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Prediction of complex human diseases
from pathway-focused candidate markers
by joint estimation of marker effects: case
of chronic fatigue syndrome
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Abstract

Background: The current practice of using only a few strongly associated genetic markers in regression models
results in generally low power in prediction or accounting for heritability of complex human traits.

Purpose: We illustrate here a Bayesian joint estimation of single nucleotide polymorphism (SNP) effects principle to
improve prediction of phenotype status from pathway-focused sets of SNPs. Chronic fatigue syndrome (CFS), a
complex disease of unknown etiology with no laboratory methods for diagnosis, was chosen to demonstrate the
power of this Bayesian method. For CFS, such a genetic predictive model in combination with clinical evidence
might lead to an earlier diagnosis than one based solely on clinical findings.

Methods: One of our goals is to model disease status using Bayesian statistics which perform variable selection
and parameter estimation simultaneously and which can induce the sparseness and smoothness of the SNP effects.
Smoothness of the SNP effects is obtained by explicit modeling of the covariance structure of the SNP effects.

Results: The Bayesian model achieved perfect goodness of fit when tested within the sampled data. Tenfold
cross-validation resulted in 80 % accuracy, one of the best so far for CFS in comparison to previous prediction
models. Model reduction aspects were investigated in a computationally feasible manner. Additionally, genetic
variation estimates provided by the model identified specific genetic markers for their biological role in the
disease pathophysiology.

Conclusions: This proof-of-principle study provides a powerful approach combining Bayesian methods, SNPs
representing multiple pathways and rigorous case ascertainment for accurate genetic risk prediction modeling of
complex diseases like CFS and other chronic diseases.
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Introduction
Human genetic studies generally focus on identifying
genes associated with diseases and subsequently using the
significant genetic information for phenotypic predictions.
Statistical methods vary with each of these goals, with
methods for gene identification becoming increasingly ef-
fective with genome-wide association studies (GWAS).
However, modeling principles for phenotypic predictions
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of complex human diseases remain largely unexplored
even in this era of GWAS [1, 2]. Phenotypic predictions
in human data sets have been modeled using regression
models with a few single nucleotide polymorphisms
(SNPs) having strong association identified by GWAS, but
this practice of using only a few genetic markers has been
disappointing due to its low predictive power [3]. A simi-
lar problem known as “the problem of missing heritabil-
ity” is encountered when only highly associated markers
are used to estimate heritability of complex traits [4, 5].
However, as demonstrated recently with human height
and complex diseases, the missing heritability problem
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can be alleviated when linear regression models include
information from all markers in the GWAS [6–8]. Such
models can be seen as finite locus approximations for
polygenic models, being representative for linkage disequi-
librium (LD) structure in population, and they should
therefore provide useful predictions even in the presence
of a large number of rare variants.
Bayesian variable selection [9, 10] and the frequentist

regularization methods [11, 12] have gained attention to
perform parameter estimation and variable selection
simultaneously in phenotype-marker association ana-
lysis. These methods generally perform well in selecting
trait-associated loci or loci in LD to estimate genomic
breeding values in animals and plants [13, 14]. Lee et al.
[15] considered that methods for predictions of pheno-
types and genomic breeding values may employ similar
tasks and can be successfully substituted for one an-
other. Generally, it is known that the marker density
(the length of the genome), population LD, and number
of individuals in the learning sample will all have a
strong influence on the prediction accuracy [1]. More-
over, simplicity of the genetic architecture and heritabil-
ity of the trait are also the key factors for the prediction
success. Animal and plant breeding literature includes
numerous simulation studies on how these factors influ-
ence prediction accuracy, see, e.g., references in [1].
Generally, from studies of different prediction methods
applied to plant and animal data sets, one can conclude
that variable selection approaches seem to work most
efficiently for oligogenic traits with sparse genetic archi-
tectures in the presence of moderate LD among markers.
On the other hand, approaches based on mixed models
and marker-estimated covariance structures [1, 16] seem
to work well for polygenic traits or oligogenic traits in the
presence of strong LD among markers (which will make
oligogenic data sets to have large numbers of trait-
associated markers like polygenic traits). Certain modern
classification methods [17] and Bayesian subset selection
methods [18, 19] have been applied to predict chronic dis-
ease or to find important subsets of SNPs contributing to
chronic diseases with small data sets. In general, combin-
ing multiple sources of information may lead to more ac-
curate phenotype prediction [12, 20, 21]. This approach
has been confirmed with simulations but its benefit with
real data is still questionable, especially with complex phe-
notypes [19]. We consider here information from a care-
fully selected set of pathway-focused SNPs and applied
Bayesian methods in the context of association mapping
to model phenotype status. In association studies with
SNPs, it is difficult to distinguish the most associated
SNPs in regions of high LD. In such situations, it may be
informative to inspect for stable association signals after
first smoothing the signals in regions of high LD [22]. On
this basis, we hypothesize that more stable and accurate
phenotypic prediction may be achieved after smoothing
pathway-focused SNP effects in regions of high LD. Our
goals here are to provide genomic prediction of an indi-
vidual’s disease status as a sum of SNP effects, which de-
pend on individual’s genotype pattern at SNPs. This is
done by means of model-averaged estimation of genetic
effects used to weight individual SNPs. For this, we use
Bayesian methods in genetic association studies and
model-averaged estimate of genetic effects that we call as
weighted genetic variation (WGV) [23]. Our Bayesian
methods can perform variable selection and parameter es-
timation simultaneously and can induce the sparseness
and smoothness of the estimated SNP effects [19, 23].
Smoothness of the SNP effects is obtained by the explicit
modeling of the covariance structure of the SNP effects.
We evaluated our Bayesian modeling principle and
methods for modeling of chronic fatigue syndrome (CFS),
as an example of a complex disease where its diagnosis re-
mains elusive with the need for improved analytical ap-
proaches for gene identification and accurate phenotypic
prediction [24].

Methods
Subjects and illness classification
This study adhered to human experimental guidelines of
US Department of Health and Human Services and the
Helsinki Declaration. The Centers for Disease Control
Human Subjects committee approved the study proto-
col, and all subjects gave written informed consent.
Subject recruitment, clinical evaluation, laboratory tests,
and their classification were described previously [25].
Briefly, 227 subjects were recruited from Wichita, KS,
USA, as part of a 2-day in-hospital evaluation of unex-
plained fatigue. These subjects were identified from a
surveillance cohort of 7162 fatigued and non-fatigued
subjects who were originally screened from 56,146 adult
residents, 18 to 69 years of age. During the 2-day hos-
pital stay, symptoms and exclusionary medical and psy-
chiatric conditions were reevaluated for all 227 subjects.
Following the 2-day hospital study, all subjects were
classified based on all aspects specified in 1994 CFS case
definition [26] and Medical Outcomes Short-Form,
Multidimensional Fatigue Inventory and Symptom In-
ventory cutoff scores to include measures on the func-
tional impairment, fatigue, and accompanying symptom
complex that characterize CFS. Following this classifica-
tion, 124 subjects were excluded because of medical or
psychiatric exclusionary conditions or insufficient cri-
teria to classify as CFS. Of the 103 remaining subjects,
101 subjects with genotype data were classified as CFS
(43 subjects) and non-fatigued (NF; 58 subjects) healthy
controls. The demographic characteristics along with the
type of disease onset (gradual vs. sudden) of subjects in
this study are given in Table 1.



Table 1 Demographic and other characteristics of the subjects
selected for analysis

Factor Categories NF subjects
(n = 58)

CFS subjects
(n = 43)

Age (years) MQMQMa 31.0/44.3/51.5/
56.0/69.0

27.0/46.5/51.0/
57.5/69.0

Sex (n) Female/male 46/12 36/7

Race (n) White/Black/others 54/2/2 40/1/2

BMI MQMQM 16.0/25.3/29.0/
32.0/40.0

23.0/26.0/29.0/
32.5/40.0

Onsetb Gradual/sudden 14/1 36/6
aMQMQM represents the minimum, first quartile, median, third quartile, and
maximum, respectively
bOnset represents gradual vs. sudden onset of illness. This information is
available for all but one CFS subject. For NF subjects, onset information is
relevant to only 15 individuals with past report of chronic fatigue
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SNP selection, genotyping, and annotation
Because of the reported associations of CFS with pertur-
bations in hypothalamic-pituitary-adrenal (HPA) axis
and immune functions, we selected a total of 39 candi-
date genes implicated with the central nervous system
(CNS) (30 genes) or immune and inflammation func-
tions (nine genes) to determine the accuracy CFS predic-
tion based on combinations of SNPs (Additional file 1:
Table S1). There were a total of 167 SNPs in all candidate
genes (137 SNPs in genes implicated with CNS and 30
SNPs in genes implicated with immune and inflammation).
There were a total of 23 SNPs in X-chromosomes, and
these were in two genes of serotonergic neurotransmission
(HTR2C and MAOA). SNPs were selected from the SNP
database (dbSNP) of National Center for Biotechnology
Information database, Applied Biosystem’s SNPBrowser™ or
from the literature. All SNP markers had a minor allele fre-
quency ≥10 % with the exception of HTR2A rs6314 (6.2 %),
a non-synonymous SNP. DNA extraction and genotyping
were done as described earlier [27]. Most SNPs (158 out of
167) were genotyped using validated TaqMan genotyping
assay kits (Applied Biosystems, CA, USA) and the 7900
Sequence detection system (Applied Biosystems). Eight
SNPs were genotyped by pyrosequencing. Genotyping for
one polymorphism in SLC6A4 designated 5-HTTLPR was
conducted using gel-based assays [28]. SNP annotation
was done using SPOT algorithm as implemented in the
web-based tool accessible at https://spot.cgsmd.isi.edu/
submit.php [29]. It may be noted that SNP selection was
done in the design stage of this study before genotyping
while in some other studies, statistical prescreening
procedures such as sure independent screening were
applied after genotyping to reduce the dimensionality
[30, 31].

Model
We applied Bayesian logistic association models [18, 19]
using subset of SNPs to predict disease status (yi) of the
individual i. Our hierarchical model structure underlying
our predictive model is almost identical to that pre-
sented earlier by us [23] for LD mapping.
The logistic association model for SNP data (of indi-

vidual i) can be written as:

Logit pið Þ ¼ αþ
X
l∈MA

βl;1 2−mi;l
� �þ βl;2mi;l

� �
Il

þ
X
l∈MS

1
2

βl;1 2−mi;l
� �þ βl;2mi;l

� �
Il:

Here, the logistic link function, Logit pið Þ ¼ ln pi
1−pi

h i
¼

ln P yi¼1jmð Þ
1−P yi¼1jmð Þ
h i

, α is an intercept, (βl,1 and βl,2) are genetic

effects of SNP l. Il’s are the indicator variables taking
care of variable selection to select subset of SNPs to the
model (see below for more details). The SNPs have been
reorganized into two groups according to whether they are
on sex chromosomes (i.e., l ∊ MS) or autosomal chromo-
somes (i.e., l ∊ MA). The genotype value mi,l of individual i
at SNP l is represented numerically by 0 for homozygote
AA, 1 for heterozygote AB, and 2 for homozygote BB. Our
model for the genetic effects assumes an additive model,
where an effect of the heterozygote (βl,1 + βl,2) is in the
middle of the effects of two homozygotes (βl,1 + βl,1 and
βl,2 + βl,2). It is over-parameterized to improve the mixing
and convergence properties of the Markov chain Monte
Carlo (MCMC) sampling algorithm to yield better param-
eter estimates. The usual practice would be to set the first
genetic effect to zero and have one parameter only for the
other genetic effect. The absolute difference of the two ef-
fects here reflects the effect size of the SNP. Note that the
factor of one half is introduced for the SNPs on the sex
chromosome due to female X-chromosome mosaicism and
the adjustment by half can be used for male only after as-
suming all SNPs on their X-chromosome are homozygous
(cf. [32]).
We assume a priori that there is only a small subset of

important SNPs that are useful to predict disease status.
In these predictive models, subset selection of important
SNP effects to the predictive model is based on the use
of indicator variables (Il, l = 1,…, M), all of which either
equals one (inclusion) or zero (exclusion) depending on
the importance of particular SNP (see, e.g., [9]). Here, M
is a number of SNPs. However, in reality for closely situ-
ated SNPs, it is difficult to distinguish the effects of indi-
vidual SNPs due to LD. Thus, LD pattern among SNPs
in the linked region is explicitly modeled as dependency
prior for variable selection indicators in our model as
described below and reported earlier in [23].

Model for missing SNP data
Missing SNP data are handled in a similar manner as
any other model parameter. Thus, prior distributions are
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assigned to all missing SNP data. We assume a priori that
the missing SNP genotypes occur at random and inde-
pendently within and across SNPs (in the sense that the
probability that the genotype is missing is not dependent
on the true genotype pattern at the locus or at any of its
neighboring loci). The prior distribution p(mi,l) of a miss-
ing genotype mi,l under the Hardy-Weinberg equilibrium
is a binomial distribution, where both alleles have equal
occurrence probabilities within the locus (i.e., p(mi,l) =
0.25, 0.5, and 0.25 for three genotypes AA, AB, and BB, re-
spectively). Additionally, an independence over loci (link-
age equilibrium) is assumed for missing SNP genotypes

as p mð Þ ¼
YN
i¼1

p mi;1;…; ;mi;M
� � ¼ YN

i¼1

YM
l¼1

p mi;l
� �

. During

MCMC sampling, our phenotypic model (likelihood) gives
information on which genotype value is most likely in the
light of the data. Thus, we let the data to speak in our
missing data model. For meta-analysis purposes, where
SNP genotypes at some data sets may be missing for all
the individuals, one may want to consider to predict the
SNP genotypes with reasonable accuracy using genotype
imputation methods (utilizing LD correlation structure
between neighboring SNPs) based on HapMap and 1000
genomes project reference panels [33, 34].

Priors for α, β, I
Prior specification is intrinsically subjective, and specify-
ing prior that will satisfy everyone and/or every aspect
might be unachievable. We adopt the method where
priors reflect our intuitive knowledge but are also useful
in avoiding some potential pitfalls and help reduce the
computational burden. The parameter α relates to the
intercept term of the regression which in this case with
the Logit function would be close to zero (with 43 CFS
cases and 58 NF controls). In the case of regression mod-
eling a quantitative phenotype, the variance of the inter-
cept parameter can be related to the scale of the
phenotype. Here, we have binary phenotype; thus, without
further information on the variability, we assume a stand-
ard normal distribution for the intercept parameter α.
The parameters β and I together determine which

SNPs potentially have effect on the phenotype and the
extent of this effect.
Following [23], we denote the vector of (genetic or

physical) distances between the SNPs with d = (d2,…,
dM). We also use a smoothing parameter λ for neighbor-
ing SNPs which allows us to model dependence of two
adjacent SNPs. Our prior probability for each SNP to be
involved in the model is P Il ¼ 1jsð Þ ¼ s ¼ 1

M , which cor-
responds to assuming only a single marker to be import-
ant predictor in the model (see [23] for details).
However, SNPs exhibiting strong LD in a single genomic
region would change these probabilities, and we model
this by a Markov model where the extent of LD is decay-
ing according to the distance information [23]. This

is, PðI1;…; IN s; λ; dj Þ ¼ PðI1 sj Þ
YM
l¼2

P Ilð jIl−1; s; λ; dlÞ. Given

the state of inclusion indicators at locus (l − 1), the tran-
sition matrix for the inclusion indicators for locus l is
given by

e−λdl þ 1−e−λdl
� �

1−sð Þ 1−e−λdl
� �

s
1−e−λdl
� �

1−sð Þ e−λdl þ 1−e−λdl
� �

s

� �
:

Genetic effects (βl,1 and βl,2) of each locus are assigned
marginally a priori using a scale-mixture representation
of Student’s t distribution (e.g., [35]). This means that
genetic effects at each locus are first assumed to be nor-
mally distributed with common variance σl

2 which again
is assumed to be a priori inverse gamma distributed. In
this model, a vector of locus-specific genetic variance
components σ2 = (σ1

2,…, σM
2 ), over the M loci, controls

the corresponding genetic effect parameters under a
normal model. We further make the following condi-
tional independence assumption that given σ2 and s, the
locus indicators I and genetic effects β are independent.
Thus, prior distribution P(βl,k|σl

2) for genetic effects
βl,k(k = 1,2) was assumed to be normal N(0, σl

2) with
locus-specific variance component σl

2.

Priors for hyper-parameters σl
2, λ

The prior for genetic variance P(σl
2) at locus l was given an

inverse gamma (1, 1), and consequently, P(σ2) =Πl
M

= 1P(σl
2).

The smoothing parameter λ is given a wide prior of
gamma (1, 0.01) which has both the mean and standard
deviation as 100. This parameter helps to eliminate spuri-
ous associations but strengthens the real association sig-
nals. However, since we utilize a common smoothing
parameter over multiple locations of the genome, it lacks
intuitive explanation compared to situation where it is
used for a single densely mapped genomic region. There,
this parameter can be thought to roughly represent the
time since the relevant mutation affecting the phenotype
(see [23]).

Complete model
The relevant joint density to derive the posterior of the
parameters of interest is then obtained using the follow-
ing expression which is based on the above and utilizes
appropriate conditional independence assumptions:

p y; I; α; β; σ2; λ;mjs; dð Þ ¼ p yjm; I; α; βð Þ
� p Ijλ; s; dð Þp λð Þ
� p αð Þp βjσ2ð Þp σ2ð Þ
� p mð Þ
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Weighted genetic variation and heuristic model reduction
The weighted genetic variation (WGVl = |βl,1 − βl,2|Il) at
locus l, (l = 1,…, M), is computed as a product of abso-
lute difference of the genetic effects |βl,1 − βl,2| and the
inclusion indicator (Il).
A heuristic model reduction method was used to speed

up the estimation by determining the number of SNP pre-
dictors that can be reduced without loss of predictive abil-
ity. Using the percentiles of WGV (Additional file 1: Table
S2) as cutoff/threshold, a selected set of SNPs was retained
in the model with two critical components derived from
the overall model as follows. For the indicators, the joint
posterior distribution of the indicators from the full model
was used where the outcome of the spike-n-slab technique
over the MCMC simulation for full model was stored and
reused for model reduction purposes. For the remaining
SNPs (with WGV lower than the threshold value), the
individual-level genotype information were not used, and
thus, these SNPs would effectively cease to act as covari-
ates in the model (see Additional file 1 for detailed infor-
mation on WGV and heuristic model reduction).

K-fold cross-validation
Cross-validation methods [36] give a better assessment of
model predictive performance for new data, i.e., pheno-
typic predictions of individuals whose phenotypes and ge-
notypes have not been involved in the learning sample.
The hold-out or split-sample method, in which the data is
split into training and testing sets, is the simplest kind of
cross-validation. While this method assesses model per-
formance on real prediction situation with new data, it is
subjective to the choice of the partition of the data into
training and testing sets. K-fold cross-validation is one
way to improve over the split-sample method. The data
set is divided into K (approximately) equal subsets, and
the hold-out method is repeated K times, by which every
data point gets to be in a test set exactly once and gets to
be in a training set K − 1 times. We have used K = 10
which is also one of the most popular choices of K [37].
One major disadvantage of K-fold cross-validation is

that the time taken would also be typically K times that re-
quired for estimation based on whole data. Using data on
all 167 SNPs, a tenfold cross-validation would require ap-
proximately 150 min per MCMC iteration. We retained
information from all SNPs since CFS phenotype is com-
plex and there could be loss of predictive ability with
reduced number of SNPs. Therefore, instead of reducing
the number of SNPs in the model to reduce the time,
we made a few modifications to the full model (“Model”
section) as noted in the supplementary file.

Model implementation
The models were implemented in WinBUGS software
[38], a special software to carry out MCMC simulation
from posterior of complex models. The simulations were
started with random initial values and were run for sev-
eral thousands of iterations. Convergence of MCMC
chains was monitored by visual inspection of MCMC
trace plots with respect to several different model pa-
rameters and also by assuring that low values of the
MCMC error have been reached for all critical model
parameters. Software codes are available in the supple-
mentary file and at http://www.rni.helsinki.fi/~mjs/.

Comparison with competing prediction methods
To compare our method, certain predictions were made
for the same data set with generalized linear model
versions of LASSO and ridge regression [11, 12] using
R-package “penalized” [39]. LASSO model assumes inde-
pendence among predictors while ridge regression can
handle collinearity among them. We also compared our
Bayesian model assuming independence between predic-
tors (i.e., prior independence among indicator variables).
This can provide information on the importance of the
dependence structure to the model. LASSO and ridge
regression analyses were performed using the same over-
parameterized model as in the Bayesian analysis which
had own coefficient for each allele. Before LASSO and
ridge regression analyses, we imputed missing data
(once) using the Bayesian missing data model. However,
this resulted in rank-deficient data matrix in which we
eliminated 15 markers to make matrix acceptable for the
R-package. To find the best tuning parameter value in
LASSO (and ridge regression), we tried 55 (and 94) dif-
ferent values in range [0.1, 1000] (and [0.01, 25000]), re-
spectively. In the Bayesian analysis, the priors and other
settings were kept the same as earlier.

Results
CFS in-data prediction using full model
In-data prediction basically uses the training data itself
to model the phenotype outcome. The data described
earlier in the “Subjects and illness classification” and
“SNP selection, genotyping, and annotation” sections
and the model developed by us (presented in the
“Model” section) were used to evaluate the goodness of
fit of the model to predict CFS for 101 subjects (with 43
CFS and 58 NF individuals) using all the SNP data. This
in-data prediction model, among other things, provided
estimates of WGV of the SNPs, which are combined
measures of their selection probability in the model and
degree of effect on the phenotype (Additional file 1:
Table S2). This is computed as a random variable based
on the product of the indicator and absolute difference
of the genetic effects for a locus, i.e.
WGVl = |βl,1 − βl,2|Il for the l-th locus, l = 1,…, M. The

MCMC sampling from the posterior also enables us to
estimate the WGVs. SNPs rs2288831 (IL12B), rs2071376

http://www.rni.helsinki.fi/~mjs/
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(IL1A), rs2069718 (IFNG), rs846906 (HSD11B1), rs1923884
(HTR2A), rs1799836 (MAOA), and rs1396862 (CRHR1)
were among the top 10 SNPs with the highest genetic effect
on the phenotype as measured by WGV (Table 2). For this
particular CFS data using all 167 SNPs, this full model
showed 100 % goodness of fit, probably due to over-fitting
in a small data set. This necessitates extensive cross-
validation of the model with unseen test data.

Impact of CFS prediction using variable number of SNPs
We examined if the number of SNP predictors can be
reduced without loss of predictive ability by implement-
ing a heuristic model reduction. Using percentiles from
the estimated WGV, an increasing number of SNPs were
included in the model with appropriate parameters,
while the effect of the rest was adjusted as described
above. As expected, with the increased number of SNPs,
there was a corresponding increase in the model predic-
tion accuracy (see Fig. 1 and Table 3). Although predic-
tion accuracy reached near perfection (accuracy 97 %)
with nearly all SNPs (159 out of 167), accuracy remained
still close to perfection (accuracy 95 %) using a combin-
ation of close to 100 SNPs (35th percentile of WGV).
Accuracy remained high (90 %) even with the top 70
SNPs in WGV. Accuracy decreased with fewer SNPs in
the model, although we also obtained 79 % accuracy
with combinations of 26 SNPs ranked top in WGV.
The above utilized the cutoff probability of 0.5 to de-

clare a case as CFS or otherwise. However, this threshold
could also be varied. Figure 2 presents the predictive per-
formance as measured by accuracy of prediction while
varying the threshold probability and number of (un-
adjusted) SNPs in the model. As stated earlier, SNPs were
considered in the increasing order of their WGV for inclu-
sion/exclusion in the model. Thus, least effective SNPs are
removed from the model at first. This illustrates that
model accuracy is not highly susceptible to the choice of
Table 2 Top 10 genetic markers associated with CFS based on weig

SNP ID Proxy SNP Gene symbola

rs2288831 rs3212227 IL12B

rs2071376 IL1A

rs2069718 IFNG

rs846906 HSD11B1

rs1923884 HTR2A

rs1799836 MAOB

rs363236 rs3814230 SLC18A2 (PDZD8)

rs1396862 rs1218523 CRHR1 (IMP5)

rs891512 rs743507 NOS3

rs1124492 rs46220755 DRD2
aGene symbol and SNP annotation in parenthesis correspond to proxy SNPs, if diffe
bSE of WGV standard error of weighted genetic variation
cutoff and is capable of staying at high level in an interval
around the chosen 0.5 used for this analysis.

Tenfold cross-validation of CFS prediction
The cross-validation results on prediction are summa-
rized using the standard sensitivity, specificity, false
detection rate (FDR), and overall accuracy (Table 4).
Computation time per iteration is approximately 50 min.
As can be seen, the overall accuracy is still high (79 %)
for the tenfold cross-validation. The overall sensitivity
and specificity of the tenfold cross-validation were 74.4
and 82.8 %, respectively. Accuracy for individual sets
varied between 70 and 100 %. At an individual level, the
prediction probabilities were compared for the K-fold
model and in-data model, and the results are presented
as Fig. 3. We observe that those predicted with high
probability/accuracy when the data is seen can still be
recovered when the respective data is withheld. How-
ever, as this accuracy comes down, probability of correct
prediction also comes down when the corresponding
data is unseen. It should also be noted that the grouping
of subjects based on overall cross-validation probability
(>0.5) still predicts 14-fold higher risk for a subject to be
classified as CFS (OR = 13.963; 95 % confidence interval
5.313–36.69; p value = 6.64 × 10−9).
For comparison, the same cross-validation analysis was

done for LASSO, ridge regression, and Bayesian model
without dependence (Table 5). The Bayesian approach
(with and without dependence) clearly outperformed
LASSO and ridge regression in accuracy and in sensitivity,
but specificity was slightly better in penalized regression
approaches. Including between SNP dependence to the
Bayesian model improved sensitivity from 65.1 to 74.4.
Otherwise, accuracy and specificity remained almost at
the same levels for the two Bayes models.
There were a total of 21 false predictions out of 101

predictions in this study. We investigated the source of
hted genetic variation (WGV) estimated by the Bayesian model

SNP annotationa WGV SE of WGVb

Intron (UTR-3) 3.95 0.0299

intron 3.6 0.0296

intron 3.34 0.0272

intron 3.29 0.0337

intron 3.16 0.0324

Intron 2.56 0.0394

UTR-3 (synonymous codon) 2.31 0.0272

Intron (missense codon) 2.31 0.0334

Intron 2.18 0.0287

Intron 2.02 0.0312

rent from the genotyped SNPs for the model



Fig. 1 Impact of varying the number of SNPs on prediction
performance, as measured by sensitivity, specificity, and accuracy

Fig. 2 Impact of varying the threshold and the number of SNPs on
prediction performance as assessed by the in-data
prediction accuracy
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these false predictions in terms of the sudden vs. gradual
onset of chronic fatigue as reported by the subjects in
the study. It appears that tenfold cross-validation is
accurate for all individuals (six out of six) with sudden
onset of CFS and one CFS subject with no onset infor-
mation. All the erroneous predictions for CFS cases oc-
curred only for those CFS cases with gradual onset (11
out of 36 CFS subjects with gradual onset). Among NF
controls, 15 subjects reported previously being fatigued
Table 3 Increase in accuracy with increasing number of SNPs in
the predictive model with individual-level allelic information

Percentilea Cutoff for weighted
genetic variation

No. of
SNPs

Sensitivity Specificity Accuracy

100 3.95 1 74.42 41.38 0.55

95 2.13 9 62.79 70.69 0.67

90 1.30 17 65.12 81.03 0.74

85 1.07 26 67.44 87.93 0.79

80 0.96 34 69.77 87.93 0.80

75 0.82 42 76.74 87.93 0.83

70 0.79 52 81.40 91.38 0.87

65 0.74 58 81.40 89.66 0.86

60 0.70 70 86.05 93.10 0.90

55 0.68 76 86.05 91.38 0.89

50 0.63 84 88.37 96.55 0.93

45 0.58 94 88.37 96.55 0.93

40 0.54 100 88.37 98.28 0.94

35 0.51 109 93.02 96.55 0.95

30 0.48 116 93.02 96.55 0.95

25 0.45 125 93.02 98.28 0.96

20 0.42 135 93.02 96.55 0.95

15 0.41 142 93.02 98.28 0.96

10 0.36 150 93.02 98.28 0.96

5 0.32 159 95.35 98.28 0.97

0 0.00 167 100 100 1.00
aPercentiles are those for the estimated weighted genetic variation (WGV)
under the full model
(14 gradual and 1 sudden onset) but did not meet the
criteria for CFS, and three of these NF controls were
predicted incorrectly. The remaining seven false predic-
tions belonged to the 43 NF subjects who reported that
they were never chronically fatigued before. These erro-
neous predictions potentially reflect heterogeneity in
both cases and control subjects in the study.

Discussion
This is a proof-of-principle study that presents a power-
ful genetic approach that can simultaneously rank SNPs
based on their genetic effect and for prediction of com-
plex phenotype based on a Bayesian logistic mixture
modeling principle combined with biologically meaning-
ful pathway-focused genetic markers and rigorous case
ascertainment. We used CFS SNP data as an example to
apply our analytical approach and to compare our model
Table 4 CFS prediction from in-data and tenfold cross-validations

Model and prediction type Accuracy Sensitivity Specificity FDR

In-data-unconstrained model 100.0 100.0 100.0 0.0

In-data-constrained model 100.0 100.0 100.0 0.0

K-fold-constrained model 79.2 74.4 82.8 23.8

K-fold-set1 72.7 60.0 83.3 25.0

K-fold-set2 70.0 75.0 66.7 40.0

K-fold-set3 80.0 75.0 83.3 25.0

K-fold-set4 100.0 100.0 100.0 0.0

K-fold-set5 70.0 50.0 83.3 33.3

K-fold-set6 70.0 50.0 83.3 33.3

K-fold-set7 70.0 75.0 66.7 40.0

K-fold-set8 70.0 75.0 66.7 40.0

K-fold-set9 100.0 100.0 100.0 0.0

K-fold-set10 90.0 80.0 100.0 0.0



Fig. 3 Probability of CFS at individual level as estimated by the K-fold
cross-validation model and in-data prediction model
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performance with LASSO and ridge regression as well as
with results in the literature using other approaches.
Our Bayesian prediction model is suitable for any data
set that has genotype calls and subjects ascertained into
binary phenotype, regardless of whether the illness is
specialized or not.
Our modeling approach yielded 80 % accuracy after ten-

fold cross-validation with CFS data. This prediction accur-
acy is one of the best so far for this complex disease
compared to other prediction models using the same data
set. In comparison to other analytical methods, several
modeling principles we used may have contributed to this
high prediction accuracy. For example, we incorporated
covariance due to LD between SNPs so that SNP effects
of the predictive model depended on each other and de-
pendence vanishes according to exponential decay with
the genetic or physical distance [40]. Originally, closely
after the single locus model of Conti and Witte [40], we
presented our multi-locus model for genetic association
mapping in small chromosomal segments [23]. After that,
Malo et al. [41] and Tsai et al. [42] have expressed their
own approaches to model covariance between SNP effects
in genetic association analyses. Very recently, Fridley and
Table 5 CFS prediction from tenfold cross-validation for
competing methods

Model Accuracy Sensitivity Specificity

Bayes with dependence 79.2 74.4 82.8

Bayes with independence 77.2 65.1 86.2

LASSO 59.4 20.9 87.9

Ridge regression 60.4 18.6 91.4
Jenkins [43] also introduced an approach, which is closely
related to our earlier model [23] for genetic association
studies, see also [35, 44, 45] for the other alternatives.
A second methodological enhancement in our model

is that it incorporates both sparse selection of trait-
associated SNPs and smoothing of estimated SNP ef-
fects, and that this enhancement potentially provided
competitive and accurate phenotype predictions in com-
parison to previous methods for CFS prediction. There
are two previous reports [17, 46] on testing combina-
tions of SNPs for prediction of CFS using the same sub-
jects but a smaller set of (42 SNPs out of 167) SNPs
used in this study. Because of the smaller set of SNPs,
Goertzel et al. [46] used an enumerative approach with
cross-validation by permutation and reported 76.3 % ac-
curacy in predicting CFS. Huang et al. [17] compared
three sets of classification methods (naïve Bayes model,
support vector machine, and C4.5 decision tree algo-
rithm) with 42 SNPs and found the naïve Bayes model
with the wrapper-based feature selection to give the best
overall sensitivity (64 %) and specificity (52 %). This
comparison of our model having dependence structure
with Huang et al. that does not have dependence struc-
ture [17] shows that dependence model like ours pro-
vides clear predictive advantage. Our study implies that
models with dependence structure should be utilized
more in methods addressing the prediction problem.
While there are methods that take into account of de-
pendence between SNPs for association mapping [46,
47], to the best of our knowledge, our Bayesian model is
the only one that probabilistically models dependence
between SNPs for prediction of binary phenotype. More-
over, since there are explicit differences in the models
for association mapping and phenotypic prediction,
methods developed for association mapping [46, 47] are
not necessarily suitable or preferable for phenotypic pre-
diction and vice versa.
Our heuristic model reduction method provided insight

into the strength of Bayesian multi-locus association in-
volving 100’s of SNPs in comparison to current regression
models using a few genetic variants. In this analysis, pre-
diction accuracy reached near perfection (accuracy 97 %)
with nearly all SNPs (159 out of 167) and accuracy
remained still close to perfection (accuracy 95 %) using a
combination of close to 100 SNPs (35th percentile of
WGV). Accuracy remained high (90 %) even with the top
70 SNPs in WGV but it decreased with fewer SNPs in the
model, although we also obtained 79 % accuracy with 27
SNPs. These results clearly show that the higher the gen-
etic information in the SNP profile, the greater will be the
accuracy in prediction of complex diseases. Since the
current computational approaches limit multi-locus ana-
lysis to only a few genetic variants, each with weak associ-
ations, current attempts to predict the individual genetic



Bhattacharjee et al. Human Genomics  (2015) 9:8 Page 9 of 12
risk of complex disease traits have not been highly accur-
ate, and their value/relevance was also questioned [48].
However, our results suggest that one can actually
achieve reasonable predictive accuracy by using Bayes-
ian predictions based on multi-locus association models
involving 100’s of SNPs in a small set of genes. Predic-
tion can be further improved with greater accuracy, sen-
sitivity, and specificity, if the model includes genetic
variation in hundreds of genes representing expanded
set of multiple pathways implicated in immune, inflam-
mation [49], and CNS functions [50]. With additional
improvements in genetic variation data, modeling, and
sample size, one can also conceive the potential of our
approach to generate genetic signatures to delineate
heterogeneity/subtypes in complex disease.
Other statistical considerations that favored high ac-

curacy include model selection and estimation (includ-
ing phenotype predictions) being done simultaneously.
By this, we obtained estimates for posterior probability
(uncertainty) of disease status and the degree of belief
estimate for predicted disease phenotypes. These predic-
tions, which are based on the Bayesian model averaging
approach providing robust predictions [51], are however
not based on a single best model but rather several
different models where prediction of each model is
weighted according to the corresponding posterior
model probability. Model reduction aspects were investi-
gated in a computationally feasible manner for an other-
wise analytically intractable problem. We also showed
accurate predictions from partial genotype data. That is,
while the learning set contains information on complete
set of SNPs, accuracy does not immediately drop if pheno-
type predictions are made for individuals which have ge-
notypes measured from only a partial set of SNPs. We
used indicator variables in the predictive models because
they will make it possible to shrink coefficients at some
unimportant positions exactly to zero. The same numer-
ical property is difficult to obtain by tuning the value of
the shrinkage parameter (which controls amount of
shrinkage) in regularization models like the Bayesian
LASSO [13], which do not contain indicators in the
model. In those models, which have a single shrinkage
parameter only, there is always trade-off between obtain-
ing enough shrinkage for unimportant contributors and
still maintaining good estimation ability for important po-
sitions (without having too much shrinkage).
It was reported recently that in order to achieve accur-

ate prediction of human disease for unrelated individuals,
it would take approximately a sample size of 350,000 [52].
This is because accuracy is dependent on the average
relatedness between individuals in the population (i.e.,
effective population size structuring the LD) and genetic
architecture of the trait. It was further noted that it can
be accurate on small samples only for diseases that are
determined by a limited number of genes which is unlikely
to be true for a complex disease. It is thus possible that
population ascertainment process that involved rigorous
clinical evaluation of both cases and control subjects in
this study might be an important factor, along with the
strength of modeling and SNP selection, for prediction ac-
curacy in this particular case. We are also aware of the
rule of thumb that the number of independent predictors
should not be greater than the one tenth of the number of
samples in the smaller of the two outcome categories in
logistic regression modeling. This limitation may be over-
come by using the conventional two-stage procedure
wherein significant markers are first evaluated from inde-
pendent analysis, and then, the short-listed markers tested
for prediction accuracy. Our analytical approach is to
move away from this rule of thumb. Indeed, one of the
main focuses of our study is that our Bayesian model esti-
mates good prediction accuracy based on multi-locus/sim-
ultaneous association of all SNPs using small data set.
This approach in predicting human disease phenotype
using the Bayesian multi-locus association model is sup-
ported by closely related prediction models in plant breed-
ing research. For example, using 80 markers and 126
soybean lines, Hu et al. demonstrated an increase from 33
to 78 % in explaining the phenotypic variance when
markers were collectively accounted for epistatic effects
[53]. The findings of Heffner et al. based on a wheat
breeding program using a small set of samples [54] and
markers also agree with our findings from human studies
that jointly estimating all marker effects is able to capture
more of the genetic variance than the two-stage conven-
tional approach of first selecting significant markers from
independent analysis and then estimating their effects.
Besides, phenotypic prediction using 100’s of SNPs,

our Bayesian model provided the genetic effect esti-
mated as WGV for each of the SNPs incorporated in the
model and thus allowing to rank individual SNPs for
exploring their functional role in the pathophysiology of
the disease. For example, in our in-data prediction
analysis, the top 110 SNPs with over 90 % accuracy were
spread on 32 of 39 genes (25 CNS and 7 immune func-
tion candidate genes). It is interesting to note that SNPs
from 7 out of 9 immune function genes were represented
in this group that showed greater prediction, and SNPs in
three of them (IL12B rs2288831, IL1A rs2071376, and
IFNG rs2069718) showed the highest association with
CFS in terms of WGV values. All three SNPs showed rep-
licated or moderate association with other diseases as well.
SNP rs2288831 is in complete LD with rs3212227 located
in the 3′-untranslated region (3′UTR) of IL12B (Table 2),
and this proxy SNP was reported to be associated with
psoriasis in a large-scale association study, confirming the
results of a previous study [55]. rs2071376 located in in-
tron 6 of IL1A showed significant association in patients
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with keratoconus [56]. SNP rs2069718, located in the
intron of IFNG, was associated with susceptibility to
systemic lupus erythematosus in a recessive genetic model
[57]. Among the CNS-related genes, the highest measures
of genetic effects on CFS prediction were provided
by SNPs in HSD11B1 (rs846906), HTR2A (rs1923884),
MAOB (rs1799836), CRHR1 (rs1396862), SLC18A2
(rs363236), NOS3 (rs891512), and DRD2 (rs1124492). Ex-
cept rs1396862 and rs363236, these SNPs in CNS-related
genes were located in introns with no potential function
through transcription factor binding or splicing regulation
or no proxy SNPs with functional significance. SNP
rs891512, although located in intron of NOS3, showed
protective effect against suicidal behavior [58]. While
rs363236 is located in the 3′UTR of SLC18A2 and is in
complete LD with a marker (rs3814230) resulting in syn-
onymous codon change in PDZD8, no functional role or
association with disease could be identified with this
marker. SNP rs1396862, on the other hand, is in complete
LD with rs12185233 that results in a missense codon
(R460P) change in intramembrane protease 5 (IMP5), a
gene associated with Parkinson’s disease [59]. Another
SNP in CRHR1 (rs173365) with WGV of 0.58 also showed
high LD with another missense codon change (rs242944,
H302R) in IMP5, suggesting further support of association
of this gene region with CFS. Genes with >5 SNPs that
contributed to >90 % accuracy included ACE, DRD2,
HTR2A, HTR2C, HTR4, IL1A, MAOA, NR3C1, and
TPH2. Thus, at least 16 unique genes (ACE, CRHR1,
DRD2, HSD11B1, HTR2A, HTR2C, HTR4, IL12B, IL1A,
IFNG, MAOA, MAOB, NOS3, NR3C1, SLC18A2, and
TPH2) appear to be major contributors to CFS prediction
by greater genetic effects either through individual or mul-
tiple (>5) SNPs. Among these 16 genes, only two (TPH2
and NR3C1) were common with the smaller set of 10
genes in the previous reports [17, 46] illustrating that
higher predictive accuracy by multi-locus association is
determined by variants with greater genetic effects. Se-
quence variations in some of these genes were reported to
be associated with CFS (NR3C1: Rajeevan et al. [60] and
HTR2A: Smith et al. [27]) or associated with some of the
CFS subtypes identified by latent class analyses (MAOA,
MAOB, TPH2, and NR3C1: Smith et al. [61]) or associ-
ation with allostatic load, a construct that describes cumu-
lative physiological effects of adaptation in response to
stress (ACE: Smith et al. [62]). Besides estimating predic-
tion accuracy of complex phenotype using multi-locus as-
sociation, these findings on the association of individual
markers/genes with CFS support the hypothesized general
applicability of Bayesian model-based WGV estimates to
identify specific genetic variations that may play biological
roles in the pathophysiology of various diseases.
We concentrated more on the modeling principle ra-

ther than implementing the tool for routine phenotype
prediction in this study. Thus, we used a general
purpose software tool, WinBUGS, for MCMC estima-
tion, which is often slower than tailor-made programs.
Moreover, for routine phenotype prediction, maximum
a posteriori estimation may be more practical than
MCMC estimation (cf. [35, 63]). As is well known, popu-
lation structure and cryptic relatedness are confounding
factors in genetic association studies [64]. We have
not corrected for these factors in our models since sub-
jects were collected from a homogeneous population
(Caucasians >93 % in both CFS and NF subjects) with
no close relatives or complex links between individuals.
However, even though such confounding factors may
exist in the CFS data, the multi-locus association models
have been found to be surprisingly robust to these con-
founders [31, 65]. Non-genetic risk factors can be in-
cluded into the model as environmental covariates even
if we have not done so here, and their inclusion may im-
prove the accuracy even further. Presently, there is lim-
ited clinical/diagnostic utility for this genetic prediction
model, since its reproducible performance remains to be
evaluated in multiple populations. Further, in order to
be clinically useful, it may be advantageous to evaluate
prediction models by decision analytic techniques to de-
termine whether models would change medical deci-
sions. This Bayesian model provides an approach to
improve phenotypic prediction by exploiting all available
genetic information in 100’s of loci jointly, an approach
that can be extended to the emerging computational
field of whole-genome markers-enabled prediction of
genetic predisposition in humans.
In conclusion, our results demonstrate, as a proof of

principle, the power of using a combination of a Bayes-
ian logistic mixture modeling principle, pathway-focused
SNPs, and rigorous subject ascertainment for highly ac-
curate prediction of complex phenotypes. WGV esti-
mates provided by the model can also be useful to
identify individual genetic markers/genes with potential
biological functions. Future studies are warranted to ex-
pand this approach using multiple biological pathways
and multiple populations [66] to derive a reproducible
genetic profile with greater predictive power than non-
genetic risk factors to identify chronic diseases like CFS
and its subtypes that have no laboratory-based diagnosis
or intermediate markers.

Additional file

Additional file 1: Supplementary information. Figure S1. Scatter plot
showing the SNP level differences in the genetic effects estimated under
the unconstrained and constrained (with the coefficient of class with higher
frequency fixed at zero). Figure S2. Box plots of standard deviations over
the 167 non-zero genetic effects, where standard deviations were calculated
as follows: For each SNP and each (non-zero) genetic effect, the standard
deviation over tenfolds was computed from the prior and also from the
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posterior distribution (under the constrained model used for tenfold
cross-validation). Table S1. List of genes (along with functions) and
SNPs tested for CFS prediction by the Bayesian logistic mixture model.
Genes primarily belong to the central nervous system (CNS) including
hypothalamic-pituitary-adrenal (HPA) pathway or immune function
systems. Table S2. Weighted genetic variation in decreasing order for
SNPs under full model.
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