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ABSTRACT Rapid spread of Coronavirus disease COVID-19 leads to severe pneumonia and it is estimated

to create a high impact on the healthcare system. An urgent need for early diagnosis is required for precise

treatment, which in turn reduces the pressure in the health care system. Some of the standard image diagnosis

available is Computed Tomography (CT) scan and Chest X-Ray (CXR). Even though a CT scan is considered

a gold standard in diagnosis, CXR ismost widely used due to widespread, faster, and cheaper. This study aims

to provide a solution for identifying pneumonia due to COVID-19 and healthy lungs (normal person) using

CXR images. One of the remarkable methods used for extracting a high dimensional feature from medical

images is the Deep learning method. In this research, the state-of-the-art techniques used is Genetic Deep

Learning Convolutional Neural Network (GDCNN). It is trained from the scratch for extracting features for

classifying them between COVID-19 and normal images. A dataset consisting of more than 5000 CXR image

samples is used for classifying pneumonia, normal and other pneumonia diseases. Training a GDCNN from

scratch proves that, the proposed method performs better compared to other transfer learning techniques.

Classification accuracy of 98.84%, the precision of 93%, the sensitivity of 100%, and specificity of 97.0%

in COVID-19 prediction is achieved. Top classification accuracy obtained in this research reveals the best

nominal rate in the identification of COVID-19 disease prediction in an unbalanced environment. The novel

model proposed for classification proves to be better than the existingmodels such as ReseNet18, ReseNet50,

Squeezenet, DenseNet-121, and Visual Geometry Group (VGG16).

INDEX TERMS Genetic Deep Learning Convolutional Neural Network (GDCNN), Computed Tomography

(CT), Chest X-Ray (CXR), Artificial Intelligence (AI).

I. INTRODUCTION

Novel coronavirus has been formally named as Severe

Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2)

is responsible for causing Coronavirus Disease 2019

(COVID-19) [1]. Few symptoms of COVID-19 are cough,

fever, a disease of the respiratory system and in some

cases, it leads to pneumonia [2]. Generally, pneumonia is

termed as the infection that causes inflammation to air sacs

present in the lungs for oxygen transfer. The other way of

pneumonia infection is fungi, bacteria, and other viruses.

The reason for severity is chronic diseases such as bronchitis

or asthma, impaired or weak immune system, smoking, and
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aging people. The infected peoples are treated based on the

infected organism, however, cough medicine, pain reliever,

fever reducer, and antibiotics are given to patients based

on the symptoms. If the patient is severely affected, they

have to be hospitalized and treatment must be given in the

Intensive Care Unit (ICU), if needed ventilator to be provided

for breathing [3]. The pandemic of COVID-19 is due to its

seriousness and its faster transmissibility [4]. Greater impact

in the health care department is mainly due to the number

of people getting affected day by day, as they need to provide

mechanical ventilator for the serious patient admitted in ICU.

Hence, number of beds in ICU also need to be increased

drastically [5]. In the above situation, the initial diagnosis is

vital for proper treatment which, in turn, reduces the pressure

on the health care system.
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Artificial Intelligence (AI) provides a major breakthrough

for the diagnosis of COVID-19 and other types of pneu-

monia. Pneumonia is diagnosed using some of the standard

images such as Computed Tomography (CT) scan and Chest

X-Ray (CXR). The primary source for evaluating pneumonia

is CXR, as CXR leads to misdiagnosis and less precision.

However, CXR is used because of its cheaper rate, less expo-

sure to radiation for patients, faster, and it’s readily available

in all health care systems [6]. Identification of pneumonia is

no easy task, as the reviewer needs to look into the white

patches present in the lungs and most of the air sacs filled

with water or pus hence, it is a tedious process to differentiate

between bronchitis or tuberculosis [7].

The concepts of COVID-19 pandemic and pneumonia

disease, hierarchical, and flat classification merge in our

work are presented in this section. Furthermore, background

related to data imbalances is also discussed.

A. COVID-19 PANDEMIC AND PNEUMONIA DISEASE

The first COVID-19 case was reported in Wuhan, China, and

it is gradually starting to spread across the rest of the world

within a short interval of time. This indicates that the number

of cases reported increases exponentially, as of now more

than 8.24 million confirmed cases worldwide [1]. COVID-19

Epidemiological characteristics are still under the process

of investigation, evidence prove that more or less, 80% of

patients are in mild condition with few asymptomatic and

approximately 20% are in severe condition among, this 10%

have to be in ICU with ventilators [8]. The most important

concern is the number of patients admitted to the ICU as there

are only limited beds. The major problem of COVID-19 is

pneumonia, as it infects a portion of the lung, which transfers

gas termed as pulmonary parenchyma. Some of the organisms

like fungi or bacteria and viruses are also present. Generally,

pneumonia is termed as a group of diseases, hence diagnosis

also needs to be different, therefore, Chest X-Ray image and

CT scan used for diagnosis [9].

B. CLASSIFICATION OF CLASSES

Flat classification involves multi-label, binary, and multi-

class classification problems, however, multi-label includes

multiple classes, and the output is associated with each

other. Binary classification is stated as the task of classify-

ing the images from the given dataset into two categories

on the basis of classification rules. Some of the methods

used for classification are random forests, decision trees,

support vector machines, Bayesian networks, probit models,

neural networks, and logistic regression. Table 1 shows the

parameters explanation in terms of symbol and its explana-

tion. The features are represented by ‘x’ containing a set

of parameter’’x1,x2‘’ and it is shown in equation (1). The

output is represented by ‘y’ as in equation (2), a decision

function based on the weight for each parameter is evaluated

using equation (3). The algorithm function is represented by

equation (4), thus the number of parameters is based on the

TABLE 1. Parameter explanation.

real value function using equation (6).

Features x = (x1, x2) (1)

Target (y ∈ {−1, 1}) (2)

Decision function

d(x) = w0 + w1x1 + w2x2 (3)

Algorithm function

a(x) = sign(wT x) (4)

d(x) > 0 (5)

Number of Parameter

d(w ∈ Rd ) (6)

It is clear from the above context that pneumonia is based

on multi-class classification, as many features need to extract

from CXR images however, one label needs to be associated.

Silla et al. stated taxonomy is considered to organize a tree
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hierarchy defined on the basis of incomplete order set [10]

Moreover, the various ways to handle hierarchical classifica-

tion problems in regards to labeling classification process also

discussed [11]. Local classifiers (LC) are an approach that

considers hierarchy and partial local information perception

and thus allowing the multi-class/binary classifiers to handle

the problem in a local manner [12], [13]. Furthermore, the

Global Classifier (GC) approach is a unique classification

model built based on the training dataset. Considering class

hierarchal as a whole, thus significant information on the

pneumonia labels is found in the entire class hierarchy, thus,

GC approached is widely used [14], [15].

Multi-class classification output is given by ‘y’ using

equation (7), the number of parameters is stated by the equa-

tion (9) and classification accuracy using equation (10).

Multi class classification

(y ∈ {1 . . . . . . k}) (7)

a(x) = arg _max(wT
k x).k ∈ {1 . . . .k} (8)

Number of parameter

k ∗ d{wk ∈ Rd } (9)

Classification accuracy

1

l

l
∑

i=1

[a(xi) = yi] (10)

Class probabilities and the class score based on logits from a

linear models using equation (11)

z = (wT x1, . . .w
T
k x) (11)

(ez1 . . . . . . .ezk ) (12)

Applying Softmax transform is represented by equation (13)

σ (z) = (
ez1

k
∑

k=1

ezk

. . . . . . ..
ezk

k
∑

k=1

ezk

) (13)

Loss function

Multi class loss function is predicted by class probabilities

model output using equation (14)

Ls = −
1

M

M
∑

i=1

log
exp(wT

yif(xi) + byi)

C
∑

j=1

exp(wT
j f(xi + bj))

(14)

M = mini batch size, f (xi) = corresponding output of the

penultimate layer of the DCNN, C = number of classes,

w = last layer weight and b = last layer bias.

Target value for class probabilities using equation (15)

p = ([y = 1], [y = k]) (15)

Similarity between ‘z’ and ‘p’ can be measured by the cross

entropy using equation (16)

−

k
∑

k=1

[y = k] log
ezk

k
∑

j=1

ezj

= − log
ezy

k
∑

j=1

ezj

(16)

C. IMBALANCENESS DATA AND RESAMPLING

Class imbalance distribution problems have been faced

by most researchers whenever, they deal with the real

datasets [16], [17]. However, classifier focus on minimizing

the global error rate, thus the algorithm concentrates on the

majority classes, but, it also focuses on minority classes

based on the problem domain such as medical image clas-

sification and credit card fraud detection [18], [19]. In the

real world, classifying pneumonia type using CXR images

is also considered as imbalanced learning as there are only

a few people with affected pneumonia than considering

health persons [20], [21]. On the other hand, the number

of people affected by various types of pneumonia disease is

also imbalance [22], [23]. Currently, the number of people

affected by COVID-19 is very larger than compared with

the people affected by MERS, Severe Acute Respiratory

Syndrome Coronavirus (SARS), Streptococcus, Varicella,

and Pneumocystis [24], [25]. The imbalance problem in clas-

sification datasets has been resolved by the various authors

and one such technique is data level solutions [26], [27].

The techniques focus on re-balancing the class distribution

using resampling the dataset which reduces the consequence

of class imbalances, in other words, before the training phase,

pre-processing the dataset has to be done [28], [29]. Resam-

pling further subdivided into two types, undersampling and

oversampling. Both types are used to fine-tune the class

distribution of a dataset, thus, it is the ratio among the various

classes in the datasets. Undersampling includes removal

of majority classes for distribution of samples, whereas,

in oversampling few instances are duplicated tomain the class

distribution [30].

D. DEEP CONVOLUTIONAL NEURAL NETWORKS (DCNNS)

The standard of many computer version tasks is greatly

enhanced over the period with the help of Deep con-

volutional neural networks (DCNNs), some of them

are GoogLeNet [31], AlexNet [32], DenseNet [33],

VGGNet [34] and ResNet [35]. DCNN is a professional

system that reduced the infinite amount of human exper-

tise involved in the analysis of data. Thereby, providing an

identical feature extraction classification model to reduce the

burden of handcrafted extraction in case of network design.

In designing DCNN architecture, the main ambition of artifi-

cial intelligence is to develop an autonomous learning system

with less human intervention also needs to consider [36].

In recent years research focused more attention in automated

design of DCNN architectures, which in turn leads to the

development of many algorithms and it is generally cate-

gories into four groups: (1) Evolutionary optimization of

DCNN architectures, (2) Optimization in DCNN architec-

tures using deep learning, (3) DCNN architectures, selection

in an available group of candidates and (4) DCNN archi-

tecture optimization using reinforcement learning. Among

the four categories, evolutionary optimization proved to be

a more promising approach in the case of multi-point global
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search thereby, leading to high-quality optimization solutions

in complex search space [37]. Despite the success, many

evolutionarymethods have some restrictions onDCNN archi-

tecture some of them are fixed filter size, fixed pooling size,

fixed depth, avoiding pooling operation [38], or avoiding

crossover operation [39] and fixed activation function [40].

All these restrictions leads to a reduction in computational

complexity which in turn leads to performance degradation.

Thus, for parallel optimization using evolutionary methods,

thousands of computers are required [41].

Many classifiers that incorporate Genetic Algorithm (GA)

techniques use a single–phased GA such as Non-dominated

sorting GA-II (NSGA-II) (Deb et al. 2002). A classifier

model based on bi-phase needs to be developed which

includes classification rule extraction. Local heuristic search

techniques are used for pattern discovery with rule induction

methods in case of data mining (Chiu et al. in 2005). The

major issue with the local search method is that it frequently

gets trapped with local optima and furthermore it is sensitive

to the initial solution. The above drawback is overcome by

using GA as it discovers the best classification rules, more-

over, local optimum issued is also addressed. Better feature

interaction is done with GA than compare to the greedy

rule induction algorithm, (Freitas et al. in 2003) some of the

issues that exist in the GA is that, as there is no guarantee of

achieving global optimum and its computational cost linearly

increases with the search space. Fuzzy classification rules

are easily understood by humans as it deals with the uncer-

tainty problems but the only drawback is that the complexity

involved is more in fuzzy classification rule extraction than

crisp classification rule extraction (De Jong et al. in 1988).

In this research, the proposed genetic-based DCNN design

for spontaneously producing the architecture of a DCNN to

solve image classification issues. The complexity involved

DCNN architecture is reduced by developing a suitable

encoding schemewhich includes all the operations performed

in the DCNN, some of them are pooling convolution, acti-

vation, batch normalization, drop out, optimizer, and full

connection is encoded in the form of integer vectors.

The main aim of this research is to explore the various

types of pneumonia due to pathogens using CXR images.

CXR image samples are used because of its advantages in

terms of faster and minimal cost. Even though CT scans hold

the better standard in the diagnosis of pneumonia, the major

setback is it is costly and scarce. Our main aim is to predict

COVID-19 pneumonia using CXR images, as it is widely

spread across the world. The validation of the precision is

done using a Macro-Avg F1-score. Since the database is

imbalanced known resampling techniques are used. CXR

images are analyzed by identifying the texture which is one

of the main attributes present, thus, exploring a few texture

descriptors used for training CNN models. A hierarchical

classification approach is used for extraction features and a

Genetic based deep learning approach is used for prediction

of COVID-19 and other pulmonary diseases. Dataset consist-

ing of more than 5000 image samples is chosen for prediction

of COVID-19, from publicly available dataset consisting of 2,

24,316 Chest X-ray.

Section I describes the pandemic situation in the health

care system due to COVID-19 and the early reasons

for diagnosing it. Section II states the existing tech-

niques used for classification of images and Deep Learning

Convolutional Neural Network models used for prediction

of COVID-19. Section III depicts the proposed Genetic

Deep Learning Convolutional Neural Network comprising of

Ordered Distance Vector population techniques for optimal

prediction of COVID-19. Section IV represents the exper-

imental analysis of the proposed work and it is compared

with the existing DCNN models. Some of the parameters

used for performance analysis are sensitivity, accuracy, speci-

ficity, recall, precision and F1-score. Final conclusion of the

proposed GDCNN models in future works.

II. RELATED WORKS

In-depth study of various techniques used for classification

of images is performed. Furthermore, discussed the existing

DCNN models used for prediction of COVID-19 using CT

and CXR images. The analysis is stated in terms of accuracy

for various prediction models. Comprehensive study is per-

formed in automation of DCNN architecture for searching

and classification of images.

Nanni et al. in 2010 [41] compared different texture

descriptors which are handcrafted and obtain from Local

Binary Pattern (LBP) used in medical applications. Three dif-

ferent LBP evaluators are Elongated Quinary Pattern (EQP),

Local Ternary Pattern (EQP), and Elliptical Binary Pattern

(EBP) [42]. These descriptors are calculated on various medi-

cal applications such as classification of cell phenotype image

with 2D- hela dataset [43]. Detection of pain expression with

a facial image of COPE database and Papanicolaou test used

for diagnosing cervical cancer. Data is collected from Herlev

university containing 917 images obtained from the micro-

scope and digital camera. Support Vector Machine (SVM) is

used for validating the EQP descriptor and it performs com-

paratively better for all the tasks. Parveen et al. in 2010 [44]

carried a texture analysis of images used in radiotherapy

applications. The mathematical technique stating grey-level

patterns in case of tumor heterogeneity. Specially focused on

tissue, causing radiation and for tumor, analysis is performed

based on radiotherapy medical images. The major drawback

of this technique is that it lacks in the biological interpretation

of predicting tissue infected by radiation [45].

Zhou et al. in 2020 [46] suggested a deep learning

model for distinguishing influenza pneumonia taken from

CT images and novel coronavirus pneumonia. CT images

are better than CXR images as it shows pulmonary infec-

tion clearly but it’s much costlier. Li et al. [47] identified

COVID-19 using Artificial Intelligence (AI), thus dataset

comprising of affected COVID-19 images, various pneumo-

nia, and diagnosed patients with pneumonia. The images are

gathered from Chinese hospitals containing 2969 images of

the training set, viral pneumonia 1396, more than 400 images
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of COVID-19 patients, and 1173 non-pneumonia. K. He,

X. Zhang et al. in 2016 [34] stated the 3D learning model

for prediction of COVID-19, non-pneumonia, and various

viral pneumonia and CT image is given as input. The output

of the prediction clearly shows that for COVID-19 AUROC

value is 0.96 and for other viral pneumonia is 0.95.

Narin et al. in 2020 [48] detected COVID-19 using CXR

images with three unique deep neural networks such as Incep-

tionResNetV2, ResNet50, and Inception-V3. The dataset

consists of 100 CXR images comprising of 50 COVID-19

positives and 50 COVID-19 negatives. The result is validated

using a fivefold cross, where 87% of accuracy is achieved for

inception-ResNetV2, 97% for Inception-V3, and 98% using

the ResNet50 model. Gozes et al. in 2020 [49] detected the

COVID-19 using deep learning models with CT images as

an input. The evolution is performed for patients with the

help of 3D volume, thereby, producing cornea score. The

main aim of the work is to track the progress COVID-19,

the dataset consists of 157 CT images collected from the

USA and China. Furthermore, detection has been carried out

using 3D and 2D deep learning models, with few changes in

the already existing AI models and associated with clinical

understanding. With AUROC of 0.996 differentiating with

non-corona image and cornea images.

Wang et al. in 2020 [50] developed COVID-Net which

is an open-source deep neural network used for detecting

COVID-19 with CXR images. The dataset is created in such a

way it supports COVID-Net experimentation thus, compris-

ing of 16,756 patients. COVID-Net architecture developed on

the basis of best practices and human-driven design merged

with network architecture. The detection is performed with

92.4% accuracy, sensitivity rate 95%, and the infection rate

is 80%. Khan et al. in 2020 [51] developed a CoroNet

using Convolutional Neural Network (CNN) for detecting

COVID-19 with input as CXR images, moreover, this model

is based on Extreme Inception which consists of 71 layers

of trained images using ImageNet dataset. It detects that

330 patients are affected by bacteria, 310 normal patients,

284 COVID-19, and 327 viral. F1-scores of 0.93 and 0.87

average accuracies, the major problem with this approach is

the dataset used, as it is not publicly available. Furthermore,

the hierarchical classification is not addressed. Ozturk et al.

in 2020 [52] stated a deeper model for the detection of

COVID-19 with CXR images, thus, classification is per-

formed based on binary and multiclass. The proposed

model obtains an accuracy of 98.08% in the case of binary

classification, whereas, 87.02% for multi-class.

Many researchers contributed a lot of effort in automat-

ing DCNN architectures for searching and classification of

images. Jin et al. [53] proposed super-modular and sub-

modular optimization in the construction of DCNN archi-

tecture and proposed rules for setting the depth and width

of DCNN. Fernando et al. [54] proposed a new algorithm,

termed PathNet algorithm which models sub-network from

super DCNN architecture and proven that the proposed

algorithm is capable of supporting transfer learning both

in reinforcement and supervised learning settings. More-

over, optimization of the architecture/weights of DCNN is

done using another deep neural network. Ha et al. [55]

used a Discrete Cosine Transform (DCT) and hyper net-

work to progress weights of fixed DCNN architecture.

De Barbandere et al. [56] used producing filters for DCNN

architecture to take care of dynamic filter networks, which

is divided into a dynamic filtering layer and filter-generating

network. The filter generating network produces runtime

sample-specific filter parameters based on input condition

and dynamic filters use those filters as an input. Nowa-

days reinforcement learning is used in design architectures

of DCNN, Zoph and Le [57] maximize the accuracy of

image validation in DCNN architectures using the recurrent

neural network, which is trained by reinforcement learning,

however, in this technique, a fixed depth in DCNN archi-

tecture is created on each layer by layer, thus allowing a

fixed number of filters and fixed filter size. Furthermore,

it uses asynchronous parameters with 800 graphs processing

units (GPUs) and distributed training.

Baker et al. in 2016 [58] on the basis of reinforcement

learning introduced MetaONN techniques for DCNN archi-

tectures. Furthermore, the techniques use a Q-learning agent

to exploit and explore the space ideal architectures based on

experience replay and greedy strategy. In the design of the

neural networks, many evolutionary algorithms have already

been applied. Miikkulainen et al. in 2017 [59] proposed tech-

niques containing all neurons associatedwith DNA, produced

architecture by mutation techniques are divided into three

types (1) weight modification (2) whenever splitting connec-

tion occurs a new neuron had to be inserted (3) a new con-

nection is added to the existing connections. Suganuma et al.

in 2017 [60] suggested the CoDeepNEAT algorithm where

chromosomes populations are created with minimal com-

plexity. Furthermore, the structure is added iteratively via

mutation generations. Minaee et al. [61] proposed genetic

programming for DCNN architecture and it is encoded by

Cartesian genetic programming which is directed acyclic

graphs having a two-dimensional grid-based on computa-

tional neurons moreover, it is said to be a more dominant

algorithm. The algorithm uses a heuristic search for selection

and fitness function. Wang et al. in 2020 [62] proposed

Genetic DCNN based on a fixed-length binary string encod-

ing scheme, only the pooling layer is considered for encoding

and thus neglected fully connected layer thereby it leads

to minimum number of layers with least filter number and

filter size. Real et al. [40] designed a DCNN architecture for

CIFAR-100 dataset with the help of GA, the DNA encoding

scheme is used. Basically, this architecture originated based

on the mutation operations furthermore, encounters filters

size is dealt with by restructuring non-primary edges along

with interpolation. DCNN architecture produced by these

techniques is fully trained and uses a distributed algorithm

which involves more than 250 computers. Desell et al. [39]

proposed the EXACT method comprising flexible filter size

and connection on the basis of GA using asynchronous
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evolutionary techniques. It includes more than 4500 dedi-

cated computers. The MNIST dataset is used to train the

model for 120000 DCNN [53].

Matteo Polsinelli et al. in 2020 [63] proposed a light

Convolutional Neural Networks (CNN) for diagnosing

COVID-19 using CT images. Few changes in the SqueezeNet

CNN model are made, thereby, achieving 83% of accuracy,

specificity of 81%, 81.73% of precision, F1-score of

0.8333 and with 85% of sensitivity. Shreshth Tuli et al.

in 2020 [64] proposed Long-Short-Term-Memory method

based on Weibull for predicting started and ending the cycle

of COVID-19. Basically, this model is used for understand-

ing the relationship between infection rate and deaths. The

model works on cloud which is useful for dynamic predic-

tion and helpful in providing guidelines for administration,

policy makers and health care system. Adarsh Kumar et al.

in 2020 [65] proposed a drone based on network system

for identifying the number of people affected by COVID-19.

The model is deployed in remote and congested areas, where

there doesn’t exist internet or wireless connectivity. The

model is used for health care system for sanitizing and

identifying the infected patients. Parnian Afshar et al. in

2020 [66] proposed a framework based on capsule network

termed as COVID-CAPS for identifying COVID-19 using

X-ray images. Themajor drawback of the proposedmethod is

that it is used for small datasets, however, accuracy of 95.7%,

specificity of 95.8 and a sensitivity of 90% is achieved.

The existing models proposed by various author lacks

in the accuracy and the computation time for prediction of

COVID-19 is also considerably larger. Hence, there arises a

need for early prediction. The architecture needs to be contin-

uous and autonomous learning algorithm for early diagnosis

using XRay image samples.

III. METHOD

Proposed an independent and continuous learning algorithm

for generating a DCNN architecture spontaneously. The

process includes the operations of partitioning DCNN into

numerous weighted fully connected and meta convolutional

block. Each block possesses the operations like pooling, con-

volution, batch normalization, dropout, fully connection and

activation operation. Thereby converting the DCNN architec-

ture into a standard integer code. The genetic operations such

as selection, crossover and mutation process are performed to

evolve the population for DCNN architectures. The individ-

ual population is increasing and progressed using the design

of the proposed genetic DCNN. Furthermore, encoding is

performed with acceptable DCNN architecture. Population

initialization is performed randomly using random function,

moreover fitness of each individual is calculated based on

the performance of genetic DCNN encoding used for specific

image detection problems. On the basis of the existing gener-

ation, a new generation is performed using genetic operators

such as selection, crossover operator, and mutation for impro-

vising overall fitness values. The evolution is carried out in

iteration manner based on generation- by- generation till it

reaches the criteria or for a particular generation number.

A. ENCODING SCHEME

The proposed genetic based DCNN architecture evolved on

the basis of locus on a chromosome. Thus chromosomes are

divided into two parts, namely, q-arm and p-arm. Gene map

is termed as the method of loci known for a specific genome.

Operations need to be performed by DCNN is observed as the

loci on a chromosome, thereby, it is clear that, based on gene

map all the encoding operation of DCNN is performed. Basi-

cally, convolutional block has five major operations, they are,

convolution, pooling, normalization, drop out and activation.

Furthermore, convolution operation contains two parameters

such as the size of the filter ‘Sf ’ and number of filter ‘Nf ’.

Convolutional block has 6 loci (locichrom = 6) in the order as

[Nf Sf BnPDA], Bn state batch normalization, ‘P’ for pooling,

‘D’ dropout and ‘A’ activation. Likewise, fully connected

block has four loci in an orderly manner and encoded as

[Nf BnDA]. The DCNN architecture is also influenced by the

optimizer ‘O’.

FIGURE 1. Encoding scheme.

Table 2 shows the range of values at every locus of the

code, (Nf ) various from 16 to 512, Sf are 7 × 7, 5 × 5 and

3 × 3, pooling operation is indicated by three values they

are 0, 1 and 2. ‘0’ denotes no pooling, ‘1’ state’s maximum

pooling and ‘2’ for average pooling. Usually Bn take the

value ‘1’ and ‘0’, ‘1’ indicates batch normalization is per-

formed and ‘0’ not performed. ‘A’ various from 0 to 5 stating

ELU [2], ReLU [8], PReLU [12], TReLU [18], softmax

and LeakyReLU [22]. The value of ‘O’ ranges from 0 to 6

denoting SGD [6], Adadelta [17], Adamax [31], Adam [31],

Adagrad [35] and RMSprop [36]. Thus, based on the cod-

ing scheme p-arm contains the sequence [Nf Sf Bn PDA]

[Nf Sf Bn] and q-arm sequence is [Nf Sf Bn DA].
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TABLE 2. Parameter range.

B. INITIALIZATION

Ordered Distance Vector population initialization techniques

are used, which inhabit individual diversity, randomness and

potential sequence. This is shown using equation (17). The

individual populations are produced and this type of popula-

tion has a more potential permutation of images and better

individual diversity. Thus, it is more effective and better

solution with minimum convergence time.

PODV =













θ1(c1), θ1(c2), θ1(c3) . . . ., θ1(cn)

θ3(c1), θ3(21), θ13(c3). . . . ., θ3(cn)

θ2(c1), θ2(c2), θ2(c3). . . . ., θ2(cn)

. . .

θ0(c1), θ0(c2), θ0(c3). . . . ., θ0(cn)













(17)

Deep Convolutional Neural Network (DCNN) with convolu-

tional block is stated as N c
n and with ‘n’ filter it is N

f
n .

PODV = {[Nf Sf BnPDA]
N c
n

I=1, [Nf BnDA]
N
f
n

i=1,O}

(18)

Code length cl = N c
n ∗ lc + N f

n ∗ lf (19)

The selection is based on the highest fitness value obtained

by each individual. Only those with higher fitness ranking

guarantees highest fitness value using elitism roulette wheel

selection scheme shown in equation (18) and code length

using equation (19).

C. CROSS OVER OPERATOR

A pair of DCNN PODVi and PODVj is selected, thus a point

is located randomly to break the DCNN architecture in two

segments. Two newDCNN segment is generated by swapping

them, that is P′
ODVi

and P′
ODVj

thus the depth is different

compared with parents. Let us assume, cross point ‘ki’ is

chosen within the ‘cpi’convolutional blocks [Nf Sf BnPDA]cpi
on the convolutional arm selected ‘[Nf BnDA]PODVi position is

stated as ‘(cpi − 1)∗lc + x’ similarly, other convolutional arm

cpj and its position is stated as (cpj−1)∗lc+x. The code length

of the cross operator is given by the equation (20) and (21).

C ′
l(i) = Ci + (cpi − cpj)

∗lc (20)

C ′
l(j) = Cj + (cpj − cpi)

∗lc (21)

It is clear that ‘8’ learnable layer is needed if the cross point

is ‘ki’ is positioned at ‘3lc + 1’ and 11 learnable layers

are required at the cross point ‘kj’ positioned at ‘5lc + 1’.

Furthermore, after crossover operation the number of layers

for DCNN required is 9 and 10 respectively, which is shown

in equation (22) and (23),

N c
n ∗ lc + (cpi − 1)∗1c + x (22)

N c
n ∗ lc + (cpj − 1)∗1c + x (23)

D. MUTATION

DCNN architecture is altered by applying the mutation oper-

ator, these mutation operation maintains the diversity in each

generation. The new DCNN architecture is accelerated using

‘qm’ for the population ‘PODV ’ in the range [ 8
Ln

, 0.5]. Once

the mutation process completed, there will be a change in

convolutional block (example from 5× 5 to 3× 3, or 7× 7 to

5 × 5), in some case the max pooling layer may be removed

and in fifth convolutional layer there will be change in batch

normalization process such as 327 to 513. Furthermore, opti-

mizer change from Nadam to RMSprop. The figure 2 shows

the proposed GDCNN designer, it tries to improve the indi-

vidual population with a permitted encoding scheme, CXR

image samples are initialized and the fitness of an individual

is validated based on the encoding using unique classification

problem. On the basis, of present generation new generation

is produced using genetic operation which include selection,

crossover and the process of mutation. Thus, overall fitness is

improved furthermore evolution is performed at generation,

until it reaches the defined number.

E. GENETIC DEEP CONVOLUTIONAL NEURAL

NETWORK_ ALGORITHM

The process involved in the genetic DCNN design archi-

tecture is, population initialization where the population

is initialized randomly, thereby, it continuously progresses

the population on the basis of generation-by-generation for

developing better architectures using redefined genetic oper-

ations. The Selection operation involves creating a random

operation and batch normalization process is performed.

Feeding population to convolution neural network acti-

vation is processed and maxpooling is performed, train the

GDCNN model for achieving fitness value. Furthermore,

model fitness is produced using a generator. Selection,

Crossover, and mutation activation are performed. The pro-

posed approach is evaluated on two image classification

data set for identifying pneumonia, COVID-19, normal and

other pneumonia diseases. Our results show that proposed

genetic-based DCNN architecture outperforms well and its

performance is comparable to the state of the art.

IV. EXPERIMENTAL ANALYSIS

The experiment is performed using Intel i7 2.50 GHz and

NVIDIA Tesla TitanXp GPU, 512 GB memory, 240 SSD,

and tensor flow. Furthermore, the dataset is downloaded from

github repository consists of more than 5000 chest x-ray

images which include COVID-19, normal, and other pneu-

monia diseases.
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FIGURE 2. Proposed GDCNN design.

A. DATASET

The dataset is collected from various parts of the world

based on the publications containing chest x-ray images,

thus, it requires proper care to verify the labels with board-

certified radiologist specialists. The dataset consists of chest

x-ray samples of clear sign of COVID-19 using radiologists,
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Algorithm 1 Genetic Deep Learning Convolution Neural Network_ Algorithm

Input: 5000 chest x-ray images (collection of images, training and test data).

Output: Accuracy, sample loss, val _loss,val_acc.

Step1: Initialization

Input the 5000 chest x-ray images (training and test data)

Step2: Create random operation

Batch Normalization process

Step3: Feed population to Convolution neural network

Activation,

conv2D(512, (3 x 3 ), padding = same, usebias = false)

maxpooling (pool size = (3, 3)

Dropout

Step4: Train GDCNN and get its fitness

modelfit:generator(datagen.flow(x train, y train, batch size = batch = size),

steps per epoch = x train,shape[0](batch size, epoch = epochs,validation data = (x test, y test),

callbacks = [plot])

else

modelfit:(x train, y train, batch size= batch size, epoch= epochs, validation data= (x test, y test), shuffle= true, callbacks

= [plot]

Step 5: selection, crossover, mutation

Activation,

conv2D (512, (3 × 3), padding = same, use bias = false)

maxpooling (pool size = (3, 3)

Dropout

Step 6: New populations train GDCNN and get its fitness

Evaluate solution based on fitness value

Step 7: Check optimal solution based of fitness function

If (optimal solution == fitness value)

Optimal solution obtained

Step 8: Fitness value (optimal solution)

Return optimal solution

and hence these samples contain only anterior-posterior

images. Furthermore, this dataset consists of 2,031 chest

x-ray training images and 3,040 chest x-ray testing images.

The dataset consists of more than 5000 image samples and it

is downloaded from the publicly available repository, GitHub

link ‘‘https://github.com/shervinmin/DeepCovid/tree/master/

data’’ the image source of the dataset is created from the exist-

ing dataset such as chexPert dataset consists of non-COVID

samples and COVID-chest x-ray-dataset of COVID-19 chest

x-ray samples. The dataset contains the parameters such

as age and sex, thus 102 COVID-19 chest x-ray image

with a clear indication of COVID-19 certified by a special-

ist in radiology. Thus out of 5000 images, 71 chest x-ray

images are not taken into account as they are less-reliable

posterior-anterior images with COVID-19. Data augmenta-

tion is used for increasing the sample size and thus after

applying rotation, flipping, over-sampling and small dis-

tortion, 496 COVID-19 image samples from the training

set. To increase the non-COVID image samples additional

images are fetched from the ChexPer dataset, as it’s a large

publicly available chest x-ray dataset. This dataset con-

sists of 2,24,316 chest x-ray images of 65,240 patients,

furthermore, it is labeled based on 14 sub-categories such

as edema, no-finding, bacterial pneumonia, Acute respira-

tory distress syndrome (ARDS), COVID-19, influenza, fun-

gal pneumonia, klebsiella, Middle East respiratory syndrome

(MERS), legionella, mycoplasma, lipoid, pneumocystis, viral

pneumonia, pneumonia, streptococcus, and SARS. Training

set 496 augmented images for COVID-19 and non-COVID

2000 images, the test set 40 for COVID-19 and non-COVID

3000 images are used.

Some of the disease cases selected are pulmonary

edema 293, pleural effusion 311, Chronic Obstructive

Pulmonary Disease (COPD) of 315 images, and Pulmonary

Fibrosis of 280 images.

B. DATA LIMITATIONS

The dataset contains only small samples of COVID-19

infected cases, hence patients with severe symptoms also

need to be analyzed. Furthermore, cases with mild symp-

toms missing, and some people are even quarantined without

examining them. Some of the pneumonia samples are col-

lected previously and there is no suspected of coronavirus
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infection, finally, data deals to demographic characteristics

and other risk factor related to patients is not available.

C. ACCURACY

Accuracy is one of the important metrics used for evaluating

the classification models, accuracy states whether our model

is right and it is defined as the number of correct predictions

of COVID-19 to the total number of prediction samples. The

confidence interval of the accuracy rates can be calculated as

equation 24,

r = z

√

accuracy(1 − accuracy)

N
(24)

Accuracy is also stated as the sum of True Positive (TP) and

True Negative (TN) to the sum of True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN)

using equation (25), as shown at the bottom of the page.

D. SENSITIVITY

Sensitivity and specificity are the important benchmark met-

ric for evaluation of classification and thus sensitivity states

True Positive (TP) to the sum of True Positive (TP) and False

Negative (FN). Hence, it is given by equation (26)

Sensitivity =

∑

c(TruePositive(TP))
∑

c(TruePositive(TP) + FalseNegative(FN))

(26)

E. SPECIFICITY

Specificity is defined as the True Positive (TP) to the sum of

True Positive (TP) and False Positive (FP). Calculated using

equation (27),

Specificity =

∑

c(TruePositive(TP))
∑

C (TruePositive(TP) + FalsePositive(FP))

(27)

F. PRECISION

Precision is calculated as the sum of True Positive of all the

classes to the summation of all classes True Positive (TP) to

the False Positive (FP), it is given by equation (28)

Precision =

∑

c
(TruePositive)c

∑

c
(TruePositive)c +

∑

c
(FalsePositive)

(28)

G. RECALL

Recall is measured as the summation of all class True

Positive (TP) to the summation of class True Positive (TP)

and False Negative (FN), it is stated by the equation (17)

Recall =

∑

c
(TruePositive)c

∑

c
(TruePositive)c +

∑

c
(FalseNegative)

(29)

H. F1-SCORE

F1-score is used tomeasure the balance between the precision

and recall. Furthermore, it is stated as the twice the product

of precision and recall to the sum of product and sensitivity.

Equation (30) states the precision calculation,

F1_score = 2(
precision ∗ recall

precision+ recall
) (30)

F1_score is stated as the weighted average of precision and

recall, ‘1’ is stated as the best score of ‘F1’ and ‘0’ as the

worst score.

I. LOG LOSS

Log loss state the logarithmic loss function and it is stated by

equation (31)

log loss =
−1

N

N
∑

i=1

(yi(log(p)i) + (1 − yi) log(1 − pi)) (31)

Four cases of log loss are,

Case 1:

yi = 1, pi = high, 1 − yi = 0, 1 − pi = low (32)

When yi = 1, and pi = high, it states that the model is

working perfectly, this is generally due to the true value of

response mostly agreed with highest probability. There is a

‘‘n’’ expand in sum as yi(log(p)i) is high and the other term

is zero as

1 − yi = 1 − 1 = 0 (33)

Thus higher the value there is the possible influence in sum

and in mean, this is mainly due to

pi > pi − 1 (34)

log(pi) > log(pi − 1) (35)

Case 2:

yi = 1, pi = low, 1 − yi = 0, 1 − pi = high (36)

In this case yi = 1 and pi = low it is totally adverse as the

probability of y is 1 and being low furthermore, as the value

of y = 1 there is little impact on sum.

Case 3:

yi = 0, pi = low, 1 − yi = 0, 1 − pi = high (37)

Accuracy =

∑

c
(TruePositive(TP)) + TrueNegative(TN))

∑

c
(TruePositive(TP) + TrueNegative(TN) + FalsePositive(FP) + FalseNegative(FN))

(25)
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Case 4:

yi = 0, pi = high, 1 − yi = 0, 1 − pi = low (38)

In case 3 and case 4 there is as drastically expand in sum and

thus it affects the model.

J. CONFUSION MATRIX

Confusion matrix gives the overall performance of the model

and the output is given in the form of a matrix. It is clear

from the confusion matrix in figure 3, that a normal per-

son is 3430 these are the person, who are not affected by

COVID-19. 20 of the persons are likelihood of having

COVID-19, 12 people may have COVID-19 and 443 persons

are confirmed COVID-19.

FIGURE 3. Confusion matrix of COVID-19.

The validation of the proposed model is evaluated using

some of the benchmark metric functions such as accuracy,

precision, sensitivity, specificity, and F1-score. The exper-

iment is carried out for 100 trail to achieve better per-

formance. Figure 4 shows the chest x-ray image sample

of COVID-19 and healthy lung persons, persons who are

affected by COVID-19 CXR image are not clearly visible

whereas, normal persons’ lungs images are clearly identi-

fiable. Table 3 shows the confusion matrix for pneumonia

and from the table, it is clear that the number of people

affected by COVID-19, normal and other pneumonia is eas-

ily identifiable. Table 4 shows the performance metric for

evaluation of the proposed model with other existing models

and Table 5 shows the analysis of accuracy with proposed

and other existing models for 10 trails with 100 iterations.

Figure 5 shows the performance of accuracy and it is com-

pared with the proposed model with the other existing models

such as ResNet18, ResNet50, SqueezeNet, Densenet-121,

and VGG16. The proposed model has the highest accu-

racy of 98.84%, whereas, VGG16 has the lowest accuracy

of 88.05%. The other models like ResNet18, ResNet50,

and Densenet-121 with an accuracy of 92.7% furthermore,

SqueezeNet with 96.60% accuracy is comparable with the

proposed model. The accuracy bar graph shows that the pro-

posed model outperforms well than the rest of the existing

models. Figure 6 shows the comparative analysis of pro-

posed model precision along with the other existing models,

GDCNNmodel with the highest precision of 93.0%, whereas,

ResNet18 and DenseNet121 with a precision of 87%.

The other three models like ResNet50, SqueezeNet, and

VGG16 with an average precision of 82.13%. The precision

bar graph shows that other existing models have an aver-

age precision of 85.34% and thus proposed a model with

higher precision of 93.0%. Figure 7 shows the analysis of the

F1-score bar graph with the other models, thus, the proposed

model with an F1-score of 96.37%, whereas other models

with an average F1-score of 86.53%. Thus the F1-score shows

how the model best in terms of prediction of COVID-19 and

normal diseases. The proposed model F1-score indicates that

better classifications are performed.

Figure 8 shows the sensitivity bar graph analysis of pro-

posed models with other available models, 100% sensitivity

is achieved for the proposed model, whereas, ResNet18,

ResNet50, and Densenet121 with an average of 87.50%.

Squeezenet and VGG16 with a sensitivity of 93.53% are

achieved. Sensitivity is one of the important metrics to vali-

date the performance of the proposed model. Figure 9 shows

the specificity bar graph analysis in terms of the proposed

model with other existing models, specificity is one of the

significant benchmark metrics for performance evaluation.

Specificity with an average of 97% is achieved for GDCNN,

ResNet18, ResNet50, Squeezenet, and Densenet-121.

Minimum specificity of 83.30% is achieved for VGG16.

Figure 10 shows the combo chart of accuracy and precision

analysis of the proposed models with existing models. The

combined analysis of both accuracy and precision is plotted in

the graph, accuracy is represented in terms of a bar graph and

precision is shown in the form of a line graph. The proposed

model with an accuracy of 98.84% and a precision of 93.0%

is achieved thus both of them show higher performance than

the existing model. Meanwhile, Squeezenet with an accuracy

of 96.60%,whereas, the precision of only 83.23% is achieved.

VGG16 with a minimum accuracy of 88.05 and a precision of

82.20 is obtained. The combo graph states that both accuracy

and precision with higher performance is obtained.

Figure 11 shows the accuracy and recall performance anal-

ysis, it is clear that the GDCNN model with an accuracy

of 98.84% and 100% recall is achieved able using the pro-

posed model, on the other hand, Squeezenet with 96.60% and

recall of 95% is obtained. Resnet18, Resnet50, and Densenet

with an average recall of 87.5% are achievable, whereas, the

accuracy of 92.36% is obtained and VGG16 with the lowest

recall rate of 88.05% and accuracy of 92.80 is obtained. It is

the same for figure 13 as both recall and sensitivity are the

same.

Figure 12 shows the comparative analysis of accuracy

with the F1-score, for the proposed GDCNN model with an

accuracy of 98.84% and an F1-score of 96.37% is achieved,

whereas for the rest of the models it is comparatively low.

F1-score is drastically lower than comparedwith the accuracy

for the other existing models and VGG F1-score of 87.18 is

obtained.

Figure 14 shows the comparative analysis of accuracy

and specificity analysis of the proposed model with other

models, furthermore, it is clear that both accuracy and
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FIGURE 4. COVID-19 and normal chest X-Ray images [64].
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TABLE 3. Confusion matrix for pneumonia.

TABLE 4. Performance metric.

TABLE 5. Analysis of accuracy for 10 trail.

specificity are comparatively high for both proposed as

well as other existing models. Figure 15 shows the com-

parison of bar graph between precision and recall for

various models. It is clear from the figure that the pro-

posed GDCNN model performs well compared to other

existing models such as ResNet18, ResNet50, SqueezeNet,

DenseNet-121 and VGG16. Proposed GDCNN models with

93.00% of precision and recall of 100% is achieved, whereas

ResNet18, DenseNet-121 with precision of 87% is achieved.

Recall value of ResNet18, SqueezeNet and VGG16 is

above 92%. The minimum value of precision and recall

is for ResNet50 with 83.40% and 87.51% considerably.

Figure 16 represents a comparison bar for precision and

f1-score, from above comparison, it states that proposed

GDCNN is considerably high with 93% of precision and

96.37%of f1-score. Lowest precision and f1-score is obtained
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FIGURE 5. Comparison of accuracy.

FIGURE 6. Comparison of precision.

FIGURE 7. Comparison of F1-score.

for ResNet50 and SqueezeNet, with precision of 83.40 and

recall of 85.41% for ResNet50 and for SqueezeNet it is

83.23% and 88.73%. Figure 17 shows the comparison graph

for precision and sensitivity for various models. Proposed

FIGURE 8. Comparison of sensitivity.

FIGURE 9. Comparison of specificity.

FIGURE 10. Comparison of accuracy and precision.

GDCNN model with precision of 93.00% and a sensitivity

of 100.00% is achieved, whereas reset of the models is

low. ResNet18, ResNet50 and DenseNet-121 precision value
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FIGURE 11. Comparison of accuracy and recall.

FIGURE 12. Comparison of accuracy and F1-score.

FIGURE 13. Comparison of accuracy and sensitivity.

is 87.5% and there sensitivity values are 87.20%, 83.40 and

87.62% respectively.

FIGURE 14. Comparison of accuracy and specificity.

FIGURE 15. Comparison of precision and recall.

FIGURE 16. Comparison of precision and F1-score.

Figure 18 depicts the precision and specificity comparison

graph, proposed GDCNN with 93.00% and 97.00% obvi-

ously. All the models try to perform more or less same,
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FIGURE 17. Comparison of precision and sensitivity.

FIGURE 18. Comparison of precision and specificity.

FIGURE 19. Comparison of sensitivity and specificity.

However, VGG16 performs lowest of all the models with

precision of 83.30% and specificity of 82.20%. Figure 19

shows the sensitivity and specificity comparable graph for

proposed models and it is compared with the other existing

models. Sensitivity and specificity out perform well with

100.00% and 97.00% considerably. All the other models

also try to perform, but it lacks in sensitivity as it’s approx-

imately 87.50 for ResNet18, ResNet50, SqueezeNet and

DenseNet-121 whereas specificity above 90% is achieved.

Figure 20 shows the line graph for the proposed GDCNN

models with 100 iterations for 10 trails. Accuracy is predicted

for various trails starting 95.83% to a high of 98.84%, this

is mainly due to training models as the models get trained

better accuracy is achieved. Figure 21 and 22 represent the

line graph for ResNet18 and ResNet50. Initially the accuracy

for both the model is 89% and ResNet18 better accuracy

of 92.81 is achieved, whereas, for ResNet50 is 93.71% is

achieved for 10 trails.

FIGURE 20. Analysis of accuracy for GDCNN.

FIGURE 21. Analysis of accuracy for Resnet18.

Figure 22 and 23 shows the accuracy analysis for

SqueezeNet and DenseNet-121 with 100 iterations for

10 trails. For SqueezeNet maximum of 96.6% of accuracy is
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FIGURE 22. Analysis of accuracy for Resnet50.

FIGURE 23. Analysis of accuracy for Squeezenet.

achieved, whereas for DenseNet-121 it is 94.62%. A gradual

increase in the accuracy is notifiable for DenseNet-121, as its

initial accuracy of 86.97% and then achieving up to 94.62%.

Figure 24 shows the accuracy analysis for 10 trails with

each 100 iterations for VGG16. It is clear that accuracy also

tends to increase gradually as the number of trail increases.

Figure 25 line graph shows the comparative analysis of accu-

racy of the proposedmodel with the availablemodels, thus the

proposed model performs well with respect to the number of

trails. VGG16 is with the lowest accuracy, while resnet18 and

resnet50 both models with similar accuracy is achieved.

Our main goal of this research is to develop GDCNN

based approaches for predicting the lung infection due to

COVID-19 using chest x-ray images. Healthy versus pneu-

monia samples are identified with an accuracy of 98.72%

K. EXPECTED OUTCOMES

The tool is developed based on the GDCNN model which

is very helpful for physicians and act confident in the treat-

ment of a COVID-19 affected patient, while they are waiting

FIGURE 24. Analysis of accuracy for Densenet121.

FIGURE 25. Analysis of accuracy for VGG16.

FIGURE 26. Comparison of accuracy for various models.

for the second opinion confirmation with the radiologist.

Furthermore, it provides a measurable score to consider and

to use in research studies.
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L. DISCUSSION ON COMPLEXITY

Training of each chest x-ray image generated by DCNN is

fixed to 100 epochs, thus the proposed GDCNN has high

computation and space complexity, and this is mainly due

to storing and evaluating a huge amount of DCNN structure.

Lacks security as the health care data are stored in the cloud

environment and hence the proper security mechanism need

to be implemented for retrieving data [67], [68].

V. CONCLUSION

The fast spread of COVID-19 creates a pandemic all over

the world as there exists an exponential increase in the

number of cases. Early diagnosis of diseases is in urgent

need in the treatment of COVID-19, which should be faster

and cheaper. In the above context, a deep learning method

is used for the prediction of COVID-19 from CXR image

samples. In the real world, only a few people have bee

affected by pneumonia whereas, many of them remain unaf-

fected. Hence, there arises an imbalance in the prediction

of pneumonia between the affected person and a normal

person. In this research, the GDCNNN method is proposed

for classifying COVID-19 and normal person, and it is done

through CXR image samples. More than 5000 image samples

are taken from the publicly available repository, consisting

of pneumonia, healthy lung images, and other pneumonia

diseases. The proposed method with F1-score of 0.96337,

val_accuracy of 0.99 (99.0%), loss of 0.32 and val_loss of

0.05 is achieved. Furthermore, it is compared with other

existing models such as resenet18, resenet50, SqueezeNet,

Densenet-121, and VGG16 to evaluate the performance of

the proposed model. It is clear from the analysis table that

the proposed method outperforms well than compared to the

existing model. The main aim of the research is to provide

a better identification rate for COVID-19 prediction in the

earlier stage of diagnosis and provide greater help emer-

gency of patients in earlier treatment. The organization can

use this model for earlier prediction COVID-19 as GDCNN

tool hosted resides in the cloud computing environment. The

health care system can use this tool for earlier diagnosis of

diseases. In the future we hope to apply this method for a large

scale database for achieving better hierarchical classification

accuracy.

SOFTWARE AVAILABILITY

Our predictionmodel is available online at https://github.com/

BABUKARTHIKRG/covid19.git.

Few interactive graphs can be seen at https://collaboration.

coraltele.com/covid2/.
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