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Cystine residues result from the formation of disulfide bonds between pairs of cysteine residues. This cross

linking of the backbone is essential for the structure and activity of peptides and proteins. The conformation

of a cystine side chain can be described using five dihedral angles, c1, c2, c3, c20, and c10, with cystines

favouring certain combinations of these angles. 2D NMR spectroscopy is ideally suited for structure

determination of disulfide-rich peptides, because of their small size and constrained nature. However,

only limited information of the cystine side chain conformation can be determined by NMR

spectroscopy, leading to ambiguity in the deduced 3D structures. Resolving accurate structures is

important as disulfide-rich peptides have proven to be promising drug candidates in a number of fields,

either as bioactive leads or scaffolds. Using a database of NMR chemical shifts combined with

crystallographic structures, we have developed a method called DISH that uses support vector machines

to predict the dihedral angles of cysteine side chains. It is able to successfully predict c2 angles with 91%

accuracy, and has improved performance over existing prediction methods for c1 angles, with 87%

accuracy. For 81% of cysteine residues, DISH successfully predicted both the c1 and c2 angles. By

revisiting published solution structures of peptides determined using NMR spectroscopy, we assessed

the impact of additional cystine dihedral restraints on the quality of 3D models. DISH improved the

resolution and accuracy, highlighting the potential for improving the understanding of structure–activity

relationships and rational development of peptide drugs.

Introduction

Disulde bonds are essential for both the structure and activity

of proteins.1–3 They are formed by the oxidation of two thiol

groups from two cysteine residue side chains, resulting in

a covalent bond between the two sulfur atoms and the creation

of a cystine residue. Cystines can be classied as either struc-

tural or functional; structural cystines increase the rigidity of

a structure by cross linking the backbone whilst functional

residues undergo reduction/oxidation to either generate reac-

tive thiol groups or induce structural change causing functional

activation (referred to as allosteric cystines).4–7

The conformation of a cystine side chain is described by ve

dihedral angles: c1, c2, c3, c20, and c10 (Fig. 1). First reported by

Richardson (1981), it has since been extensively shown that

cystines favor particular congurations based on different

combinations of the ve dihedral angles.7–10 It has also been

shown that the conguration of structural cystines can be inu-

enced by the local secondary structure of the protein, particularly
Fig. 1 (a) The five dihedral angles of a cystine residue side chain: c1,

c2, c3, c20, and c10 (b–d) distribution of c angles of 3342 cystine

residues. Angles were binned to the nearest 5�. X-Axis is the dihedral

angle in degrees (�) and the Y-axis is the frequency in the database.

Green areas indicate the dihedral angle ranges used to define three

angle classes, c1 (and c10), c2 (and c20) and c3.
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for cystines cross linking b-strands.11,12 The functional signi-

cance of the cystine conguration was highlighted by Schmidt

and Hogg (2006), successfully identifying key allosteric cystine

residues aer the observation that they adopt a single high-energy

conguration known as a right handed staple.

For the disulde-rich peptides, cystine residues are struc-

tural, dictating both the overall fold and the rigidity. Due to

their small size, high solubility and restrained nature disulde-

rich peptides are ideal candidates for structure determination

by two-dimensional (2D) Nuclear Magnetic Resonance (NMR)

spectroscopy. The determination of a protein or peptide struc-

ture using NMR spectroscopy involves computational genera-

tion of conformations that satisfy a range of distance and angle

restraints determined from spectroscopic measurements.13

These restraints include inter-proton distances, hydrogen

bonds and dihedral angles of both backbone and side chains.

The power of these methods for disulde-rich peptides is

highlighted by the fact that of the 177 experimental three-

dimensional (3D) structures resolved of conotoxin to date, 166

have been derived from solution NMR data.14

NMR-derived data can be used to give some information on

amino acid residue dihedral angles.15–19 The Karplus equation

establishes a relationship between the dihedral angles and the
3JH–H coupling constants of vicinal protons.20,21 In practice, this

is most oen applied to the relationship between the 3JHa–HN

and the backbone f angle. This method relies on accurate

empirical parameterization of the Karplus equation, and oen

the measurement of 3JH–H coupling constants in peptides is

hampered by overlap and line shapes. The side chain c1 dihe-

dral angles can also be obtained by analyzing the 3JHa–Hb

coupling patterns in the exclusive correlation spectroscopy

(E.COSY) spectrum and the intensities of HN–Hb nuclear

Overhauser effect spectroscopy (NOESY) peaks.17,22However this

method can be subjective and time-consuming, and is also

oen hindered by the overlap of peaks. The common sulfur

isotope 32S has a nuclear spin of zero and the low abundant 33S

isotope is quadrupolar with a spin of 3/2, resulting in broad line

shapes incompatible with NMR experiments. Therefore, no

NMR data can be used to directly and reliably measure the c2

and c3 angles of cystine residues. We note that isotopically

labelled Cys residues (2R,3RS)-[b-13C; a,b-2H2] can be used to

determine the conformation of cystine side chains from NOE

intensities.23 Nevertheless, this method is not routinely appli-

cable because it is expensive and requires recombinant

expression of peptides, negating one of the key advantages of

working with peptides compared to proteins. In contrast, with

the availability of the highly sensitive modern cryoprobes

chemical shis for 15N and 13C can generally be determined

using the natural abundance in synthetic and isolated naturally

occurring peptides.

Several machine learning approaches, such as TALOS-N,

DANGLE and PREDITOR predict backbone f and psi (j)

angles as well as side chain c1 angles using the inuence of

local protein structure on NMR chemical shis.19,24–28 TALOS-N

and PREDITOR achieve �90% accuracy for backbone dihedral

prediction, but their ability to predict c1 angle of Cys residues is

limited. TALOS-N only predicts the c1 angle of less than 50% of

all Cys residues.27 PREDITOR has an overall accuracy of 84%

across all residue types however performance is reduced if the

protein is b-sheet rich, a motif that is common in disulde-rich

families such as the cyclotides.28,29 To our knowledge there are

no computational programs that predict the c2 angles of any

amino acid residues based on NMR data.

The conformation of cystine side chains in solution struc-

tures determined from NMR data is not imposed from specic

experimental data but result from the simulated annealing

protocols implemented in the programs CYANA that calculates

structures in torsion angle space or CNS that uses both torsion

angle and Cartesian space.30,31 As a result, the distribution of

cystine dihedral angles in NMR solution structures are consid-

ered less accurate than those observed in X-ray structures.32,33

This inaccuracy in the structure of cystine residues, which are

major determinant of the overall 3D structure of peptides,

represents a major limitation to the determination of peptide

solution structure by 2D NMR. This study aimed at using

a machine learning approach to draw a correlation between

easily accessible NMR measurements and the conformation of

cystine residues, allowing accurate prediction of cystine residue

structures and improvement of peptide and protein structures

determined by 2D NMR.

The side chain c1 angle is known to inuence the backbone

chemical shis, however dening a denitive average is

hindered by the common occurrence of rotameric aver-

aging.26,34,35 There has been no specic investigation focusing

on cystine residue side chains and chemical shis. Cystine

residues span peptide backbone and they consequently have

twice the number of backbone chemical shis compared to

other residue types. Because cystines favor particular congu-

rations and are generally restrained elements, we hypothesized

a correlation between cystine dihedral angles and Cys chemical

shis.8 Gathering information on peptides studied both by

NMR spectroscopy and high-resolution X-ray crystallography,

a cystine specic database incorporating experimental chemical

shis and dihedral angles was built. Using this database, we

developed a support vector machine (SVM) referred to as DISH

(di-sulde and di-hedral prediction) to predict the c1 and c2

angles of Cys residues. DISH is the rst reported prediction

algorithm of cystine c2 angles, and it displays a greater accuracy

for c1 angle prediction compared to existing methods. Several

examples highlight how including restraints suggested by DISH

could improve the structural resolution of disulde-rich

peptides calculated with CNS.

Experimental section
Disulde bond database generation

A cystine specic database was derived from the TALOS-N

protein structural database (talos.obcCS) composed of 580

high-resolution X-ray protein structures that have additionally

been experimentally studied by 2D NMR.27 This TALOS-N

database catalogues the experimental 15N, 13C, 13Ca, 13Cb,
1Ha and 1HN secondary chemical shis of each residue. The

corresponding coordinates le were downloaded from the

Protein Data Bank (PDB).36 TALOS-N provides a second and

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 6548–6556 | 6549
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larger protein structural database (talos.tab) where chemical

shis of proteins have been predicted using the program

SPARTA+.27,35 However SPARTA+ shows poor predictive perfor-

mance for 13C chemical shis of cystine residues and was

considered incompatible with our aims.18,35

The backbone and side chain dihedral angles of Cys residues

were measured in the X-ray structures and were combined with

the chemical shis found in the TALOS-N dataset to yield a “Cys

database” of 210 Cys residues. The Cys database also records

the two residue types that ank the Cys residues, as well as their

backbone dihedrals and chemical shis. Cys residues that are

located at the termini of the peptides were excluded from this

dataset, consistent with approaches of other dihedral predic-

tion programs.37 If a chemical shi was unassigned it was

dened as the average chemical shi for that nucleus in the

database in parts per million (ppm).

Side chains, whatever the residue type, typically adopt

particular conformations. For cysteine residues the c1 and c2

angles are generally described as either gauche+ (+60�), gauche�

(�60�) or trans (180�), whereas c3 angles are classied as either

right (+90�) or le handed (�90�).8,12

Fig. 1 shows the distribution of these three c angles for

>3000 disuldes bonds found in high resolution X-ray crystal

structures. Most c1 and c3 angles of cystine residues can be

classied by dening the range of the dihedral classes within

the boundaries �30�. The distribution of c2 angles of cystine

residues can be divided into three main classes dened as

gauche+ (+75� � 45), gauche� (�75� � 45) and trans (180� � 30).

The dihedral angles in our Cys database where classied in

these c categories, and the 19 cystine residues for which the

dihedral angles fall outside of the class ranges were excluded.

The DSSP program was used to extract the secondary structure

of Cys residues from the PDB le, and categorized it as either

helix, strand or loop; consistent with the classication system of

TALOS-N predictions.38,39 The nal Cys database contains

information on 86 cystine residues from 46 different coordinate

les. The structural and chemical information stored in the Cys

database is shown below:

(1) The PDB identier, which is unique for each coordinate

le.

(2) Cys position 1- [residue number, chain, f and j angles, 15N,
13C, 13Ca, 13Cb, 1Ha, 1HN secondary chemical shis (ppm)].

(3) Neighboring residues of position 1- [residue number,

chain, f and j angles, 15N, 13C, 13Ca, 13Cb, 1Ha, 1HN secondary

chemical shis (ppm)].

(4) Cys position 2- [residue number, chain, f and j angles, 15N,
13C, 13Ca, 13Cb, 1Ha, 1HN secondary chemical shis (ppm)].

(5) Neighboring residues of position 2- [residue number,

chain, f and j angles, 15N, 13C, 13Ca, 13Cb, 1Ha, 1HN secondary

chemical shis (ppm)].

(6) Dihedral angles values and classes [c1, c2, c3, c20, c10].

(7) Secondary structure array [helix, strand, coil].

Support vector machine prediction

SVMs were developed for the prediction of c1 and c2 angles

using as inputs chemical shis and backbone dihedral angles.

We chose to use SVMs compared to other machine learning

approaches because of their proven performance in protein

secondary structure prediction and global solution

approach.40–43 The python library scikit-learn was used for SVM

implementation.44 During the SVM training step, a set of

hyperplanes are optimized for optimal separation between data

points with the shape of the hyperplanes described by the SVM

kernel function. Scikit-learn provides common kernel functions

including linear, sigmoid, polynomial and the radial basis

function (RBF).45 Two parameters were optimized during SVM

training: the regularization parameter C, which controls how

stringent the algorithm is with outliers and the gamma (g)

value, which dictates what training examples inuences the

hyperplane boundary.45 All kernel types were tested and the g

and C values were optimized for each kernel; the RBF providing

the greatest predictive power. The RBF kernel has also been

shown to be the most effective kernel for complex problems,

such as secondary structure prediction.37,40 Methods such as

balancing the dataset using synthetic minority over-sampling

technique and edited nearest neighbors as well as standardi-

zation and variance scaling of data were also employed, however

they did not to improve predictive performance.44,46,47

Due to the small database size, the predictive power of each

SVM was evaluated using a leave-one-out method. In this

instance a single Cys residue was selected for testing, whilst all

remaining inputs were used for training of the classier. A grid

search between 2�15 and 23 for g and 2�5 to 215 for C parameters

was used before renement to nd optimal values.48 The

Matthews correlation coefficient (MCC) was used to assess the

performance of each stage.49 Final inputs, parameters and

workow are shown in Fig. 2.

c1 angle prediction

A two-level SVM was developed for the prediction of c1 angles

(SVM-c1). For each cystine the two hemi-cystine residues were

Fig. 2 Workflow of the DISH method. The prediction of each c angle

uses a two level SVM. The workflow details the input values as well as

the optimized g and C SVM parameters.
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considered separately, with the hemi-cystine residue with the c1

dihedral of interest dened as Cys-1 and the other designated as

Cys-2. The rst-level SVM classies c1 angles as gauche+ or

‘other’ (i.e. gauche� or trans). The ‘other’ category is then

further classied using the second level SVM as either gauche�

or trans. For both levels the output was classied as discrete

class labels, 0 and 1. Inputs included chemical shis and

dihedral angles from both Cys-1 and Cys-2 as well as the van der

Waals volume of neighboring residues of Cys-1. The van der

Waals volume was dened as the volume enclosed by the sum of

the van der Waals radii for all atoms in a residue.50 Each level

was more sensitive to a set of inputs, which are given in Fig. 2.

c2 angle prediction

A two-level SVM predictor was also developed to predict c2

angles (SVM-c2), with the rst level categorizing c2 as either

gauche� or ‘other’ (i.e. gauche+ or trans) and the second level

sub-classifying the ‘other’ class into either gauche+ or trans. The

optimal inputs were found to differ from that of SVM-c1 but the

testing of parameters and evaluation of predictive performance

was the same as that previously described (Fig. 2). Initially only

chemical shis and the Cys secondary structure were tested as

inputs for both SVM-c1 and SVM-c2. Whilst a relatively accurate

performance was recorded, inclusion of backbone and side

chain dihedral angles as inputs was shown to signicantly

improve the MCC values during validation and therefore

included in the nal program (Tables S1 and S2†).

Simultaneous c1 and c2 prediction

The SVM-c1 and SVM-c2 modules were combined to form the

nal framework for DISH. The c1 angle predicted by the SVM-c1

module was subsequently used as an input for SVM-c2 (Fig. 2).

The accuracy of the program was based on the number of hemi-

cystine residues where both c1 and c2 angles were successfully

predicted.

Evaluation of structures

We nally exemplied the use of DISH by revisiting some

recently published peptide structures determined using NMR

spectroscopy. The performance of DISH and the effect of adding

its predicted restraints to 3D structures computations were

evaluated on three examples: the anti-microbial Ep-AMP1

peptide from the Echinopsis pachanoi cactus species (PDB

2mfs), the immunomodulator barrettide A peptide from the

marine sponge Geodia barretti (PDB 6c) and an engineered

cyclic conotoxin cyc-PVIIA from Conus penaceus (PDB 2n8e).51–53

The 3D structures for all peptides have been resolved by 2D

NMR spectroscopy and chemical shis obtained in these

studies were used as inputs for the DISH program.

The backbone dihedral angles were predicted from these

shis using the TALOS-N program.27 TALOS-N provides a three

tier category ranking the strength of prediction for each residue.

For DISH, only backbone angles with the highest level of

condence, “strong”, were repurposed as inputs. For all other

Cys residues the original structure was consulted and the f and

j inputs were based on the average of the observed backbone

conformation. This approach is consistent with the general

experimental process of resolving a structure by 2D NMR. Initial

structures are calculated with restraints derived directly from

experimental data, such as proton distances. Computationally

predicted or ambiguous restraints are then compared to see if

they are consistent with these initial structures before their

inclusion. Therefore it is proposed that the restraints from

DISH are incorporated in the later stages of structure calcula-

tions as a method to further rene the structures. The predicted

secondary structure of cysteines from TALOS-N was also used as

an input, and incorporated as a hot array as either a helix,

strand or loop.

The 3D structures were calculated in CNS using the previ-

ously reported proton-distances, hydrogen bonds and dihedral

restraints and the additional c1 and c2 angles calculated in

DISH.31 Fiy structures were generated, and the 20 models with

the lowest energies and covalent geometry quality as evaluated

by MolProbity were selected and gures generated using MOL-

MOL.54–56 The 20 models that were reported (without using

DISH results) were also re-evaluated using the current version of

MolProbity.55 In addition the c1 predictions of DISH were

compared to the reported NMR data of the two spider toxins,

ProTx-II from Thrixopelma pruriens (PDB 2n9t) and m-TRTX-

Pn3a (Pn3a) from Pamphobeteus nigricolor (PDB 5t4r) and the

conotoxin from Conus geographus G117 (PDB 6cei) for which the

cystine residue c1 angles were suggested through an analysis of

E.COSY data.57,58

We further evaluated the effect of additional Cys c restraints

on the overall accuracy of NMR structures. The structure of the

129-residue hen egg-white lysozyme (from the Gallus gallus) has

been well characterised and resolved by both X-ray crystallog-

raphy (PDB 1iee) and NMR with residual dipolar couplings

(RDCs) (PDB 1e8l).59,60 RDCs provide orientation information

for individual bond vectors relative to the overall tensor of

a protein. This information does not rely on local interactions

and thus provides an overall greater accuracy to structures

resolved by NMR. The hen egg-white lysozyme is included as

a training example in DISH. Based on the predictions for the

four Cys residues in the ‘leave-one-out method’, we compared

two NMR structures; one that had been calculated with no Cys c

restraints and the other with the predicted DISH Cys c1 and c2

dihedrals. The reported distance, dihedral and hydrogen bond

restraints from PDB 1e8l were used to calculate structures in

CNS.31,60 A total of 200 conformers were initially annealed and

the lowest 20 energy selected for nal representation. The

program PALES was then used to predict the N–HNRDCs for the

structures and compared to the experimental values.61 The

calculated structures were also compared to the deposited X-ray

structure.

Results and discussion

Each of the two stages of the SVM-c1 predictor were evaluated

independently: stage I gave an MCC of 0.89, corresponding to

only 2 angles out of 172 incorrectly classied; and stage II gave

an MCC of 0.70. The overall accuracy of the two stages of SVM-

This journal is © The Royal Society of Chemistry 2018 Chem. Sci., 2018, 9, 6548–6556 | 6551
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c1 was 87%. The accuracy for each of the c1 classes is shown in

Table 1.

DISH SVM-c1 improved upon c1 predictions for cystine

residues made with TALOS-N and PREDITOR. The TALOS-N

program has a >90% accuracy for its c1 predictions, but it

only returns a prediction for less than 50% of all tested Cys

residues, whereas DISH returns an 87% accuracy for all the

tested hemi-cystine residues. DISH has a slightly better accuracy

than PREDITOR for c1 prediction, which has an 84% accuracy

across all residues. Importantly, PREDITOR makes its predic-

tions using information from homologous proteins, whereas

DISH does not have such requirement, making DISH more

generally applicable.

For the SVM-c2module one of the inputs is the c1 angle, and

SVM-c2 was initially tested using the c1 angle determined from

the crystal structure. The stage I and II of SVM-c2 both had an

MCC of 0.85 (Table 1). Combining the two stages, SVM-c2 had

an accuracy of 91%. The performance for individual c2 angle

classes is shown in Table 1. The SVM-c1 and SVM-c2 modules

were then combined, i.e. the c1 predicted from SVM-c1 was

used as input for SVM-c2, resulting in 81% of all hemi-cystine

residues having both c1 and c2 classes correctly predicted.

Scores of predictions

The Platt scaling method, as implemented in the scikit-learn

modules, was used to compute the condence score of the

predictions.44 The output values of an SVM should be correlated

to the probability of the prediction being true, i.e. the accuracy.

The Platt method ts the output values to the accuracy,

providing a condence score for each possible class, with the

combined scores totalling 1.0. Practically the scores are

computed by considering the accuracy of all the predictions

with output values above a certain cut-off, providing the

condence score for this cut-off. As the nal condence scores

vary depending of the order of the leave-one-out, the t for each

cut-off was averaged over ten leave-one-out procedures. The

relationship between accuracy of the predictions and the output

values was established individually for the SVM-c1 and SVM-c2

modules. A score for the simultaneous prediction of c1 and c2

angles was determined by considering the output values as the

product of the outputs of the SVM-c1 and SVM-c2 modules

(Fig. 3).

Fig. 3 shows the relationship between the condence scores

and the output values from the SVMs. SVM-c1 and SVM-c2 have

constantly high accuracy, and the predicted scores are therefore

consistently high for all output value cut-offs. A slight increase

of condence score is observed as the output values increase

(Fig. 3b and c). For simultaneous c1 and c2 prediction the

condence score increased almost exponentially with the

output values. Notably, 31% of all hemi-cystine residues in the

test set resulted in an output value larger than 0.75 and an ex-

pected accuracy of �90%. This frequency is to be compared to

the overall accuracy of 81%. For probabilities greater than 0.75

high variability in the accuracy score was observed due to the

small sample size, and therefore are not shown.

Cyc-PVIIA

Cyc-PVIIA peptide is a backbone cyclic variant of the conotoxin

k-PVIIA, which a potassium channel blocker isolated from C.

penaceus.53 This peptide displays a knotted arrangement of

three disulde bonds, known as an inhibitory cystine knot. The

published NMR solution structure of cyc-PVIIA (PDB 2n8e)

displays two areas of large backbone conformational exibility:

loop 2 (between residues Cys8–Cys15) and the cyclizing linker

Table 1 The MCC for each stage and final accuracy for c1 and c2

angle prediction by DISH from a ‘leave-one-out’ evaluation

Stage I MCC Stage II MCCa Accuracyb (%)

SVM-c1 0.89 0.70 87
SVM-c2 0.85 0.85 91

gauche� gauche+ trans

Number of c1
angles correctly

predicted

104 9 37

Total number of c1

angles

113 10 49

Accuracy (%) 92.0 90.0 75.5

Number of c2

angles correctly
predicted

109 31 16

Total number of c2

angles

111 40 21

Accuracy (%) 98.2 77.5 76.2

a
c1 is an input of stage II and was measured in the crystal structure for

this test. b Accuracy was measured by serially using stages I and II.

Fig. 3 Correlations between the expected accuracy of predictions

(confidence score) and the SVM output values for (a) c1 � c2 predic-

tions, (b) c1 predictions and (c) c2 predictions. The accuracies were

estimated using the leave-one-out method and correlations with

output values were computed using the Platt scaling method. The

frequency of predictions with output values above a cut-off is indi-

cated in red. Each plot represents the mean with error bars showing

standard deviation of ten (n¼ 10) rounds of Platt scaling on all the data.

The dashed line represents the overall accuracy for 100% of the

frequency.
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region. Molecular simulations predicted that cyc-PVIIA was less

exible in loop 2 compared to the native k-PVIIA,53 but the loop

2 region of k-PVIIA adopts a signicantly more restrained

conguration in its solution structure than that of cyc-PVIIA.53

This apparent discrepancy suggests that the conformational

heterogeneity displayed in the NMR models of cyc-PVIIA arise

from a lack of distance restraints rather than from exibility.

Therefore, cyc-PVIIA is an interesting example for testing if the

additional restraints from DISH could inuence ambiguous

backbone conformations.

Cys c1 angles had been derived from analysis of NMR

experimental data and they were included as restraints to

generate the published solution structure of cyc-PVIIA.53 All

DISH predicted angles shown in Table 2 were used as input

restraints for structure calculations in CNS30 with the exception

of the c2 of Cys20, which diverged from the experimental data.

The inclusion of the c1 and c2 cystine restraints resulted in

a better dened loop 2 region, as shown in Fig. 4. Interestingly,

the linker region was also slightly better dened. The overall

backbone and heavy atom RMSDs were also signicantly

decreased aer inclusion of the additional restraints (Table 3).

The revised structure of cyc-PVIIA is in better agreement with

theoretical molecular simulations.53 Assessing the quality of the

revised structure using MolProbity shows a slight reduction in

the overall quality of the score. This is likely to be due to the

large rearrangements in the nal structure clashing with the

original experimental restraints such as inter-proton distances.

Normally during a structural determination process these

conicts can be resolved though re-evaluation of the experi-

mental data with the additional knowledge of the structure.

Ep-AMP1 and barretide A

The performance of DISH and inuence of additional cystine

restraints on experimental solution structures was further

evaluated on the Ep-AMP1 and barretide A peptides. Ep-AMP1 is

an antimicrobial peptide expressed by E. pachanoi (San pedro

cactus). It has three disulde bonds forming an inhibitor

cysteine knot.51 The c1 angles of three out of the six hemi-

cystines have been determined via analysis of coupling

constants determined from an E.COSY spectrum and intra

residual NOE patterns.51 Barretide A is a peptide from the

marine sponge G. barretti and has been shown to inhibit

secretion of cytokines. This peptide contains two disulde

bonds and two anti-parallel b-strands, which form an elongated

b-sheet. The Ha secondary chemical shi analysis suggested

that the termini are highly exible.52 The published solution

structure displays a disordered conformation of the side chain

and backbone of the cystine 5–23 residue, contrasting against

the secondary shis of the Cys residues and its neighbours that

suggest a dened structural region.

Using the published chemical shis, we predicted the values

of the c1 and c2 angles of all cystine residues using DISH. Both

structures were calculated using the previously derived

restraints and additional c1 and c2 angles in CNS (Tables S3

and S4†).31,51,52 For Ep-AMP1, there was a signicant reduction

in the backbone RMSD of the lowest energy structures, from

0.86 Å to 0.55 Å.

Practically, the conformation of two loops were better

dened when using the restraints on c2 angles (Fig. S1†). There

were no signicant changes in the overall nal MolProbity

score. Some reductions in structural violations such as Ram-

achandran outliers (from an average of 0.25 to 0.00) were

observed in the re-evaluated structure (Table S5†). These were

however balanced by a small increase in the clash score and

without reanalysing the NOESY spectra no adjustments could

be made to distance restraints between protons. For barretide A

again the inclusion of c2 angles resulted in a decrease in the

backbone and heavy atom RMSD among the lowest energy

models (Fig. S2†). No major differences in the MolProbity

Table 2 The Cys residues of cyc-PVIIA and c1 angles calculated from

the E.COSY spectrum, c1 angles predicted by TALOS-N and the c1 and

c2 angles predicted by DISH, either gauche+ (g+), gauche� (g�) or

trans (t)

Residue c E.COSY c1 DISH c2 DISH

1 — — —

8 g+ g+ g+
15 g� g� g�

16 — g� g�

20 — t ta

26 — g� g�

a As DISH was not in agreement with reported experimental data
restraints or were found to violate were not included in the new
structure calculation.

Fig. 4 Comparison of the backbone conformation of the 20 lowest

energy models of cyc-PVIIA computed using CNS without DISH

predictions (PDB 2n8e; in blue) and with DISH predictions (in pink).

Cystine side chains are in yellow sticks.
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statistics were observed for this peptide, conrming that the

new dihedral constraints were fully compatible with all previous

data (Table S6†).

ProTx-II, Pn3a and G117

The gauche� conformation of c1 angles of cystine residues is by

far the most populated, thus to further evaluate DISH we tested

its performance on additional peptides for which the c1 angles

have been analysed by NMR data. The ProTx-II (PDB 2n9t), Pn3a

(PDB 5t4r) and G117 (PDB 6cei) toxins are three peptides that

display all three possible cystine c1 congurations (gauche+,

gauche� and trans) based on reported analysis of the E.COSY

spectra.57,58 DISH successfully predicted 7 out of 7 c1 angles for

G117 and four out of ve for ProTx-II and Pn3A. This resulted in

a total of 15 out of 17 angles based on reported values from

E.COSY analyses (Table 4).

Hen egg-white lysozyme

The hen lysozyme is an extensively studied structure and was

used to show how additional Cys c1 and c2 restraints can not

only rene, but also improve the accuracy of NMR structures.

Both NMR data with RDCs and X-ray crystallography have been

used to resolve the structure of this 127 residue protein with 4

cystines.59,60 Based on predictions in which the structure had

been removed from the training database and used as a testing

example, DISH predicted the correct c1 and c2 angles for all 8

Cys residues (Table S7†). Two separate structures were calcu-

lated in CNS, with and without Cys c dihedral restraints (DISH

predictions). The accuracy of the two structures were initially

evaluated by comparison to the X-ray structure (Table S8†). The

RMSDs relative to the crystal structure were 1.55 � 0.28 Å and

1.73 � 0.27 Å for the structures with and without DISH

restraints, respectively. The improvement is particularly evident

around the cysteine residues. When including the DISH

predictions the RMSD for Cys heavy atoms was 0.87 � 0.18 Å, as

opposed to 1.32 � 0.32 Å without DISH predictions.

The inuence of DISH restraints was further evaluated by

comparing computationally predicted and experimental RDCs.

The PALES soware was used to predict the N–HN RDCs for

each of the 20 NMR structures and these values were compared

to experimental ones, which were recorded in 5%

DMPC:DHPC.60,61 The nal difference was taken as the average

across the 20 structures. Comparing the 8 Cys, an overall

reduction in the difference between computed and experi-

mental RDCs can be observed across the 20 structures when

calculated with DISH predictions (Fig. 5). The above evidence

supports that Cys c1 and c2 restraints increase the accuracy of

NMR structures, particularly around the Cys residues

themselves.

Signicance for rational drug design development

Thanks to the presence of cross bracing covalent bonds,

disulde-rich peptides display highly ordered structures despite

their small size. They have diverse biological functions,

including in neurological signalling, plant and animal

hormonal signalling, as defense peptides, or as potent toxins for

capture of prey, as in the venom of cone snails, spiders and

snakes.62–64 Many of these peptides are desirable drug

Table 4 The Cys residues of ProTx-II, Pn3A and G117 and c1 angles

calculated from the E.COSY spectrum, c1 angles predicted by TALOS-

N and the c1 and c2 angles predicted by DISH

ProTx-II

c1

E.COSY

c1

DISH

c1

TALOS-N

c2

DISH

2 — g� — g�

9 g+ g� — g�

15 g� g� g� g�

16 g� g� — g�

21 t t t t

25 g� g� — g�

Pn3A
2 g+ g� — g�

9 — g� — g�

15 g� g� g� g�

16 g� g� g� g�

21 t t t g+

28 g� g� — g�

G117
8 g+ g+ — g+

14 g� g� — g�

15 g� g� — g�

19 g� g� — g�

20 t t — g+

24 g� g� — g�

31 g� g� — g�

Table 3 Structural statistics of the 20 lowest energy structures of cyc-

PVIIA and the re-evaluated structure with additional c1 and c2

restraints calculated using simulated annealing procedures in CNSa

Original Additional c1 and c2

Clash scoreb 6.1 � 2.7 11.8 � 4.7

Poor rotamers 1.1 � 1.0 0.05 � 0.22
Ramachandran outliers 0.0 � 0.0 0.45 � 0.61

Ramachandran favoured (%) 95.5 � 4.0 89.9 � 5.1

MolProb. scorec 1.9 � 0.33 2.1 � 0.18

Percentile (%)d 79.3 � 15.5 69.8 � 9.8
Residues with bad bonds 0.2 � 0.45 0.6 � 0.68

RMSD (Å) (residues 3–8, 15–27)
Mean global backbone 0.91 � 0.25 0.61 � 0.18

Mean global heavy 1.78 � 0.26 1.52 � 0.26

RMSD (residues 1–34)
Mean global backbone 1.65 � 0.31 1.29 � 0.35

Mean global heavy 2.42 � 0.30 2.24 � 0.48

a Denition of MolProbity structural statistics.55 b The number of non-

donor–acceptor atoms that overlap by more than 0.4 Å per 1000
atoms. c Overall quality of protein statistics. Log weighted
combination of the clash score, percentage Ramachandran not
favoured and percentage of bad side chain rotamers. Reects the
crystallographic resolution for structures that those values would be
expected. d 100th percentile is the best among structures of
comparable resolution; 0th percentile is the worst.
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candidates due to their high potency and selectivity, and have

also attracted interest as potential drug scaffolds that could

stabilize potent but vulnerable small peptides.65–67 Peptides ll

a gap between the large biologics and the small molecule drugs,

and are promising therapeutics because they are large enough

to be specic and target protein–protein interactions, but are

small enough to be chemically synthesized, allowing modica-

tions of their activity through the use of non-natural amino

acids and cyclisation.68 The determination of 3D structures of

peptides, a key step in any structure–activity relationships

study, can assist the rational development of analogues with

improved therapeutic properties. By revising three existing

structures with additional dihedral restraints from DISH, we

showed here that we were able to signicantly improve both the

precision and overall quality of 3D structures in solution,

a method that we believe will be particularly useful for this

rational drug design process.

Conclusions

The DISH program is the rst to predict cystine c2 angles and

represents an improvement on existing methods for c1

predictions based on chemical shi and structural inputs. The

predictions were tested using the leave-one-out method,

achieving an overall accuracy of 81% for simultaneous predic-

tion of c1 and c2 angles for all hemi-cystine residues tested. The

positive effect of including additional cystine dihedral angle

restraints on peptide structures resolved by 2D NMR was

highlighted by revisiting four existing structures where we were

able to reduce backbone conformational ambiguity, increase

consistency with crystal structures and RDCs and improve

overall covalent geometry. It is envisaged that the DISH program

will be of important use during the structure determination of

novel structures, where dening the cross-linking cystine

congurations will reduce the reliance of assignment of NOESY

peaks, a process hindered by overlap. The program and source

code is available to the NMR community at https://github.com/

davarm/DISH_prediction based on a simplied user input

system.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

DAA was supported by an Australian Postgraduate Award. KJR

was supported by an Australian Research Council Future

Fellowship (FT130100890).

Notes and references

1 J. Gehrmann, P. F. Alewood and D. J. Craik, J. Mol. Biol., 1998,

278, 401–415.

2 M. L. Colgrave and D. J. Craik, Biochemistry, 2004, 43, 5965–

5975.

3 M. Price-Carter, M. S. Hull and D. P. Goldenberg,

Biochemistry, 1998, 37, 9851–9861.

4 P. J. Hogg, Trends Biochem. Sci., 2003, 28, 210–214.

5 J. Clarke and A. R. Fersht, Biochemistry, 1993, 32, 4322–4329.

6 S. F. Betz, Protein Sci., 1993, 2, 1551–1558.

7 B. Schmidt, L. Ho and P. J. Hogg, Biochemistry, 2006, 45,

7429–7433.

8 J. S. Richardson, Adv. Protein Chem., 1981, 34, 167–339.

9 P. M. Harrison and M. J. Sternberg, J. Mol. Biol., 1996, 264,

603–623.

10 O. A. Ozhogina and E. L. Bominaar, J. Struct. Biol., 2009, 168,

223–233.

11 N. L. Haworth, L. L. Feng and M. A. Wouters, J. Bioinf.

Comput. Biol., 2006, 4, 155–168.

12 N. Srinivasan, R. Sowdhamini, C. Ramakrishnan and

P. Balaram, Int. J. Pept. Res. Ther., 1990, 36, 147–155.
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