifiers to previously published methods.

Hällbrink-2005

[6]

Hansen-2008

[7]

Dobchev-2010

[8] Unbalanced Distribution-based Biologically-based

Balanced by

sampling Non-

CPPs

Overall Accuracy 77.27% 67.44% 83.16% 75.86% 80.69% 79.31% 91.72%

CPP Accuracy 88.46% 80.30% 92.21% 99.10% 94.59% 94.59% 93.69%

Non-CPP
Accuracy

35.71% 25.00% 54.17% 0.00% 35.29% 29.41% 85.29%

doi:10.1371/journal.pcbi.1002101.t004

Table 5. Features selected for datasets generated using approaches 1–4.

Dataset 1

(Balanced with random negative

examples)

Dataset 2

(Balanced with biological peptides

assumed to be negative)

Dataset 3

(Unbalanced dataset)

Dataset 4

(Balanced by random sampling of

known negatives with replacement)

Net Charge Net Charge Net Charge Negative Charge

Positive Charge Isoelectric Point Positive Charge Isoelectric Point

Number of serines (S) Molecular Weight Number of alanines (A) Number of glycines (G)

Number of aspartates (D) Hydropathicity Number of arginines (R) Number of alanines (A)

Percent valine (V) Number of valines (V) Percent arginines (R) Number of tryptophans (W)

Percent proline (P) Number of lysines (K) Net Donated Hydrogen Bonds Number of asparagines (N)

Percent phenylalanine (F) Number of arginines (R) Number of lysines (K)

Percent threonine (T) Percent glycine (G) Number of histidines (H)

Percent asparagine (N) Percent methionine (M) Number of aspartates (D)

Percent tyrosine (Y) Percent tyrosine (Y) Percent phenylalanine (F)

Percent cysteine (C) Percent cysteine (C) Percent tryptophan (W)

Percent arginine (R) Percent aspartate (D) Percent arginine (R)

Percent histidine (H) Percent negative Percent histidine (H)

Percent aspartate (D) Water Octanol Partition Coefficient Percent Hydrophobic

Percent negative Net Donated Hydrogen Bonds Percent negative

Steric Bulk Percent Helix Hydrophobicity

Net Donated Hydrogen Bonds Percent Coil Water Octanol Partition Coefficient

Percent Helix

Percent Coil

doi:10.1371/journal.pcbi.1002101.t005

Prediction of Cell Penetrating Peptides by SVMs
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This suggests use of a two step process for screening. In the first

step, a classifier trained with random biological peptides as the

negative examples would be used for preliminary bulk screening.

As a second step, peptides predicted to be CPP in step 1 would be

screened by a classifier trained using approach 4 that is more

accurate in distinguishing non-penetrating analogs from CPPs.

Approach 4 also provides more insight into the rational design of

novel CPP analogs as the negative examples used in this approach

are generally constructed by the modification of a known CPP

sequence.

In Hällbrink et al. (2005), the authors describe a method of CPP

prediction based on scoring a candidate peptide according to z-

score descriptors, features compiled through PCA, and report an

84.05% accuracy in the prediction of 53 CPPs and 16 non-

functional CPP analogs [6]. A follow-up to this study, utilizing

both more known CPPs (65) and more non-functional CPP

analogs (20), reports a 68% prediction efficiency using the same z-

score descriptor based prediction method [7]. More recently, these

z-score descriptors were utilized alongside quantitative structure-

activity relationship features in an artificial neural network (ANN)

to predict cell penetrating potential for a set of 101 peptides (77

CPPs, 24 non-penetrating CPP analogs) and report a classification

accuracy of 83% for the general ANN model constructed [8].

However, it should be noted that the data set utilized is composed

of unbalanced classes, and an accuracy of 76.24% can be achieved

by classifying every peptide encountered as a CPP. A comparison

of these previously published prediction methods and our

approach is presented in Table 4. The models constructed using

our approaches and their high classification accuracies indicate

that using the primary biochemical properties of a peptide as

features instead of synthesized feature values compiled using PCA

allows for a more informative analysis of which properties

determine whether a given peptide is cell-penetrating. In contrast

to PCA approaches where complex features are constructed in

both the feature selection step and again for classifier construction,

our consistent use of the SVM for wrapper-based feature selection

and for classifier construction, allows predictive models to be

constructed to provide for more rapid and elucidative screening of

cell-penetrating potential than previous predictive methods.

For each classifier constructed, feature selection was conducted

using a scatter search approach through feature space [12] where

the ‘‘wrapped’’ classifier was the same type of SVM used for

classifier construction. The classifier is a sequential minimal

optimization SVM [13] using the Pearson Universal Kernel [14].

Table 5 lists the features selected for datasets 1–4 above. Because

the number of training/testing samples for dataset 5 was so small,

we generated ten different datasets using this approach. The

features selected from these ten datasets are listed in Table 6. The

features selected for the datasets constructed using approaches 1–5

contain a number of properties previously shown to aid in the

prediction of CPPs. These include net charge, positive charge,

negative charge, the net donated hydrogen bonds, and the water-

octanol partition coefficient. The low number of features selected

for the datasets constructed using approach 5 indicates over-fitting

of these small datasets by the classification algorithm. Therefore

our detailed examination of features selected focused on datasets

generated using approaches 1–4. The primary amino acid

composition features, the number of a given amino acid and the

percent a given amino acid contributes to the whole peptide

sequence, indicates no predictive function arising from the non-

polar amino acids leucine and isoleucine, the polar amino acid

glutamine, and the negatively charged amino acid glutamate. At

least one of the amino acid composition features was selected for

the remaining amino acids, with the most notable of these being

the positively charged amino acids lysine, arginine, and histidine,

and the negatively charged amino acid aspartate. In addition, the

group of aromatic amino acids were selected to a notable degree,

and the presence of some aromatic amino acids in the peptide

sequence has been previously reported to be required for cell-

penetrating potential [15].

Validation Study
To experimentally validate our feature selection methodology

and classifiers, 250 random peptides were generated using a 0th

order Markov model based on the chicken predicted proteome

and were classified as penetrating or non-penetrating using the

classifier trained on the dataset constructed using random peptides

as negative examples. From these classifications, four peptides

predicted to be cell-penetrating and two peptides predicted to be

non-penetrating were selected for synthesis and FITC-labeling

along with three known cell penetrating peptides used for positive

controls, three peptides consisting respectively of only polar amino

acids, only non-polar amino acids, and only of mixed polar and

non-polar amino acids to serve as negative controls. In addition, a

Table 6. Features selected for ten datasets generated using approach 5.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10

Number (V) Length Number (R) Net Charge Net Charge Percent (T) Net Charge Positive Charge Number (W) Positive Charge

Percent (R) Net Charge Percent (W) Negative
Charge

Percent (I) Percent (Y) Positive Charge Number (G) Number (T) Percent (I)

Number (V) Percent positive Number (I) Hydrophobicity Net Donated
Hydrogen
Bonds

Percent (I) Number (S) Number (R) Amphipacity

Number (C) Amphipacity Number (H) Net Donated
Hydrogen Bonds

Percent Sheet Percent (W) Percent (F) Percent (S)

Percent (H) Percent Helix Percent (F) Percent
Hydrophobic

Percent (R) Percent (T)

Net Donated
Hydrogen
Bonds

Net Donated
Hydrogen
Bonds

Percent (H)

Amphipacity

Balanced subsets of CPPs sampled with replacement combined with known-CPP analogs.
doi:10.1371/journal.pcbi.1002101.t006

Prediction of Cell Penetrating Peptides by SVMs
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known non-penetrating peptide (TP13, a transportan analog [15])

was selected for synthesis to serve as a minor validation for our set

of known non-penetrating peptides.

Cellular internalization microscopy array of FITC-

labeled peptides. The uptake of synthesized FITC-labeled

peptides was examined using an avian system to validate both our

wrapper based feature selection methodology and SVM-based

approach to predicting CPPs. The results of our fluorescence

microscopy analysis are shown in Figure 1. All peptides predicted

to be cell-penetrating (Peptide-1 through Peptide-4) by our

classifier were confirmed to be cell-penetrating. Of our two

negative predictions, Peptide-5 was confirmed to be a non-

penetrating peptide while Peptide-6 was shown to traverse cellular

membranes. TP13, a CPP analog previously shown to be non-

penetrating in Bowes’ melanoma cells is clearly cell-penetrating

peptide in our avian model.

Uptake quantification of FITC-labeled peptides. To

evaluate the relative uptake of our synthesized peptides and to

provide a secondary confirmation of the fluorescence microscopy

results, a quantitative uptake study was conducted using both quail

SOgE cells and chicken embryonic fibroblasts. The results of the

quantitative uptake study for those peptides shown to be

penetrating (p#0.05) are shown in Figure 2. Peptides 1–4 were

shown to be CPPs, while Peptide-5 was correctly predicted to be

non-penetrating. Peptide-6, which was predicted to be non-

penetrating, was shown to traverse the membranes of both CEF

and SOgE cells. TP13, previously shown to be non-penetrating in

melanoma cells, is again shown to have penetrated both CEF and

SOgE cells to a high degree relative to both our positive controls

and our predicted cell-penetrating peptides.

TP13 was chosen as a non-penetrating CPP analog based on its

non-CPP classification in a study examining the effects of deletion

on a known CPP, transportan (TP) [15]. TP13 was created by a

deletion from the N-terminus and middle of the TP molecule and

these deletions abolished the internalization of TP13 into Bowes’

melanoma cells. All transportan-derived peptides that internalized

during the original TP analog study contained tyrosine and 3

positive charges in their sequences, while those peptides without

tyrosine or one positive charge in the C-terminal portion of the

peptide did not internalize [15]. TP13 contains tyrosine and 3

positive charges, meeting the criteria outlined by the original study

for penetration and both our fluorescent microscopy data and

quantitative fluorescent uptake data indicates that it does penetrate

both SOgE cells and CEF cells.

Peptide-6 (HSPIIPLGTRFVCHGVT) was predicted to be a

non-CPP by our classifier, but was shown to internalize into both

SOgE and CEF cells experimentally both by fluorescence

microscopy and the quantitative uptake studies. This peptide

contains 3 positively charged amino acids along with phenylala-

nine. The Sommets, et al. study examining TP and its derivatives

states that all their peptides with 3 positive charges and tyrosine

internalized, and as phenylalanine only lacks the hydroxyl group

of the tyrosine molecule, this could contribute to the internaliza-

tion of Peptide-6. The positive examples in our training data

contain predominantly arginine and lysine as positive residues,

while this peptide contains two histidine residues.

Our research shows that using the primary biochemical

properties of peptides as features instead of composite features

determined through the use of PCA can provide both more

Figure 1. Cellular internalization microscopy array of FITC-
labeled peptides.
doi:10.1371/journal.pcbi.1002101.g001

Prediction of Cell Penetrating Peptides by SVMs
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informative features and higher classification accuracies when

using support vector machines for the classification of a given

peptide as cell-penetrating. The lack of a comprehensive and

coherent database of cell-penetrating peptide data for bioinfor-

matics analysis has been noted previously [7], and the majority of

CPP studies have been conducted using a variety of different cell

lines and detection techniques, making it difficult to unify these

results. Our results showing that a previously reported non-

penetrating analog of transportan is a CPP in our avian system

confirms the need for a large dataset of biologically confirmed

positive and negative examples from a single biological system

using a single detection methodology. Until such a resource is

available, the predictive capability of classifiers is difficult to assess.

Our results also show that there may be classes of peptides that act

as CPPs in a variety of cells and others that are more specialized.

Therefore, peptides designed to target delivery to specific cells and

tissues of interest should be screened using a variety of cell lines.

Additionally, our results indicate there may be positional

preference for certain types of amino acids such as positive

charges and aromatic. Further research should examine the effects

of these positional effects. Also, there are several classes of CPPs

which may not utilize the same internalization mechanism, and

future research could focus on developing classifiers for each of

these individual CPP classes. A problem that arises from the

current set of known CPPs is the small overall size may not yield

many examples to build distinct classifiers for different internal-

ization mechanisms. Certain CPPs may be more capable of

delivering certain classes of cargos across cellular membranes, and

may internalize to different cellular locations once internalized,

and future research could focus predicting which CPPs are best

suited to transport of particular cargos and predicting where

within a cell they may internalize. Additionally, different CPPs can

penetrate certain types of cells, and in the future, information

about the various membrane components (lipid and membrane

protein composition/concentration) of cells of interest could be

incorporated into classifiers. The primary problem is the small set

of known CPPs and non-penetrating CPP analogs is assembled

from a number of different experimental techniques (different

detection methodologies, different cell types, etc), and there is a

great need for the creation of a dataset of CPPs evaluated in a

number of different cell types of interest and evaluated under the

same types of experimental conditions for cell penetration, cargo

carrying capability, and internal localization once penetration has

occurred.

Materials and Methods

Data Set Compilation Strategy
A database of cell-penetrating peptides was constructed from

the literature and from commercial vendor product lines [6,7,11].

A total of 111 cell-penetrating peptide (CPP) sequences were

identified and used to create a database of positive examples

(Table 7) [6,7,11]. The average amino acid lengths of these CPPs

ranged from 12 to 26. Because very few peptides have been

experimentally validated to be non-penetrating, it was more

challenging to construct a database of negative examples. Five

different strategies were used. Because our experimental system is

avian, we have used the composition of the chicken proteome as

the basis for two of our datasets. Previous research has

demonstrated the importance of using a balanced training sets

where there are approximately equal numbers of positive and

negative examples [9].

Figure 2. Quantitative uptake analysis.
doi:10.1371/journal.pcbi.1002101.g002
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Table 7. Known cell-penetrating peptides from the literature
and commercial vendors.

Cell-penetrating peptide Reference

AAVALLPAVLLALLAKNNLKDCGLF [11]

AAVALLPAVLLALLAKNNLKECGLY [11]

AAVALLPAVLLALLAPVQRKQKLMP [11]

AAVALLPAVLLALLAVTDQLGEDFFAVDLEAFLQEFGLLPEKE [11]

AAVLLPVLLAAP [7,11]

AGYLLGKINLKALAALAKKIL [6,7]

AGYLLGKLKALAALAKKIL [7]

AHALCLTERQIKIWFQNRRMKWKKEN [7]

AHALCPPERQIKIWFQNRRMKWKKEN [7]

ALWKTLLKKVLKA [6]

AYALCLTERQIKIWFANRRMKWKKEN [7]

CGPGSDDEAAADAQHAAPPKKKRKVGY [7]

CNGRC [11]

CNGRCG [11]

CNGRCGGKKLKLLKLL [11]

CNGRCGGKLAKLAKLAKLAK [11]

CNGRCGGLVTT [11]

GAARVTSWLGRQLRIAGKRLEGRSK [6]

GALFLGFLGAAGSTMGAWSQPKSKRKV [11]

GGRQIKIWFQNRRMKWKK [6]

GIGKFLHSAKKWGKAFVGQIMNC [11]

GLAFLGFLGAAGSTMGAWSQPKSKRKV [7]

GRKKRRQ [6]

GRKKRRQRRPPQC [7]

GRKKRRQRRRC [6,7]

GRKKRRQRRRPPC [6,7]

GRKKRRQRRRPQ [6,7]

GRQLRIAGKRLEGRSK [6]

GWTLNPAGYLLGKINLKALAALAKKIL [6,7]

GWTLNPPGYLLGKINLKALAALAKKIL [6,7]

GWTLNSAGYLLGKINLKALAALAKKIL [6,7,11]

GWTLNSAGYLLGKINLKALAALAKKLL [6,7]

GWTLNSAGYLLGKLKALAALAKKIL [6,7]

GWTLNSKINLKALAALAKKIL [7]

INLKALAALAKKIL [11]

IWFQNRRMKWKK [7]

KALAALLKKWAKLLAALK [7]

KALAKALAKLWKALAKAA [6,7]

KALKKLLAKWAAAKALL [6,7]

KCRKKKRRQRRRKKLSECLKRIGDELDS [6]

KCRKKKRRQRRRKKPVVHLTLRQAGDDFSR [6]

KETWWETWWTEWSQPKKKRKV [11]

KETWWETWWTEWSQPKKRKV [7]

KFHTFPQTAIGVGAP [7]

KITLKLAIKAWKLALKAA [6,7]

KIWFQNRRMKWKK [7]

KLAAALLKKWKKLAAALL [6,7]

KLALKALKALKAALKLA [6,7]

KLALKLALKALKAALK [6,7]

Cell-penetrating peptide Reference

KLALKLALKALQAALQLA [7]

KLALKLALKAWKAALKLA [6,7]

KLALQLALQALQAALQLA [7]

KMTRAQRRAAARRNRWTAR [6]

KRPAATKKAGQAKKKKL [6]

LGTYTQDFNKFHTFPQTAIGVGAP [7]

LIRLWSHLIHIWFQNRRLKWKKK [7]

LKTLATALTKLAKTLTTL [7]

LKTLTETLKELTKTLTEL [7]

LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTESC [7]

LLIILRARIRKQAHAHSK [6]

LLIILRRPIRKQAHAHSK [6]

LLIILRRRIRKQAHAHSA [6]

LLIILRRRIRKQAHAHSK [6,7]

LNSAGYLLGKINLKALAALAKKIL [6,7]

LNSAGYLLGKLKALAALAKIL [7]

MANLGYWLLALFVTMWTDVGLCKKRPKP [7]

MDAQTRRRERRAEKQAQWKAAN [6,11]

MGLGLHLLVLAAALQGAKKKRKV [6]

MPKKKPTPIQLNP [11]

MVKSKIGSWILVLFVAMWSDVGLCKKRPKP [7]

MVTVLFRRLRIRRACGPPRVRV [7]

NAKTRRHERRRKLAIER [6,11]

PKKKRKV [11]

PKKKRKVALWKTLLKKVLKA [6]

PMLKE [7]

QLALQLALQALQAALQLA [7]

RGGRLSSYSRRRFSTSTGR [7]

RGGRLSYSRRRFSTSTGR [6]

RGGRLSYSRRRFSTSTGRA [11]

RKKRRQRRR [6,7]

RKSSKPIMEKRRRAR [6]

RQARRNRRRALWKTLLKKVLKA [6]

RQGAARVTSWLGRQLRIAGKRLEGR [6]

RQGAARVTSWLGRQLRIAGKRLEGRSK [6]

RQIKIWFPNRRMKWKK [6,7]

RQIKIWFQNMRRKWKK [7]

RQIKIWFQNRRMKWKK [6,7,11]

RQIKIWFQNRRMKWKKLRKKKKKH [6]

RQIRIWFQNRRMRWRR [7,11]

RQPKIWFPNRRMPWKK [7]

RRLSSYSSRRRF [7]

RRMKWKK [7]

RRRRRRRRR [6,7,11]

RRWRRWWRRWWRRWRR [7]

RVIRVWFQNKRCKDKK [6,7]

RVTSWLGRQLRIAGKRLEGRSK [6]

SWLGRQLRIAGKRLEGRSK [6]

TAKTRYKARRAELIAERR [6,11]

TRQARRNRRRWRERQR [7]

Table 7. Cont.
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Balanced with random peptides. The set of 111 know

CPPs was balanced with a set of 111 peptides constructed using a

0th order Markov chain derived from the IPI chicken proteome

(ipi.CHICK.v3.56 [10]) . The peptide lengths were uniformly

distributed in the range 12–26. We assume that there is a very low

probability that randomly generated peptides would be cell

penetrating.

Balanced with biological peptides. The set of 111 know

CPPs was balanced with randomly selected biological peptides. A

set of 411 chicken peptides from NCBI with lengths in the range

12–26 was downloaded. Subsets of 111 peptides were selected

randomly without replacement to provide multiple balanced

datasets. This dataset provides a set of positive examples of

known CPPs and assumed negative examples of biological

peptides of the same relative molecular size. We assume that

most naturally peptides are not cell penetrating.

Unbalanced using only known positives. A set of 34

known non-penetrating cell penetrating peptide analogs and

peptide hormones previously used as negative examples was

constructed from a search of the literature and are listed in Table 8

[6,7]. This dataset provides a set of known cell-penetrating positive

examples and a set of non-penetrating peptides that have been

experimentally shown not to traverse cellular membranes.

Balanced by sampling known negatives. In order to

produce a balanced dataset of both known non-penetrating

peptides and known CPPs a set consisting of all 111 known cell

penetrating peptides and 111 known non-penetrating cell

penetrating analogs was constructed by selecting with

replacement from the set of 34 known non-penetrating analogs .

Balanced by sampling known positives. Subsets of the

known CPPs of size 34 were selected with replacement and

combined with the 34 known non-penetrating cell penetrating

analogs to create ten balanced subsets.

Feature Construction and Normalization
For each dataset, we generate a set of basic biochemical

properties of each peptide (e.g. mass, size, charge, secondary

structure, etc) and other features previously shown to be useful in

the prediction of CPPs (e.g. steric bulk and net donated hydrogen

bonds) [7]. The full list of the initial 61 features is shown in Table 9.

We use these features directly in our machine learning algorithm

rather than using composite features such as features derived by

principle component analysis (citation). We feel this approach will

be more informative in the rationale design of CPPs cell

penetrating peptides. Because the data values for each feature

within a dataset vary greatly, NV normalization was used to scale

the numeric range of all features in the range [0, 1] [16].

Machine Learning Software
The WEKA Machine Learning Toolkit Version 3.6.1, a freely

available software package containing a number of machine

learning algorithms for data mining, was used for feature selection,

classifier construction, and classifier evaluation [17].

Feature Selection
We conducted feature selection to reduce the dimensionality of

the feature vectors. Empirical evaluation of a number of different

Cell-penetrating peptide Reference

TRRNKRNRIQEQLNRK [6,7,11]

TRSSRAGLQFPVGRVHRLLRK [11]

TRSSRAGLQWPVGRVHRLLRKGGC [11]

VPALR [7]

VPMLK [7]

VPTLK [7]

VQAILRRNWNQYKIQ [6]

VRLPPPVRLPPPVRLPPP [7]

WFQNRRMKWKK [7]

YGRKKRRQRRR [11]

YGRKKRRQRRRGTSSSSDELSWIIELLEK [6]

YGRKKRRQRRRSVYDFFVWL [6]

doi:10.1371/journal.pcbi.1002101.t007

Table 7. Cont. Table 8. Known non-penetrating cell-penetrating peptide
analogs and peptide hormones.

Non-cell penetrating peptide Reference

AGCKNFFWKTFTSC [6]

AHALCLTERQIKSNRRMKWKKEN [7]

CYFQNCPRG [6]

DFDMLRCMLGRVYRPCWQV [6]

EILLPNNYNAYESYKYPGMFIALSK [6]

FITKALGISYGRKKRRQC [7]

FVPIFTHSELQKIREKERNKGQ [6]

GRKKRRQPPQC [7]

GWTLNSAGYLLGKFLPLILRKIVTAL [6,7]

GWTLNSAGYLLGKINLKAPAALAKKIL [6,7]

GWTLNSAGYLLGPHAI [6]

GWTNLSAGYLLGPPPGFSPFR [6]

HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGR [6]

IAARIKLRSRQHIKLRHL [7]

ILRRRIRKQAHAHSK [7]

KIWFQNRRMK [7]

KKKQYTSIHHGVVEVD [6]

KKLSECLKRIGDELDS [6]

KLALKALKAALKLA [6,7]

KLALKLALKALKAA [7]

LLGKINLKALAALAKKIL [7]

LLKTTALLKTTALLKTTA [6,7]

LLKTTELLKTTELLKTTE [6,7]

LNSAGYLLGKALAALAKKIL [6,7]

LNSAGYLLGKLKALAALAK [6,7]

LRKKKKKH [6]

PVVHLTLRQAGDDFSR [6]

QNLGNQWAVGHLM [6]

RPPGFSPFR [6]

RQIKIFFQNRRMKFKK [6,7]

RQIKIWFQNRRM [7]

RQIKIWFQNRRMKWK [7]

TERQIKIWFQNRRMK [7]

WSYGLRPG [6]

doi:10.1371/journal.pcbi.1002101.t008
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feature selection methods was conducted and the best performance

was obtained using a wrapper-based method. The wrapper-based

method uses a parallel scatter search algorithm [12] to evaluate

feature subsets based on classifier performance. Scatter search is

an evolutionary algorithm, but unlike other evolutionary algo-

rithms (e.g. genetic algorithms), the search for a local optimum is

guided through the use of a reference set that acts to intensify and

diversify the resulting features [12]. Local searches of features

generated from the reference set are conducted, and informative

and diverse features from these local searches are used to update

the reference set until a terminating condition is met [12].

Classifier Construction
Our classifier is a support vector machine (SVM) trained via a

sequential minimal optimization (SMO) algorithm used in con-

junction with the Pearson VII universal kernel [13,14]. SVMs are

supervised learning classifiers generally used for solving two class

problems, and in their simplest form can be thought of as a classifier

separating two classes mapped onto a 2-dimensional plane by

generating a line through the plane that optimizes the distribution of

each class on either side of the line [13]. The SMO algorithm is a

modification to the original SVM learning algorithms that replaces

a numerical quadratic programming step with an analytical

quadratic programming step, allowing the algorithm to spend a

greater portion of time on the decision function instead of the

quadratic programming step. This greatly increases the speed of the

SVM for classification and allows scaling for large datasets [13]. We

chose to utilize SMO-based SVM classifiers because of their speed

and performance for our two class problem of determining if given

peptide is cell-penetrating or non-penetrating. A kernel function

used in conjunction with an SVM allows the classifier to examine

non-linear relationships between features by mapping the initial

non-linear features into a highly dimensional space where the

solution can be represented by a linear classification [14]. We chose

the Pearson VII universal kernel (PUK) for our SMO-based SVM

because PUK has been shown to provide either equal or better

mapping than traditional SVM kernels, while serving as a robust

and generic alternative to other kernel functions [14]. Accuracy for

all classifiers was evaluated using 10-fold cross-validation.

Peptide Synthesis
A 0th order Markov chain based on the amino acid frequency of

the IPI Chicken Proteome (ipi.CHICK.v3.56) [10] was used to

generate 250 peptides. The classifier trained on our biologically

based random peptide dataset was then used to classify each of these

Table 9. A list of initial features used for classifier
construction.

Feature Reference

Length of peptide [22]

Net charge of peptide [22]

Positive charge [22]

Negative charge [22]

Isoelectric point (pI) [22]

Molecular weight [22]

Hydropathicity [23]

Number of Each Amino Acid (20 features) [22]

Percent composition of each amino acid (20 features) [22]

Percent polar amino acids [22]

Percent positive amino acids [22]

Percent negative amino acids [22]

Percent hydrophobic amino acids [22]

Hydrophobicity [23]

Lipophilicity [24]

Amphiphilicity [25]

Water-Octanol Partition Coefficient [23]

Steric Bulk [23]

Side chain bulk [7]

Net donated hydrogen bonds [7]

Percent a helix [26]

Percent random coil [26]

Percent b sheet [26]

doi:10.1371/journal.pcbi.1002101.t009

Table 10. Peptides synthsized for experimental validation of classifier.

Name Role Sequence (N to C)

HIV-TAT [18] Control(+) YGRKKRRQRRR-NH2

Antennapedia [19] Control(+) RQIKIWFQNRRMKWKK-NH2

Pep-1 [20] Control(+) KETWWETWWTEWSQPKKKRKV-NH2

negative-1 Control(-) TCSSNCQTCPCSSNNCQ-NH2

negative-2* Control(-) GLALLGIAVAILVVL-NH2

negative-3 Control(-) PGNIQMMSVVSMSMTITN-NH2

peptide-1 Predicted CPP FKIYDKKVRTRVVKH-NH2

peptide-2 Predicted CPP RASKRDGSWVKKLHRILE-NH2

peptide-3 Predicted CPP KGTYKKKLMRIPLKGT-NH2

peptide-4 Predicted CPP LYKKGPAKKGRPPLRGWFH-NH2

peptide-5 Predicted Non-CPP FFSLPPVTQDWNSD-NH2

peptide-6 Predicted Non-CPP HSPIIPLGTRFVCHGVT-NH2

TP13 [7,15] Known Non-CPP-CPP Analog LNSAGYLLGKALAALAKKIL-NH2

*negative-2 was unable to be synthesized to desired purity levels due to insolubility issues.
doi:10.1371/journal.pcbi.1002101.t010

Prediction of Cell Penetrating Peptides by SVMs

PLoS Computational Biology | www.ploscompbiol.org 10 July 2011 | Volume 7 | Issue 7 | e1002101



peptides. From these classification results, four peptides predicted to

be cell penetrating and two peptides predicted to be non-cell

penetrating were selected for synthesis and experimental validation.

In addition, three peptides known to be cell-penetrating (HIV-Tat

[18], Antennapedia [19], and Pep-1 [20]) were chosen to be positive

experimental controls. Three other peptides, one of all polar amino

acids, one of all non-polar amino acids, and one of a mix of polar

and non-polar amino acids, were chosen as negative experimental

controls because their lack of charged and aromatic R-groups make

it unlikely they would cross a cellular membrane. One peptide

(TP13 [7,15]) was randomly selected for synthesis from the list of

known non-penetrating cell penetrating peptide analogs. All

peptides selected for synthesis are shown in Table 10. Peptides

were synthesized (.95% purity) and N-terminally labeled with

FITC, a fluorescent tag, by Biomatik. During the peptide synthesis,

one of our chosen negative controls, negative-2 (GLALLGIA-

VAILVVL-NH2) was unable to be synthesized to our desired purity

levels due to insolubility issues and is not considered further. The

lyophilized peptides were reconstituted using 1 mL of 4:1 dd H2O

sterile filtered 0.45 mm and acetonitrile (EMD OmniSolv).

Tissue Culture
Two avian cell lines, Quail SOgE muscle cells [21] and a

primary culture of Chicken embryonic fibroblasts (CEF), were

grown in tissue culture flasks in Dulbecco’s minimal essential

medium containing 10% fetal bovine serum with penicillin

(200 IU/mL), streptomycin (200 mg/mL), amphotericin B

(0.5 mg/mL) (MP Biomedicals), and non-essential amino acids at

37uC in a 5% CO2 atmosphere .

Quantitative Uptake Analysis
Approximately 100,000 cells per well (both CEFs and SOgEs)

were plated onto 12-well tissue culture plates approximately 2 days

prior to the experiment and allowed to reach confluency. The cells

were changed to serum free media and incubated for 60 minutes

prior to experimentation. The cells were then washed with two 1 mL

washes of PBS, after which they were exposed to 300 mL of 10 mM

peptide in serum free media for 30 minutes, with three replicates per

peptide per cell line. The cells were then washed with two 1 mL

washes of PBS, and lightly trypsinated to remove any external

peptides that may have been attached to the cellular membrane and

facilitate the detachment of cells from the tissue culture flask.

Centrifugation of the cells was performed at 250 x G for 4 min, and

the supernatant aspirated off. Cells were then lysed with 250 mL of

0.1% Triton-X in PBS at 4u C for 10 minutes. A 100 mL aliquot of

the cell lysate and a 100 mL aliquot of the 10 mM peptide in serum

free media were pipetted onto a 96-well plate. Fluorescence was

measured on a Dynex Fluorolite 1000 plate reader at 485/530 nm.

The samples were compared to the fluorescence of the added

amount of peptide and t-tests (p#0.05) were performed for each

experimental sample against an untreated control.

Cellular Internalization Microscopy Array of FITC-Labeled
Peptides
The SOgE cells were seeded onto glass tissue microscopy slides

(approximately 50,000 cells/well), and allowed two days to reach

confluency. The cells were changed to serum free media and

incubated for 60 minutes prior to experimentation. The cells were

then washed with two 1 mL washes of PBS, after which they were

exposed to 300 mL of 10 mM peptide in serum free media for 30

minutes. The cells were then washed with two 1 mL washes of PBS,

and then fixed using UltraCruzTMMounting Medium (Santa Cruz

Biotechnology) containing a DAPI nuclear stain. The fluorescence

was examined using a Nikon Eclipse TE2000-U Inverted Research

Microscope with the MetaMorph microscopy imaging software.
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