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Abstract The paper presents a study conducted on sand-

waste plastic strip mixture for carrying out consolidated

drained triaxial compression tests and to use the ex-

perimental data in training, testing, and prediction phases

of neural network-based soil models. The input variables in

the developed neural network models were strip content,

tensile strength of strip, thickness of the strip, elongation at

failure of the strip, aspect ratio, dry unit weight of the

composite specimen, confining pressure and strain at fail-

ure of the composite specimen and the output was the

deviator stress. These variables were considered to con-

struct 8-6-1 topology of neural network in the prediction of

the deviator stress. Further, using the mean squared error,

root mean squared error, mean absolute error, mean abso-

lute percentage error, correlation coefficient (r) and coef-

ficient of determination (R2) for the training and testing

data, the predictability of neural networks was analysed

using various activation functions. The neural network

model obtained had an acceptable accuracy. Sensitivity

analysis revealed that the contribution of the input vari-

ables such as strip thickness, tensile strength of the strip

and dry unit weight does not have much impact on the

output deviator stress. After the sensitivity analysis, neural

network structure was revised. The revised model having

5-4-1 topology gives a better prediction of the output de-

viator stress than the previous model with 8-6-1 topology.

Further, the revised neural network model having 5-4-1

topology is superior to the one obtained using multiple

regression analysis in predicting the output deviator stress.

Finally a model equation is presented based on trained

weights in the revised neural network.

Keywords Deviator stress � Neural network � Activation

functions � Error models � Performance measures �
Sensitivity analysis � Multiple regression � Model equation

List of Symbols

SC Strip content in %

ST Strip thickness in m

TS Tensile strength of the strip in kN

ets Strip elongation at failure in %

AR Aspect ratio

cd Dry unit weight of the composite specimen in

kN/m3

CP Confining pressure in kPa

e Strain at failure of the composite specimen in

%

rdt Target deviator stress in kPa

rdp Predicted deviator stress in kPa

rdpn Normalized predicted deviator stress in kPa

rdpmax Maximum value of predicted deviator stress in

kPa

rdpmin Minimum value of predicted deviator stress in

kPa

rdt, rdp Mean of the target and predicted deviator stress

respectively in kPa

Srdt ,
Srdp

Standard deviation of the target and predicted

deviator stress in kPa respectively
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n Number of observations

r Correlation coefficient

R2 Coefficient of determination

MSE Mean square error

RMSE Root mean square error

MAE Mean absolute error

MAPE Mean absolute percentage error

wjk Connection weight between jth input variable

and kth neuron of hidden layer

wk Connection weight between kth neuron of

hidden layer and the single output neuron

RIj Relative importance of the jth neuron of input

layer

m Number of neurons in the input layer

h Number of neurons in the hidden layer

bo Bias at the output layer

bhk Bias at the kth neuron of the hidden layer

f Optimum activation function

Xj Normalized input variable j in the range [-1, 1]

Introduction

Despite prohibitions in some Indian states, the utilization of

plastic products such as polyethylene bags, bottles, con-

tainers and packaging strips etc., is increasing day by day.

As a consequence, the landfills are continuously filled up

with this valuable resource. In many regions, waste plastic

is now being collected for recycling and reuse. At present,

only a fraction of total waste plastic is used for recycling

purposes in India. The remaining plastic wastes will remain

in the landfills or environment for centuries, maybe thou-

sands, of years. The estimated urban municipal solid waste

production in India up to the year 2000 was of the order of

39 million metric tons per year. This number is likely to

reach 160 million tons per year by the year 2040 [1]. The

typical percentage of plastic in the municipal solid waste

produced in India is 9 % [2] at present. Researchers [3, 4]

have presented through experimental studies that this

valuable resource can be used to improve the properties or

behaviour of sands. But conducting experiments and gen-

erating data are invariably an expensive proposal. Building

up a mathematical model is an alternative approach where

major variables are calibrated to fit the experimental results

to understand the relationships among the participating

variables. The capability of storing the learning experience

and the power to capture the inherent complex relationship

without any prior assumptions about the geotechnical

engineering problem makes the neural network a suitable

choice for modeling. Past studies [5–11] have demon-

strated that neural network-based prediction models can be

used in predicting the soil properties or behaviour. With the

above in view, in the present study, a feed forward neural

network based predictive model from the consolidated

drained triaxial test data has been developed. The input

variables in the developed neural network models were

strip content, tensile strength of strip, thickness of the strip,

elongation at failure of the strip, aspect ratio; dry unit

weight of the composite specimen, confining pressure and

strain at failure of the composite specimen and the output

was the deviator stress. Sensitivity analysis relating the

variables affecting the deviator stress has been performed.

A comparison of the developed neural network model is

made with the model derived from multiple regression

analysis. Finally, a model equation has been presented

based on the connection weight.

Material Used and Experimental Procedure

The investigation was carried out on Badarpur sand which

is a medium grained, uniform quarry, sand having sub-

angular particles of weathered quartzite. It had a specific

gravity of 2.66, maximum particle size of 1.20 mm,

minimum particle size of 0.07 mm, mean particle diameter

(D50) of 0.42 mm, coefficient of uniformity (Cu) of 2.11

and a coefficient of curvature (Cc) of 0.96. Minimum and

maximum void ratios were 0.56 and 1.12 while the corre-

sponding dry unit weights were 16.70 and 12.30 kN/m3

respectively. The sand was classified as SP-SW. The rein-

forcement consisted of two types of plastic waste. For the

first one (designated as Type I) used plastic carry bags of

LDPE having a mass per unit area of 30 gsm and a

thickness of 0.05 mm were chosen. From these, 12 mm

wide strips were cut. Further, these strips were cut into

pieces of 24 and 12 mm length. The resulting strips of size

24 9 12 mm are designated as Type I A (Fig. 1a) and

12 9 12 mm strips are designated as Type I B (Fig. 1b).

The second material studied was used packaging strips

made of HDPE (designated as Type II) having a breadth of

12 mm, and a thickness of 0.45 mm and a volume of 3.8 g/m.

These were cut into lengths of 24 mm (designated as Type

II A (Fig. 1c) and 12 mm (designated as Type II B

(Fig. 1d) lengths. Type I strips (with a width of 12 mm)

had an ultimate tensile strength of 0.011 kN and the per-

cent elongation at failure was 20 %. The ultimate tensile

strength of Type II (with a width of 12 mm) strip was

0.32 kN and percent elongation at failure was 25 %. It may

be noted that 1 % of Type II A inclusions resulted in 280

strips whereas 0.15 % of Type I A contained 276 strips.

This is attributed to the difference in their thickness. The

units (pieces) of the strips were manually counted corre-

sponding to each percentage. A standard triaxial apparatus

was used for testing unreinforced and reinforced sand. The

specimen was of 100 mm diameter and 200 mm high. To

ensure uniform distribution of strips in the mixture, the dry
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sand and the required percentage of waste plastic strips

(0.05–0.15 % for LDPE and 0.25–2 % for HDPE, both

strips having aspect ratios of 1 and 2) were weighed and

divided into three equal parts respectively. One part of sand

and one part of the weighed strip were mixed together

manually in dry condition in a random arrangement. The

sand-strip mixture was then soaked. The soaked sand-strip

mixture was then deposited into the rubber membrane in-

side a split mould former as a first layer. The requisite

number of blows was given to the first layer through

tamping with a rubber tamper consisting of a round disk

attached to an aluminium rod to reach the required density.

The similar procedure was repeated for the second and the

third layer. The specimen was compacted in three layers.

The density of the sand specimen with Type I and Type II

inclusions was maintained at 15.08 ± 0.18 and

14.88 ± 0.42 kN/m3 respectively for different samples.

Conventional consolidated drained triaxial tests were then

conducted at a deformation rate of 1.016 mm/min under a

confining pressure varying from 34.5 to 276 kPa.

Stress–Strain Behaviour

The stress–strain behaviour of unreinforced sand is illustrated

in Fig. 2a. It can be mostly determined from this figure that

with an increase in confining pressure, the peak stress in-

creases and corresponding axial strain, generally remains

constant. For example, at r3 = 276 kPa sand exhibits a

maximum deviator stress of 894 kPa at an axial strain of

4.54 %, whereas at r3 = 34.5 kPa these values are 100 kPa

and 4.84 % respectively. Typical stress–strain curves in the

sand reinforcedwith 0.15 %Type IAand2 %Type IIA strips

at a confining pressure of 34.5 kPa are shown in Fig. 2b, c

respectively. These figures indicate that strip inclusion in sand

improves the performance of the sand specimen.Thismatter is

essentially due to the increase in confinement. Moreover, as

shown in Fig. 2b, c improvement in performance of rein-

forced specimen is more pronounced for a greater percentage

of strips. A quick summary of the deviator stress at failure,

strain at failure, dry unit weight of the composite along with

details of the strips is given in Table 1.

Fig. 1 Photograph of a LDPE

strips Type I A b LDPE strips

Type I B c HDPE strips Type II

A d HDPE strips Type II B
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Neural Network Model

The aim of this work is to model the neural network ar-

chitecture for the sand reinforced with waste plastic strips

based on the consolidated drained triaxial test results. The

various input variables used in the developed neural net-

work models are strip content, tensile strength of strip,

thickness of the strip, elongation at failure of the strip,

aspect ratio, dry unit weight of the composite specimen,

confining pressure and strain at failure of the composite

specimen.

Optimal NN Model Selection

The performance of neural network model is basically

dependent on the network architecture and parameter set-

tings. To find the optimal network architecture in a neural

network is the most difficult task and determining numbers

of optimal layers and neurons in the hidden layers is gen-

erally carried out by trial and error approach. The perfor-

mance of the neural network to a great extent is influenced

by the assignment of initial weights and other related pa-

rameters. Further, there is no well-defined procedure to get

an optimal network architecture and parameter settings.

Hence, a time consuming trial and error method still re-

mains valid.

Selection of Neural Network Structure

Past studies by Boger and Guterman [12] has reported that

the performance of the neural network relies on the struc-

ture of the network. But, there is no well-defined procedure

to obtain the structure of the network. Hence, the re-

searchers resort to a time consuming trial and error method.

There will always be a complexity in choosing the number

of hidden layers and the number of neurons present in each

hidden layer in case of multilayer feed -forward network.

The nodes in the hidden layer should be decided prior to

the selection of number of hidden layers. There is no

specific formula by which one can arrive at the specific

architecture of neural networks. However, researchers have

come to the conclusion that broadly some thumb rules can

be adopted to start with. Boger and Guterman [12] have

suggested that the number of hidden layer neurons can be

2/3 (or 70 %) of the size of the input layer. They further

reported that, If the number of hidden layer neurons is

insufficient then number of output layer neurons can be

added later on. Berry and Linoff [13] have reported that the

number of hidden layer neurons should be less than twice

of the number of neurons in the input- layer, whereas Blum

[14] have reported that the size of the hidden layer neurons

will be between the input layer size and the output layer

size. Keeping the above in view, the number of neurons in

the hidden layers was determined using the thumb rules

proposed by Boger and Guterman [12]. A similar approach

is advocated by other researchers [15, 16]. Multiple hidden

layers are employed in applications where accuracy is the

main concern for researchers. In order to select the optimal

Fig. 2 Stress–strain-volume change curves for a unreinforced sand

b sand with strip Type I A at 34.5 kPa c sand with strip Type II A at

34.5 kPa
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structure of the network, the number of hidden layers and

the number of neurons in the hidden layer were fixed. For

the successful application of the neural network model, the

major problem is when to stop training. Excessive training

of the neural network results in noise, whereas insufficient

training of the neural network leads to poor predictions.

Therefore generalization of the network will not be there

for a new set of data. Hence, the numbers of iterations of

the training and testing data set were changed using trial

and error method. The mean square error between the ac-

tual and the predicted value for different iterations were

computed. The iteration, which gives the least mean square

error, is chosen for identifying the neural network struc-

ture. The training is stopped when the average-error

function becomes small. Further, iterations beyond this

point result in an overfitting effect. This is attributed to

induction of noise with the decreasing ability of general-

ization of the neural network models. These observations

are consistent with the literature [17, 18]. Keeping the

above in view, the number of iterations chosen was 3000.

Therefore, the neural network model chosen for our ex-

periment has the structure of 8-6-1 for the constitutive

modeling.

Data Set

This work presents an application of neural network for

constitutive modelling of the deviator stress for the sand-

waste plastic strip mixtures based on the consolidated

drained triaxial test data. The experimental data used in this

study include 60 records, which were taken from the ex-

periments reported by Dutta and Rao [4] and a summary of

the same is given in Table 1. For constitutive modeling, the

experimental results were randomly selected for the train-

ing and testing which is required in order to check the

generalization capability of the neural network model using

testing data set. The variables are continuing one and hence

the choosing of the percentage of training and the testing

data sets does not affect the model. Further, for training

64 % of the total records were taken and the remaining

36 % were used for testing the model.

Activation Function Selection

Each neuron in a neural network has an activation function.

The activation function specifies the output of a neuron

corresponding to a given input. Further, activation func-

tions also scale the output of the neural network into proper

ranges and serve to introduce nonlinearity into it which

makes the neural network powerful. A large number of

activation functions are in use in artificial neural networks.

The transfer functions are the most common choice among

the activation functions for neural network application due

to its amenable mathematical properties in the realm of

approximation theory, the function’s and its derivative’s

fast computability and boundedness in the unit interval.

The aim of this study is to analyze the performance of

different neural network architectures using different acti-

vation functions for the neurons of hidden and output

layers. For experimental comparisons, linear, sigmoid,

sigmoid stepwise, sigmoid symmetric, Gaussian, Gaussian

symmetric, Elliot, Elliot symmetric, linear piece, linear

piece symmetric, sin, sin symmetric, cos symmetric func-

tions were used. These functions are supported in the open

source Agiel neural network software. By trial and error

method, the predicted deviator stress at 3000 number of

iterations gives the value equal to the targeted deviator

stress for both the training and testing data set. The

learning rate is used to determine how aggressive training

should be (default learning rate is 0.7) for the algorithm

chosen. Maximum iteration basically refers to the max-

imum number of trials to be conducted. The bigger the

value of maximum iteration should give the longer running

time.

Performance Measures

After the model is identified, it is now required to check its

performance in predicting the deviator stress using test data

set. For the choice of the best measure for the prediction,

there is no consensus among researchers. Hence accuracy

is considered as one of the criteria in evaluating the quality

of the prediction. This can be achieved after minimizing

the error [15–18]. Therefore, mean absolute percentage

error (MAPE), root mean square error (RMSE), mean ab-

solute error (MAE), and mean square error (MSE), was

selected as these parameters measure the magnitude of the

prediction errors. MAE measures an overall accuracy and

gives an indication of the degree of spread. In calculating

MAE, all errors are assigned an equal weight. MAE is zero

for the good fitment of data and large for the poor fitment

of data. Thus, comparisons between the prediction methods

is made and the one is selected for which MAE is mini-

mum. In calculating MSE which also provides measures of

accuracy and indications of the degree of spread, the large

errors were assigned additional weights. MSE considers the

squared difference between the predicted and actual ob-

served data and quantify the difference between predicted

and actual observed data, whereas RMSE is simply a root

of MSE, and has the advantage of being measured in the

same unit as the predicted variable. MAE is also measured

in the same unit as the prediction, but provides less weight

to large prediction errors than the MSE and RMSE. MSE

heavily penalizes large errors in comparison to MAE.

MAPE is a useful measure to compare the accuracy of

prediction among different methods as it measures relative
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performance. If the calculated MAPE is less than 10 %

between 10 and 20 %, between 20 and 50 % and over

50 %, it is interpreted as an excellent accurate prediction,

good prediction, acceptable prediction and inaccurate pre-

diction respectively. MAPE provide measurement of the

prediction quality which is independent of the unit of

measurement of the variable. The MSE, RMSE, MAE, and

MAPE provide the measurement of the magnitude of the

prediction errors. Smaller values for these statistics will

indicate better models. RMSE and MSE are popular his-

torically, due to their theoretical relevance in statistical

modeling whereas some researcher recommend against

their use in predictive accuracy evaluation, as they are

more sensitive to outliers than MAE. Further, MAE and the

RMSE can be used together to diagnose the variation in the

error in a set of prediction. RMSE will always be larger or

equal to the MAE. The greater the difference between

RMSE and MAE, greater will be the variance in the indi-

vidual error in the data set. Further, when RMSE is equal to

MAE (both can range from 0 to ?), then all the errors are

going to be of the same magnitude. They are negative-

oriented scores: lower values are better. Further, MAE can

be viewed as a ‘robust’ measure of predictive accuracy.

MAE tends to prefer predictive procedures that produce

occasional large prediction failures, while they are rea-

sonably good on average, whereas MSE tends to prefer

predictive procedures that avoid large prediction failures,

even though they produce a less satisfactory fit otherwise.

Usually, estimation procedures are based on least-squares

criteria, an emphasis on the MAE may involve a slight

logical inconsistency. The best class of models is then

selected according to a criterion that is different from the

one that selects among the different members of an indi-

vidual model class. Selection of an error measure has an

important effect on the conclusions about which of a set of

predictive methods are most accurate. Further, the perfor-

mance of neural network model is generally evaluated in

terms of the coefficient of correlation (r) and coefficient of

determination (R2) only. This approach suffers from biased

evaluation. Therefore other unbiased statistical criteria

should be used along with the coefficient of correlation

(r) and coefficient of determination (R2). The various sta-

tistical parameters and error models used are given in

Table 2 for the prediction of the deviator stress. For this,

using different activation functions in the hidden and out-

put neuron, the correlation coefficient (r), coefficient of

determination (R2), MSE, RMSE, MAE and the MAPE for

the training and testing data were determined for eight

input neurons and hidden hidden neurons and one output

neuron for 3000th iterations in the network setup. The best

activation function of the structure of the network is chosen

by selecting the best correlation coefficient (r), coefficient

of determination (R2), least mean square error, RMSE,

MAE and MAPE among all the activation functions. The

values of r, R2, MSE, RMSE, MAE and MAPE for the

activation function Elliot symmetric is the least both for

training and testing data among all other activation func-

tions studied and are shown in Table 3. The plot between

the target and neural network predicted deviator stress

using Elliot symmetric activation functions is shown in

Fig. 3. For the Elliot symmetric activation function, the

calculated value of R
2 was found to be 0.992 (Fig. 3)

indicating the model accuracy of the constructed neural

network. Figure 3 also depicts good correlation between

the targeted deviator stress and neural network predicted

deviator stress, suggesting the accuracy of the neural net-

work predictability for the nonlinear systems. From the

above, it is recommended that the neural network model be

designed using an Elliot symmetric function to obtain the

predicted deviator stress closer to the targeted one.

Table 2 Various statistical

parameters and error models
Statistical parameter Mathematical expression

Correlation coefficient (r)
rrdt, rdp ¼

P

rdti :rdpi�nrdt:rdp

n�1ð ÞSrdtSrdp

Coefficient of determination (R2)
R2¼ 1�

P

i
rdpi�rdtið Þ2

P

i
rdpi�rdpð Þ

2

Mean square error (MSE) MSE ¼ 1
n

Pn
i¼1 ðrdti � rdpiÞ

Root mean square error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 ðrdti � rdpiÞ

q

Mean absolute error (MAE)
MAE ¼ 1

n

P

n

i¼1

rdti � rdpij j

Mean absolute percentage error (MAPE)
MAPE ¼ 1

n

P

n

i¼1

rdti�rdpi

dti

�

�

�

�

�

�

� �

� 100

rdt, rdp : target and predicted deviator stress respectively, rdt, rdp : mean of the target and predicted

deviator stress respectively, Srdt, Srdp : standard deviation of the target and predicted deviator stress

respectively, n : number of observations
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Sensitivity Analysis on Elliot symmetric function

based Model

Sensitivity analysis was carried out in order to study the

contribution of individual variables on the deviator stress

using a method reported by Garson [19] which was based

on weight configuration. But method reported by Garson

[19] had own limitations because it measures the absolute

value of the weights. Olden and Jackson [20] have sug-

gested a method to overcome the limitations of the method

reported by Garson [19]. Keeping the above in view, the

method reported by Olden and Jackson [20] has been used

for the sensitivity analysis. This method calculates the sum

of the product of final weights of the connection from input

neuron to hidden neurons with the connection from hidden

neurons to output for all input neurons. The variable con-

tribution of a given input variable is defined by Eq. (1).

RIj ¼
X

h

k¼1

wjk � wk ð1Þ

where, wjk is the connection weight between jth input

variable and kth neuron of the hidden layer, wk is the

connection weight between kth neuron of hidden layer and

the single output neuron, RIj is the relative importance of

the jth neuron of input layer and h is the number of neurons

in the hidden layer.

This paper involves eight input variables and their in-

fluence on the deviator stress was studied on the basis of

weights obtained in the optimal feed-forward back-

propagation neural network model. The final weights be-

tween the input and hidden neuron as well as between

hidden and output neuron generated in the Elliot symmetric

function are given in Table 4. The relative importance of

individual variable considered in Elliot symmetric function

based neural network architecture is shown in Fig. 4. Study

of Fig. 4 reveals that the CP is found to be the most im-

portant parameter followed by e, AR, ets and SC as per the

method reported by Olden and Jackson [20]. Further, it can

be seen from Fig. 4 that the inputs CP, e, AR, ets and SC

have a positive contribution to the deviator stress, whereas

cd, ST and TS have negative effects on the deviator stress.

Thus, it is inferred that CP, e AR, ets and SC are directly

and cd, ST and TS are indirectly proportional to the de-

viator stress. Therefore, the connection weight approach

reported by Olden and Jackson [20] matches the physical

meaning for the deviator stress. From the above, it can be

seen that sensitivity analysis is an effective method of

indicating the physical relationship between inputs with the

output.

Revised Neural Network Architecture

Sensitivity analysis perceived that the inclusion of strip

thickness, tensile strength of the strip and the dry unit

weight of the composite specimen in the neural network

model leads to low degree of generalization. Keeping the

above in view, the neural network structure was revised.

The inputs considered in the revised neural network

structure were SC, ets, AR, CP, e and the output was the

deviator stress. The variable involved in the problem has

been reduced to five and so that the input layer in the neural

network model has the number of neurons equal to the

number of variables. The number of neurons in the hidden

layer was obtained using the thumb rule reported by Boger

and Guterman [12]. Hence, the topology of the revised

neural network model was 5-4-1 as shown in Fig. 5. The

revised structure of the network was set up in the Agiel

neural network software and the network was analysed

with the same training and testing data set used in the

previous model having 8-6-1 topology. The parameter

settings in the neural network model such as number of

iterations, activation functions and learning rate are kept as

same as in the previous model. The final weights between

the input and hidden neuron as well as between hidden and

Table 3 Statistical values for the training and testing data for the best activation function

Activation function Statistical values for the training data Statistical values for the testing data

r R2 MSE RMSE MAE MAPE r R2 MSE RMSE MAE MAPE

Elliot symmetric 0.996 0.992 797.798 28.245 17.359 4.71 % 0.997 0.993 804.267 28.359 21.854 6.72 %

Fig. 3 Predicted and target deviator stress for sand reinforced with

waste plastics in the training and testing data set using Elliot

symmetric activation function with 8-6-1 topology
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output neuron generated in the revised Elliot symmetric

function are given in Table 5. The output obtained in the

revised model and the model obtained before the sensitivity

analysis was compared using performance measures and

the results for the training and testing data set are shown in

Table 6. The graph between the target deviator stress and

the neural network predicted deviator stress for the training

and testing data set in the revised neural network model are

represented in Fig. 6. Study of Table 6 reveals that the

coefficient of correlation (r) for the revised neural network

model in the training data set has the value of 0.999

whereas the coefficient of correlation (r) for the previous

model in the training data set was 0.996. There was an

increase of 0.22 % in the coefficient of correlation with

Table 4 Final weights between the input neuron and hidden neuron as well as hidden neuron and output neuron

Neuron Weights (wjk)

SC ST TS ets AR cd CP e rdp

Hidden neuron 1 (k = 1) -0.058 -0.046 -0.085 -0.241 -0.537 0.542 -4.782 -0.906 -4.464

Hidden neuron 2 (k = 2) 0.077 -0.087 -0.034 -0.270 -0.358 0.207 2.403 -0.569 2.895

Hidden neuron 3 (k = 3) -0.034 -0.034 -0.046 0.262 0.326 -0.209 4.862 0.958 -3.205

Hidden neuron 4 (k = 4) 0.038 0.040 0.005 -0.450 -0.650 0.788 -5.742 -1.209 -5.861

Hidden neuron 5 (k = 5) 0.036 -0.066 0.030 -0.284 -0.535 0.691 -4.904 -1.052 -4.603

Hidden neuron 6 (k = 6) -0.038 -0.172 -0.194 0.712 0.428 1.694 -0.239 0.190 2.384

Fig. 4 Relative importance of

individual variable on the output

deviator stress

Fig. 5 Revised neural network architecture for the deviator stress
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respect to the previous model. Further, for the testing data

set, the coefficient of correlation for the revised neural

network model with 5-4-1 topology was 0.999 which in-

creased by 0.16 % with respect to the previous model with

8-6-1 topology. The next comparison was made with a

coefficient of determination (R2). The R2 was increased by

0.53 and 0.45 % with respect to the previous neural net-

work model for the training and testing data set respec-

tively. Further, the performance measure such as mean

squared error of the revised neural network model was

compared with the previously obtained neural network

model with 8-6-1 topology. The MSE of the training and

testing data set was reduced by 73.42 and 72.56 %, re-

spectively, with respect to the previous neural network

model. RMSE of the training and testing data set was re-

duced by 48.23 and 47.27 % respectively with respect to

the previous neural network model. MAE of the training

and testing data set was reduced by 44.17 and 38.54 %

respectively with respect to the previous neural network

model. MAPE of the training and testing data set is reduced

by 28.23 and 37.25 % respectively with respect to the

previous neural network model. The above results reveal

that the revised neural network model with 5-4-1 topology

shows a good prediction with respect to previous model

having 8-6-1 topology for the training and testing data set.

Further, the authors of this paper are of the view that the

revised neural network model was proposed for a specific

type of sandy soil reinforced with two types of plastic

strips. Further, study is required for generalization of the

neural network model for different type’s sands and rein-

forcing strips.

Comparison

Multiple regression analysis was carried out for the

training data set used in the development of neural net-

work model. The input variables considered were SC, ets,

AR, CP, e and the output was the deviator stress for the

multiple regression analysis. These input variables have

been chosen based on the sensitivity analysis carried out

for the neural network model having 8-6-1 topology.

Multiple regression model obtained from the training data

set is shown in Eq. (2).

rdp ¼ 26:942 � SC þ 0:704 � ets þ 26:519 � AR

þ 3:538 � CP þ 24:717 � e� 159:965

ð2Þ

where, r dp is the predicted deviator stress in kPa, SC is the

strip content in %, ets is the strip elongation at failure in %,

AR is the aspect ratio, CP is the confining pressure in kPa, e

is the strain at failure of the composite specimen in %.

The various performance measures obtained for the

training and testing data set using multiple regression

analysis are shown in Table 7. Comparison of the revised

neural network model having 5-4-1 topology and the one

obtained using multiple regression analysis was carried out

Table 5 Final weights between

the input neuron and hidden

neuron as well as hidden neuron

and output neuron for the

revised neural network having

topology 5-4-1

Neuron Weights (wjk) Biases

SC ets AR CP ets dp bhk bo

Hidden neuron 1 (k = 1) 0.616 0.106 0.741 8.153 1.275 9.015 -8.704 7.107

Hidden neuron 2 (k = 2) -0.539 0.323 -0.387 -3.902 -1.155 -2.940 4.430 _

Hidden neuron 3 (k = 3) -0.322 -0.076 -0.166 2.510 -0.491 3.422 1.628 _

Hidden neuron 4 (k = 4) 0.019 0.260 -0.125 -3.143 -0.378 2.218 1.158 _

Table 6 Statistical values for the training and testing data for the revised topology

Activation function Statistical values for the training data Statistical values for the testing data

r R
2 MSE RMSE MAE MAPE r R

2 MSE RMSE MAE MAPE

Elliot symmetric 0.999 0.998 212.080 14.562 9.692 3.37 % 0.999 0.998 220.711 14.856 13.388 4.21 %

Fig. 6 Predicted and target deviator stress for sand reinforced with

waste plastics in the training and testing data set using Elliot

symmetric activation function with 5-4-1 topology
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using performance measures. The input variables of the

testing data set were substituted in Eq. (2) and the output

deviator stress was obtained. The plot between the target

deviator stress and the predicted deviator stress of the

training and testing data set using multiple regression

analysis are shown in Fig. 7. Study of Table 7 reveals that

the coefficient of correlation (r) and Coefficient of deter-

mination (R2) of the training and testing data set was in-

creased by 0.68 and 0.94 and 1.34 and 1.92 % respectively

in comparison to the multiple regression analysis. The

MSE, RMSE, MAE and MAPE of the training and testing

data set was reduced by 87 & 91.16, 64.56 & 70.26, 71.72

& 66.56 and 70.36 & 61.27 % respectively in comparison

to the multiple regression analysis. The statistical com-

parison as shown in Table 7 revealed that the revised

neural network model having 5-4-1 topology is superior to

the one obtained using multiple regression analysis in

predicting the output deviator stress. The poor prediction of

the output deviator stress using multiple regression analysis

is attributed to non-linearity involved in the problem.

Model Equation for the Deviator Stress Based

on Revised Neural Network Architecture

The fundamental equation of the neural network model

relating the input variables to the output can be formulated

as

rdpn¼ f bo þ
X

h

k¼1

wk � f bhk þ
X

m

j¼1

wjk � Xj

 !" #( )

ð3Þ

where r dpn is the normalized (in the range -1–1 in this

case) r dp value; bo is the bias at the output layer; wk is the

connection weight between kth neuron of hidden layer and

the single output neuron; bhk is the bias at the kth neuron of

hidden layer; h is the number of neurons in the hidden

layer; m is the number of neurons in the input layer; wjk is

the connection weight between jth input variable and kth

neuron of hidden layer; Xj is the normalized input variable

j in the range [-1, 1] and f is the activation function.

Therefore, the equation for the output deviator stress can

be formulated based on the trained weights and biases of

the neural network model. The model equation for the sand

reinforced with waste plastic strips on drained triaxial

compression test was established using the values of the

weights and biases shown in Table 5 as per the following

expressions.

A ¼ �8:604 þ 0:616 � SC þ 0:106 � ets þ 0:741

� AR þ 8:153 � CP þ 1:275 � e ð4Þ

B ¼ 4:430 � 0:539 � SC þ 0:323 � ets � 0:387

� AR � 3:902 � CP � 1:115 � e ð5Þ

C ¼ 1:628 � 0:322 � SC � 0:076 � ets � 0:166

� AR þ 2:510 � CP � 0:491 � e ð6Þ

D ¼ 1:158 þ 0:019 � SC þ 0:26 � ets � 0:125

� AR � 3:143 � CP � 0:378 � e ð7Þ

Table 7 Comparison of statistical coefficients between revised neural network model having 5-4-1 topology and multiple regression analysis

Performance measures Prediction model

Revised optimum feed-forward back propagation neural network having 5-4-1

topology

Multiple regression analysis

Training data set Testing data set Training data set Testing data set

r 0.999 0.999 0.992 0.989

R2 0.998 0.998 0.984 0.979

MSE 212.080 220.711 1689.298 2496.158

RMSE 14.562 14.856 41.100 49.961

MAE 9.692 13.388 34.267 40.037

MAPE 3.37 % 4.21 % 11.37 % 10.87 %

Fig. 7 Predicted and target deviator stress for sand reinforced with

waste plastics in the training and testing data set using multiple

regression analysis
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E ¼ 7:107 þ 9:015 �
A � 0:5

1þ A � 0:5j j
� 2:94

�
B � 0:5

1þ B � 0:5j j
þ 3:422 �

C � 0:5

1þ C � 0:5j j

þ 2:218 �
D � 0:5

1þ D � 0:5j j
ð8Þ

rdpn ¼
E � 0:5

1þ E � 0:5j j
ð9Þ

The rdpn value as obtained from Eq. (9) is in the range

[-1, 1] and this needs to be denormalized as

rdp ¼ 0:5 � ðrdpn þ 1Þ � ðrdpmax� rdpminÞ
þ rdpmin ð10Þ

where, rdpmax and rdpmin is the maximum and the

minimum value of predicted deviator stress in kPa

respectively.

Conclusions

Modelling of deviator stress of a mixture of two or more

materials is a complex phenomenon. For this, an alternative

approach using neural network is adopted to overcome this

complexity. Over the past couple of years, applications of

neural networks in geotechnical engineering are being ex-

plored globally. In this paper, an application of neural

network for the modeling of the deviator stress for the

sand-waste plastic strip mixtures based on experimental

data obtained through consolidated drained triaxial tests is

presented. The model is developed for the data set of 60

records of deviator stress. The results indicate that the 8-6-1

topology of the neural network architecture is fairly ca-

pable of predicting the deviator stress with acceptable ac-

curacy. Further, the proposed neural network model has

been evaluated on a comprehensive performance measures.

From the performance measure analysis, it was evident that

the proposed neural network model predicted the deviator

stress closer to the one obtained experimentally through

consolidated drained triaxial tests with acceptable accura-

cy. Sensitivity analysis revealed that the contribution of the

input variables such as strip thickness, tensile strength of

the strip and dry unit weight does not have much impact on

the output deviator stress. The revised model having 5-4-1

topology gives a better prediction of the output deviator

stress than the previous model with 8-6-1 topology. Fur-

ther, the revised neural network model having 5-4-1

topology is superior to the one obtained using multiple

regression analysis in predicting the output deviator stress.

Finally a model equation is presented based on trained

weights in the revised neural network. More studies are

required to be conducted to validate the results obtained

using other variants of neural network models. In general,

the neural network models have the limitation in giving

explanations and reasoning behind the model so obtained.

In future, suitability of alternative techniques such as

support vector machines, particle swarm optimization or

genetic programming, may also be explored.
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