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Prediction of Concrete Creep Effects 
Using Age-Adjusted Effective 

Modulus Method 

By ZDENEK P. BAZANT 

A recently proposed refinement of the effective 
modulus method, accounting for concrete aging, is 
formulated in a rigorous form and is extended to 
allow for the variation of elastic modulus and an 
unbounded final value of creep. A numerical ex­
ample is included to show the application of the 
proposed method in predicting creep effects. 
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• IN THE CREEP ANALYSIS OF concrete structures 
two kinds of errors are involved. One stems from 
the inaccurate knowledge of the creep law, and 
its minimization is a problem of materials re­
search. The second error is caused by the simpli­
fication of analysis, which designers introduce to 
avoid the complexities of an exact analysis. In the 
sequel, only accuracy or exactitude in the latter 
sense will be of concern. 

The simplest and the most widespread among 
the simplified methods of analysis is the well­
known effective modulus method, whose error 
with regard to the theoretically exact solution for 
the given creep law is known to be quite large 
when aging of concrete, i.e., the change of its 
properties with the progress of hydration, is of 
significance (see Table 2 discussed beloW). How­
ever, a surprisingly simple way of refinement of 
this method has been recently discovered by 
Trost,! on the basis of approximate and mostly 
intuitive considerations. The intent of this paper 
is to present a rigorous formulation of this method 
and to extend it to the case of a variable elastic 
modulus and an unbounded final value of creep. 
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FORMULATION OF METHOD 
If attention is restricted to the working stress 

range and strain reversals are excluded, creep of 
concrete may be assumed to be governed by the 
linear principle of superposition in time. The 
stress-strain relation is then fully defined by 
specifying functions J dt, t') and EO (t), or ER (t, t') 
and EO (t), or cf> (t, t'), E (t) and EO (t), all defined 
in the Appendix .. 

Basic theorem 

Assume that: 

E (t) - EO (t) = Eo + El cf> (t, to) for t > to 

o (t) = 0 for 0 < t < to 

where Eo and El are arbitrary constants. 

~ (1) 

Then 0 (t) varies linearly with ER (t, to) and the 
stress-strain reI a tions may be written (exactly) 
in the form of an incremental elastic law: 

6.0 (t) = E" (t, to) [6.dt) - 6.E" (t) ] (2) 

in which 

6.£(t) =£(t) -d·to), 6.o(t) = o(t) -o(to) (3) 

6.E"(t) = ~~~:~ cf>(t, to) + EO(t) - EO (to) (4) 

E" (t, to) = E (to) (5) 
1 + X (t, to) cf> (t, to) 
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[ 
ER(t, to) ] -1 1 

X (t, to) = 1 - E (to) - cf> (t, to) (6) 

where X (t, to), E" (t, to) and ~E" (t) will be termed 
aging coefficient, age-adjusted effective modulus 
and fictitious inelastic strain increment. 

The proof of this theorem is given in the Ap­
pendix. 

DISCUSSION AND APPLICATION 

Determination of X requires the knowledge of 
the relaxation function, which can be obtained 
from the creep function J c (t, t') with the help of 
a computer (using the well-known numerical 
methods for Volterra's integral equations; see Ap­
pendix). Table 1 shows the values of X which have 
been found for the following material properties: 

cf>(t, t') = cf>,,(t') (t - t')o.6/[10 + (t - t')O.6] (7) 

or 

where 

cf> (t, t') = cf> .. (t') 0.113 In (1 + t - t') (8) 

E (t') = E (28) [t' / (4 + 0.85t')] % 

cf>u (t') = cf> (00, 7) 1.25t'-o.118 ~ (9) 

t' being given in days. 

Eq. (7) with Eq. (9) has been recently recom­
mended by ACI Committee 209,2 along with a 
method of determination of the constant cf> (00, 7). 
It is acceptable for structures of typical dimen­
sions that are exposed to a mild climate and al­
lowed to dry. Eq. (8) is suitable for mass concrete. 

Eq. (2) has the form of Hooke's law and reduces 
thus the creep problem to a single elastic analysis, 
as in the usual effective modulus method. The 
values of E" and X are independent of Eo and El and 
have thus the same values for any strain history 
which is linear with creep coefficient cf> (t, to) and 
admits a sudden strain increment at the instant of 
first loading. This finding is useful because in most 
practical creep problems the variation of strain 
falls into the above category. If the load changes 
instantly at times after the time of first loading, 
the method can be also applied. The load history 
must then be considered as a sum of several step 
functions whose effects are analyzed separately 
and finally superimposed. 

For the purpose of comparison, the X values have 
also been computed for creep functions Eq. (7) 
and (8) with a constant modulus E (Table 1). 
Obviously, the effect of the time variation of E, 
neglected in References 1, 3, 4, 5, is quite signifi­
cant. A plot of X shown in Fig. 1 has further been 
computed for the creep function recommended by 
CEB.1,3 It is also noteworthy (Fig. 1) that the 

TABLE I - AGING COEFFICIENT X FOR TWO DIFFERENT CREEP LAWS, WITH 
AND WITHOUT CONSIDERATION OF VARIATION OF ELASTIC MODULUS 

(SYMBOLS DEFINED IN APPENDIX) 

Variable E, Eq. (9) 

eep to, days 
law tot. 

days r/J(~,7) 1()1 100 ~ --
0.5 0.525 0.804 0.811 

Cr 

11()1 1.5 0.720 0.826 0.825 
2.5 0.774 0.842 0.837 
3.5 0.806 0.856 0.848 

Eq. 0.5 0.505 0.888 0.916 
l00 1.5 0.739 0.919 0.932 

(7) 2.5 0.804 0.935 0.943 

and 
3.5 0.839 0.946 0.951 

0.5 0.511 0.912 0.973 
(9) 10' 1.5 0.732 0.943 0.981 

2.5 0.795 0.956 0.985 
3.5 0.830 0.964 0.987 

0.5 0.501 0.899 0.976 
10' 1.5 0.717 0.934 0.983 

2.5 0.781 0.949 0.986 
3.5 0.818 0.958 0.989 

0.5 0.522 0.815 0.822 
1()1 1.5 0.727 0.838 0.836 

2.5 0.783 0.854 0.849 
3.5 0.815 0.867 0.860 

0.5 0.493 0.901 0.929 
Eq. l00 1.5 0.742 0.928 0.941 

2.5 0.807 0.941 C.950 
(8) 3.5 0.842 0.950 0.956 

---
and 0.5 0.461 0,887 0.956 

10' 1.5 0.702 0.924 0.966 
(9) 2.5 ().770 0.940 0.972 

3.5 0.808 0.950 0.977 

0.5 0.434 0.838 0.940 
10' 1.5 0.657 0.887 0.955 

2.5 0.727 0.009 Q.964 
3.5 0.768 0.924 ().970 

r/Ju(t.)/r/Ju(7) 0.960 0.731 0.558 
E(to)/E(28) 0.895 1.060 LOO3 
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10' 10' 

0.009 0.798 
0.820 0.820 
0.830 0.839 
0.839 0.855 

0.915 0.848 
0.928 0.878 
0.938 0.899 
0.946 0.914 

0.981 0.846 
0.985 0.878 
0.988 0.899 
0.990 0.914 

0.994 0.828 
0.995 0.863 
0.996 0.887 
0.997 0.903 

0.821 0.809 
0.832 0.831 
0.842 Q.850 
0.851 0.865 

0.929 0.864 
0.939 0.889 
0.947 0.906 
0.952 0.919 

------
0.965 0.826 
0.972 0.859 
0.976 0.882 
0.980 0.898 

0.972 0.767 
0.979 0.811 
0.983 0.841 
0.985 0.863 

0.425 0.96() 
1.089 1.000 

Constant E 

to, days 

l00 l00 

0.811 0.811 
0.829 0.81'5 
0.844 0.837 
0.857 0.848 

0.905 0.916 
0.926 0.932 
0.939 0.943 
0.949 0.951 

-
0.937 0.974 
0.953 0.981 
0.963 0.985 
0.969 0.987 

0.927 0.977 
0.945 0.983 
0.956 0.987 
0.963 0.989 

0.823 0.81'2 
0.840 0.836 
0.855 0.849 
0.868 0.800 

0.919 0.930 
0.935 0.941 
0.945 0.950 
0.953 0.956 

-----
0.917 0.957 
C.935 0.966 
0.947 0973 
0.955 0.977 

0.873 0.942 
0.901 0.956 
0.919 0.964 
0.932 0.970 

0.731 0.558 
1.000 1.000 

10' 
---

0.809 
0.820 
0.830 
0.839 

0.915 
0.928 
0.938 
0.946 
--

0.981 
0.985 
0.988 
0.990 

0.994 
0.995 
0.996 
0.997 
--

0.8n 
0.832 
0.842 
0.851 
--

0.91'9 
0.939 
0.947 
0.952 
--

0.965 
097? 
0.976 
0.980 
--

097? 
0.979 
0.983 
0.985 

-
0.4l'5 
1.000 

¢(t,t'2 
r/J" (to) 

0.273 

0.008 

0.857 

0.954 

0.269 

0.518 

0.775 

1.034 
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1.0 

0.9 ---- constant E 

0 0.8 
10 1 102 103 

ot-
for constant E 

~ 

0 0.5 .71 .88 .99 

0.7 1.5 .77 .91 .99 - 2.5 .81 .92 .99 
>< a 3.5 .84 .94 1.0 

0.6 for variable E 
0.5 .46 .85 .99 

1.5 .65 .90 .99 

0.5 
2.5 .72 .92 .99 

3.5 .76 .93 .99 

10 10 2 10 3 104 

to (age at loading, days) 

Fig. I - Diagram of aging coefficient X It, to) at t -to 
= 104 days and various times of loading to for CEB creep 
function!, with and without cons'ideration of variation 
of E 

plots of X versus log to are not straight lines, con­
trary to the previously held opinion,! and exact 
values of X considerably differ from the values 
determined previously by an approximate an­
alysis!,3 (even when the variation of E is ne­
glected). Furthermore, again in contrast with the 
previous opinion,! the dependence of X on t is not 
always negligible, as is seen from Table 1, and 
there is no reason for the X values to be always 
greater than 0.5, as Table 1 corroborates. It should 
be also noted that, according to the above theorem, 
it is not necessary to make the assumption that 
the final value of creep coefficient, cp ( 00, to), is 
bounded (which was implied in previous work!). 

The classical effective modulus method, which 
is equivalent to the case X = 1, is known to give 
very accurate results for a nonaging material. This 
is confirmed by Table 1 which shows that X = 1 
for large to and large t - to. The correction intro­
duced by X into the effective modulus is thus due 
mainly to aging of the material rather than relax­
ation. For this reason the term "aging coefficient" 
is preferable over the term "relaxation coefficient" 
which was introduced in previous studies.!,3,4,fi 

While all the other simplified practical methods, 
such as the effective modulus method or the rate­
of-creep method, give an exact solution only when 
(J is constant or E = Eo [1 + cp (t, to)], the present 
method gives an exact solution in infinitely many 
special cases, and especially in three basic, dia­
metrically different cases, namely the case of con­
stant (J (as in the creep test), the case of constant 
E (as in the stress relaxation test; see Table 2 
discussed below); and the case E = E! cp (t, to) 
(which approximately applies to straining of a 
structure by differential creep). Most other strain 
histories represent some kind of intermediate 
situation between the above cases, and so the 
solution must usually be much. closer to the exact 
solution than with other simplified methods which 
coincide with the exact solution only in one special 
case. 

NUMERICAL EXAMPLES 

The relatively lowest accuracy is to be expected 
when strain E (t) is prescribed as a function which 
considerably differs from linear dependence on 
cp (t, to). This occurs especially in the problem of 
internal forces due to shrinkage, and therefore 
this case will be selected for a numerical example. 
The unrestrained shrinkage strain for drying ex­
posure at to = 7 days will be assumed as recom­
mended by ACI Committee 209: 2 

Esh (t) = 8 X 10-4 (,t - 7)/[35 + (t - 7)] (10) 

where t is in days. 
If concrete is perfectly restrained against de­

formation (/lE = 0), Eq. (2) and (4) give 
(J = -E" /lE" = -E"E8 h or: 

Consider now the internal force X (t) in a 
statically indeterminate structure (e.g., the mid­
span bending moment in a portal frame). If the 
structure is homogeneous, the ratio X (t) /Xels de­
fined in the Appendix must equal (J (t) /E (to) and 
is thus also given by Eq. (11). For t - to = 1000 
days and cp (00, 7) = 2.5, Eq. (9) provides: 

cp (t, to) = 2.5 X 63/ (10 + 63) = 2.16 

Plotting the values X = 0.795, 0.956, and 0.985 
for to = 10, 100, and 1000 days from Table 1 against 
log to and passing a smooth curve through these 

TABLE 2 - RATIO IN STRESS RELAXATION (E = CONSTANT) OF STRESS AT 
toto = 10,000 DAYS AFTER STRAIN INTRODUCTION TO INITIAL STRESS. CREEP 

LAW GIVEN BY Eq. (7) AND (9) WITH cp{ 00,7) = 2.35 

Method 
Age to at strain introduction, days 

10! 102 103 104 

Exact computer solution 0.179 0.343 0.425 0.496 
Present method using Table 1 0.179 0.343 0.425 0.496 
Effective modulus method 0.304 0.365 0.429 0.497 
Rate of creep method 0.100 I 0.173 0.262 0.361 

214 ACI JOURNAL I APRIL 1972 



points, the estimate ~ (t, to) = 0.75 for to = 7 days 
can be made. Eq. (10) gives: 

E8n = 8 X 106 X 1000/ (35 + 1000) = 0.000773 
Assuming, for example, that the elastic analysis 
yielded the value X e1s = 130 X 108 ft-Ib (18 X 108 

kgf-m), application of the ratio given by Eq. (11) 
yields: 
X (t) = 130 X 108 X 0.000773/[1 + 0.75 X 2.16] 

= 384 X 104 ft-Ib (532,000 kgf-m) 
Comparison of the theoretically exact computer 

solution (obtained by numerical integration of the 
integral equation of the problem) with the present 
method and other simplified methods, as well as 
the effect of variation of E, is shown in Fig. 2. The 
present method is clearly the most accurate one. 

As another example, consider the prediction of 
stress relaxation under constant strain introduced 
at age to. Substitution of Eq. (3) and (4) with 
EO = 0 into Eq. (2) with ~E = 0 yields: 

(J (t) - (J (to) = -E" (J (tu) cp/E 

I _-;::.r-- ~ Shrinkoge_,.. ...- I 
/' -Creep 

./ '" 
0 -~,. 1 

, , , , 
3 

• 
0 

0 -
w 2 

QlU) 

X 
"-...... -

, 

i~e 
a ...... -, 

/ 10" _-- F---.: • -oa , 

f> 
- 'C --; , -;: . ......: Ir-f , ..... --- ..... . .t:. •• _. - -.-I 

-~/.'/.~ 'd '.~ . /)' 
I , 

~:,' , 
'/ 'I ,,' ~ 

x !) , . 
/ " , 

o 
'" / ~--

--" 
10 

t - to days 

Fig. 2 - Relative values of shrinkage induced force in a 
homogeneous statically indeterminate structure com­
puted according to shrinkage function Eq. (10) and 
creep properties given by Eq. (7) and (9) with cp (00, 7) 
= 2.35. Curve a denotes theoretically exact computer 
solution; curve b denotes solution by present method if 
ESh(t) is considered proportional to cp (t, to) with the 
same final value as from Eq. (10); curve c is for pres· 
ent method, Eq. (II); curve d is for effective modulus 
method; curve e is for rate-of-creep method with variable 
E; and curve f denotes exact computer solution when 
variation of E is neglected. Diagram on top gives com­
parison of shapes of creep curve and unrestrained shrink­
age curve according to Eq. (10); for identica I shapes, 

present method would be exact. 
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After substitution of Eq. (5): 

According to the effective modulus method, the 
ratio 1/[1 + cp(t, to)] is obtained instead of Eq. 
(12). For the rate-of-creep method, the above ratio 
is e-t/J(t,to ). In Table 2, the prediction of these for­
mulas is compared with the theoretically exact 
solution. Clear superiority of the present method 
is apparent. (It should be noted that the ratio in 
Eq. (12) determines the reduction by creep of the 
effects of any support movement or an introduc­
tion of any additional constraints restricting creep 
deformation in structures of homogeneous creep 
properties.) 

Other examples can be found in References 1 
through 5, in which, however, the constant E 
should be replaced with the variable E (t). 

CONCLUSIONS 

1. The age-adjusted effective modulus is theo­
retically exact for any creep problem in which 
strain varies linearly with creep coefficient, in­
stant strain increment at the time of first loading 
being admissible [Eq. (1)]. 

2. The theoretical accuracy of the method pre­
sented appears to be distinctly superior to that of 
the usual effective modulus method, while in sim­
plicity both methods are equal. The method is 
also much more accurate than the rate-of-creep 
method. 

3. The method is extended for an unbounded 
final value of creep and also for the variation of 
elastic modulus whose omission is found to be 
responsible for a significant error, offsetting the 
gain in theoretical accuracy. 

4. A method of exact determination of the aging 
coefficient is presented and a table of its values 
for two typical creep functions is given (Table 1). 
These values differ considerably from those de­
termined by an approximate analysis in previous 
publications. 
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Notation 
E(t) 

ER(t, t') 

Jc(t, t') 

t or t' 
to 
X(t) 

Xs" 

SO(t) 

Eo, El 

E.h (t) 
E" (t, to) 

E(t),o(t) 
",(t, t') 

X (t, to) 

APPENDIX 

= l/Jc(t, t) = ER(t, t) =. instantaneous 
elastic modulus in time t 
age-adjusted effective modulus given by 
Eq. (5) 

= relaxation function = stress in time t 
caused by a unit strain introduced in time 
t' 

= [1 + ",(t, t') ]/E(t') = creep function = 
strain in time t caused by a unit stress 
applied in time t' 

= time in days from casting of concrete 
time t at first load application (in days) 

= internal force in time t in a statically in­
determinate structure 

= value of X caused by unit shrinkage (esh 
= 1) of the whole structure with E = 
E (to) and wi thout creep 

= prescribed stress-independent inelastic 
strain representing shrinkage and thermal 
dilatation 

= arbitrary constants in Eq. (1) 
= unrestrained shrinkage strain in time t 
= fictitious inelastic strain whose increment 

is given by Eq. (4) 
= strain and stress in time t 
= E(t') Jc(t, t') - 1 = creep coefficient = 

creep strain under constant stress in time 
t divided by initial elastic strain in time t' 

= ultimate value (or value at 10000 days) 
of '" for 9 loading at time t' [Eq. (7) 
through (g)] 

= aging coefficient defined by Eq. (6) 

Proof of basic theorem 
The uniaxial creep law may be expressed in either of 

the following two equivalent forms: 
, 

E(t) - eO(t) = f Jc(t;t') do(t') (AI) 

o 

oCt) = f ER (t,t') [de(t') - dE' (t')] (A2) 

o 

in which the integrals must be understood as Stieltjes 
integrals. 

The relation between functions Jc and ER may be ob­
tained, e.g., by considering the strain history to be a 
unit step function, that is, E = 1 for t :;" to and E = 0 
for t < to, in which case the stress response is, by defi­
nition, oCt) = ER(t,to). 

Substitution in Eq. (AI) with EO = 0 thus yields: 

Je(t,to)E(to) + 
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. , 
j aER(t', to) dt'-_l (A3) 

Jc(t, t') at' 

for t > to. 

Combination of Eq. (5) and (6) with the relation: 

<p(t,t') =E(t') Jc(t,t')-l 

gives: 

E"(t,to) = [E(to) -ER(t,to)]f<p(t, to) 

If one substitutes this relation with Eq. (1), (3), and 
(4) in Eq. (2) and notes that 0 (to) /E (to) = eo, Eq. (2) 
becomes: 

oCt) = o(to) + [E (to) - ER (t, to)] [Sl - £0] (;A4) 

for t :;" to. 

Insertion of this expression and Eq. (1) into Eq. (AI) 
yields: 

Eo + el [E(to)Jc(t,to) - 1] = Jc(t,to)o(to) -

, 
(£1 - eo) f Jc(t,t') aE~;t',to) dt' (A5) 

to+ 
or 
Eo - E1 = E (to) Jc(t,to) (eo - E1) + 

, 
(Eo - €i) f Jc(t,t') oE~~,t') dt' (A6) 

to+ 

If Eo = El, this equation is identically satisfied, and if 
Eo ~ E1, Eq. (A6) may be divided by (Eo - el) which 
yields identity Eq. (A3). Noting that a backward trans­
formation from Eq. (A3) through Eq. (A6) and (A5) to 
Eq. (2) through (6) is also possible, Eq. (2) through 
(6) are shown to be correct and exact for any Eo and £1. 

Computation of aging coefficient 
Determination of X requires the stress relaxation func­

tion to be determined from the given creep function. 
This can be done by solving Volterra's integral Eq. (A3), 
which is best carried out numerically. For this purpose, 
time t may be subdivided by discrete times tt, ... tn 
into n time steps /). tr = tr - t'-l (r = 2,3, ... n); one 
conveniently puts to = tt, expressing the fact that the 
first load increment is instantaneous, tt = O. If the inte­
gral in Eq. (A3) is approximated by a finite sum with 
the help of the trapezoidal rule, then, after subtracting 
the forms of Eq. (A3) for t = tr and t = t r -l, the fol­
lowing recurrent equation (whose error order is a ~f.!) 

for the increments ~ERr = ER (tr, to) - ER (tr -l, to) 
is obtained: 

r-1 
!. 1h~ER8 (JCr,8 + JCr,8_1 - JCr _ 1,8 - JCr _1,8_1) 
8=1 

(r = 2,3,4, ... ) 
(A7) 

where JCr,8 = Je(tr, ts) and the starting value is 
ER1 = E(to). 

Computation of the relaxation function and the aging 
coefficient from this equation and Eq. (6) is a simple 
task and may be programmed with only a few FOR­
TRAN statements. The time steps ~tr are best chosen as 
increasing in a constant ratio, such as ~tT/ ~.tr-l = 101/ 16• 

The first time step ~t2 should not be chosen larger than 
the value of the elapsed time t - to for which ",(t, to) 
equals about 0.01. Accuracy of Eq. (A7) is quite satis­
factory and, for a typical creep function of concrete, 
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one can obtain results whose first three decimals are 
exact if the ratio t:..tr/ ~tr-l d()es not exceed the above 
value. Although for long creep periods, such as 30 years, 
Eq. (A7) involves rather long sums, the computation 
time with a computer such as a CDC 6400 is short. (For 
creep function Eq. (7), computation of all values 
ER (tr, to) for T = 1, ... 100 and one fixed to requires 
about 20 sec.) 

Multiaxial stress 

In this case, owing to isotropy, the linear creep law 
may be expressed by one relation between the volu­
metric components and one relatio'n between the cor­
responding deviatoric components of stress and strain. 
Both of these relations are analogous in form to Eq. 
(AI) or (A2) and are mutually independent. Hence, 
the basic theorem with Eq. (1) through (6) may be 
reformulated for volumetric and deviatoric components, 
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obtaining different values of X (and </» in each case. 
Approximately, however, the Poisson ratio in creep is 
constant and then the creep functions for volumetric 
and deviatoric creep are both proportional to Jc(t, t'). 

Then, the fictitious inelastic volumetric and deviatoric 
strain increments are both equal to the </>(t, to) multiple 
of the initial elastic strains, and the age-adjusted bulk 
and shear moduli, analogous to E", are: 

K"(t, to) = K(to ) 
l+x(t,to) </>(t,to ) 

} (AS) 

G" (t, to) = G (to) 
1 + x(t, to) ",(t, to) 

where K and G are the actual instantaneous bulk and 
shear moduli. 
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