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Abstract

Background: Detection of splice sites plays a key role for predicting the gene

structure and thus development of efficient analytical methods for splice site

prediction is vital. This paper presents a novel sequence encoding approach based
on the adjacent di-nucleotide dependencies in which the donor splice site motifs

are encoded into numeric vectors. The encoded vectors are then used as input in

Random Forest (RF), Support Vector Machines (SVM) and Artificial Neural Network
(ANN), Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers for

prediction of donor splice sites.

Results: The performance of the proposed approach is evaluated on the donor splice

site sequence data of Homo sapiens, collected from Homo Sapiens Splice Sites Dataset

(HS3D). The results showed that RF outperformed all the considered classifiers. Besides,
RF achieved higher prediction accuracy than the existing methods viz., MEM, MDD,

WMM, MM1, NNSplice and SpliceView, while compared using an independent test

dataset.

Conclusion: Based on the proposed approach, we have developed an online

prediction server (MaLDoSS) to help the biological community in predicting the

donor splice sites. The server is made freely available at http://cabgrid.res.in:8080/
maldoss. Due to computational feasibility and high prediction accuracy, the

proposed approach is believed to help in predicting the eukaryotic gene structure.

Keywords: Di-nucleotide association, Machine learning, PWM, Computational

feasibility

Background

Prediction of gene structures is one of the important tasks in genome sequencing pro-

jects, and the prediction of exon-intron boundaries or splice sites (ss) is crucial for pre-

dicting the structures of genes in eukaryotes. It has been established that accurate

prediction of eukaryotic gene structure highly depends upon the ability to accurately

identify the ss. The ss at the exon-intron boundaries are called the donor (5′) ss

whereas intron-exon boundaries are called the acceptor (3′) ss. The donor and acceptor

ss with consensus GT (at intron-start) and AG (at intron-end) respectively are known as

canonical ss (GT-AG type; Fig. 1). Approximately, 99 % of the ss are canonical GT-AG

type ss [1]. As GT-and AG-are conserved in donor and acceptor ss respectively, every GT
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and AG in a DNA sequence could be a donor or acceptor ss. However, they need to be

predicted as either real (true) or pseudo (false) ss.

During the last decade, several computational methods have been developed for ss

detection that can be grouped into several categories viz., probabilistic approaches [2],

ANNs [3, 4], SVM [5–7] and information theory [8]. These methods seek the consen-

sus patterns and identify the underlying relationships among nucleotides in ss region.

ANNs and SVMs learn the complex features of neighborhood nucleotides surrounding

the consensus di-nucleotides GT/AG by a complex non-linear transformation, whereas

the probabilistic models estimate the position specific probabilities of ss by computing

the likelihood of candidate signal sequences. Roca et al. [9] identified the di-nucleotide

dependencies as one of the main features of donor ss. Although the above mentioned

methods are complex and computationally intensive, it is evident that position specific

signals and nucleotide dependencies are pivotal for ss prediction.

In the class of ensemble classifiers, RF [10] is considered as highly successful one that

consists of ensemble of several tree classifiers (Fig. 2). The wide application of RF for

prediction purposes in biology can be seen from literature. Hamby and Hirst [11]

utilized the RF algorithm for prediction of glycosylation sites and found significant

increase in accuracy for the prediction of • Thr” and • Asn ” glycosylation sites. Jain et al.

[12] assessed the performance of different classifiers (fifteen classifiers from five differ-

ent categories of pattern recognition algorithms) while trying to solve the protein

Fig. 1 Pictorial representation of donor and acceptor ss. Donor ss have di-nucleotides GT at the beginning

of the intron and acceptor ss have di-nucleotides AG at the end of intron

Fig. 2 Flow diagram shows the step involved in prediction using ensemble of tree classifiers. Initially, B

number of samples were drawn from the original training set and a tree was grown using each sample.

The final predictions were made by combining all the classifiers
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folding problem. Their experimental results showed that RF achieved better accuracy

as compared to the other classifiers. Later on, Dehzangi et al. [13] demonstrated that

the RF classifier enhanced the prediction accuracy as well as reduced the time con-

sumption in predicting the protein folds. In the recent past, Khalilia et al. [14] used RF

to predict disease risk for eight disease categories and found that the RF outperformed

SVM, Bagging and Boosting.

Keeping the above in view, an attempt has been made to develop a computational

approach for donor ss prediction. The proposed approach involves sequence encoding

procedures and application of RF methodology. For given encoding procedures, RF

outperformed SVM, ANN in terms of prediction accuracy. Also, RF achieved higher

accuracy while compared with existing approaches by using an independent test

dataset.

Methods

Collection and processing of splice site data

The true and false ss sequences of Homo sapiens were collected from HS3D [15]

(http://www.sci.unisannio.it/docenti/rampone/). The downloaded dataset contains a

total of 2796 True donor Splice Sites (TSS) (http://www.sci.unisannio.it/docenti/ram-

pone/EI_true.zip) and 90924 False donor Splice Site (FSS) (http://www.sci.unisannio.it/

docenti/rampone/EI_false_1.zip). The sequences are of 140 bp long with conserved GT

at 71st and 72nd positions respectively.

Both introns and exons have important role in the process of pre-mRNA splicing. To

be more specific, presence of conserved-ness at both 5′ and 3′ ends of intron as well as

exonic splicing enhancers [16, 17] is vital from splicing point of view. Besides, the

length of an exon is also an important property for proper splicing [18]. It has been

shown in vivo that internal deletion of consecutively recognized internal exons that are

below ~50 bp may often lead to exon skipping [19]. As far as the length of an intron is

concerned, Zhu et al. [20] carried out the functional analysis of minimal introns ranging

between 50-100 bp and found that minimal introns are conserved in terms of both length

and sequence. Hence, the window length of 102 bp [50 bp at exon-end + (GT + 50 bp) at

intron-start] is considered here (Fig. 3).

Though in longer window length there is a less chance of existence of identical se-

quences, still we performed redundancy check to remove the identical TSS sequences

from the dataset. To train the model efficiently, same number of unique FSS (equal to

unique TSS) was considered by drawing at random from 90924 FSS. A sequence similarity

search was then performed to analyze the sequence distribution, where each sequences of

TSS was compared with the remaining sequences of TSS as well as with all the sequences

of FSS and vice versa. The percentage of similarity between any two sequences was

Fig. 3 Pictorial representation of ss motif. The di-nucleotides GT conserved at 51st and 52nd positions in the

ss motif of length 102 having 50 nucleotides flanking on both sides of GT
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computed by assigning a score of 1 and 0 for every match and mismatch in nucleotides

respectively, and the same is explained below for two sample sequences.

Sequence 1: ATTCGTCATG

Sequence 2: TCTAGTTACG

Score : 0010110101

Similarity (%)=(5/10)*100=50

Further, we prepared a highly imbalanced dataset consisting of 5%TSS and 95%FSS to

assess the performance of RF as well as to compare its performance with that of SVM

and ANN.

Computation of Position Weight Matrix (PWM)

The sequences of both TSS as well as FSS were position-wise aligned separately, using

the di-nucleotide GT as the anchor. This position-wise aligned sequence data was then

used to compute the frequencies and probabilities of nucleotides at each position. From

a given set S of N aligned sequences each of length l, s1, … , sN, where sk = sk1, … , skl (skj

є{A, C, G, T}, j = 1, 2, … , l), the PWM was computed as

pij ¼
1

n

X

n

k¼1

I i skj
� �

i ¼ A; C; G; T

j ¼ 1; 2; … ; l
where I i qð Þ ¼

1 if i ¼ q

0 otherwise

8

<

:

8

<

:

ð1Þ

The PWM with four rows (one for each A, C, G, and T) and 102 columns i.e., equal

to the length of the sequence (Fig. 4) was then used for computing the di-nucleotide as-

sociation scores.

Di-nucleotide association score

The adjacent di-nucleotide association scores are computed under proposed encoding

procedures as follows:

1. In the first procedure (P-1), the association between any two nucleotides occurring

at two adjacent positions was computed as the ratio of the observed frequency to

the frequency due to random occurrence of the di-nucleotide. For N position-wise

aligned sequences, numerator is the number of observed di-nucleotide occurring

together, whereas the denominator is N times of 0.0625 (=1/16, probability of

occurrence of any di-nucleotide at random).

Fig. 4 Graphical representation of the PWM for the TSS. The graph shows the probability distribution of four

nucleotide bases (ATGC) around the splicing junction
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2. In the second procedure (P-2), the association was computed as the ratio of the

observed frequency to the expected frequency, where expected frequency was

computed from PWM under the assumption of independence between the

positions.

3. In the third procedure (P-3), the di-nucleotide association was computed as the ab-

solute value of the relative deviation of the observed frequency from the expected

frequency, where expected frequency was computed as outlined in P-2.

In all the three procedures, the scores were transformed to logarithm scale (base 2)

to make them uniform. The computation of the di-nucleotide association scores is ex-

plained as follows:

Let pj
i be the probability of occurrence of ith nucleotide at jth position, pi

′

j′
be the prob-

ability of occurrence of i′ th nucleotide at j′th position and ni;i
′

j;j′
be the frequency of oc-

currence of ith and i′th nucleotides together at jth and j′th positions respectively. Then

the different di-nucleotide association scores between ith and i′th nucleotides occurring

at jth and j′th positions under P-1, P-2, P-3 were computed using following formula

P−1ð Þ→s
i;i′ð Þ
j;j′ð Þ

¼ log2

ni;i
′

j;j′

N � 0:0625

0

@

1

A

P−2ð Þ→s
i;i′ð Þ
j;j′ð Þ

¼ log2

ni;i
′

j;j′

N � pij � p
i′

j′

0

@

1

A and

P−3ð Þ→s
i;i′ð Þ
j;j′ð Þ

¼ log2

ni;i
′

j;j′
−N � pij � p

i′

j′

N � pij � p
i′

j′

�

�

�

�

�

�

�

�

�

�

�

�

ð2Þ

respectively, where s
i;i′ð Þ
j;j′ð Þ

is the association score, N is the total number of sequence

motifs in the data set; i,i′є{A,T, G, C} and j = 1, 2, … , (window length-1) and j′ = j + 1.

A pseudo count of 0.001 was added to avoid the logarithm of zero in the frequency.

For a clear understanding, computation of di-nucleotide association scores is given

below, through an example with 5 different sequences.

Positions : 0123456789

Sequence 1: ATACGTCATG

Sequence 2: TGTAGTTTCG

Sequence 3: ATGCGTACAC

Sequence 4: GACTGTTGCT

Sequence 5: CCTGGTGAGA

Using these sequences, the random, observed and expected (under independence)

frequencies for di-nucleotide AT occurring at positions 0, 1 respectively are computed

as follows:

Observed frequency = Number of times AT occurs together at 0th and 1st positions

respectively

=2
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Random frequency = Number of sequences × Probability of occurrence of any of the

16 combinations of di-nucleotides at random (=1/16)

=5*0.0625

=0.3125

Expected frequency under independence = Number of sequences × Probability of in-

dependent occurrence of A at 0th position × Probability of independent occurrence of T

at 1st position

=5*(2/5)*(2/5)

=0.8

In similar way, the frequencies can be calculated for other possible di-nucleotide

combinations (AA, AG, AC, TA, … , CC) occurring at all possible adjacent positions.

Now, the association scores for three different procedures P-1, P-2 and P-3 can be cal-

culated by using equation (2) as

P� 1→s
A;Tð Þ
0;1ð Þ ¼ log2

Observed

Random

� �

¼ log2
2

0:3125

� �

;

P� 2→s
A;Tð Þ
0;1ð Þ ¼ log2

Observed

Expected

� �

¼ log2
2

0:8

� �

and

P� 3→s
A;Tð Þ
0;1ð Þ ¼ log2

Observed−Expected

Expected

�

�

�

�

�

�

�

�

¼ log2
2−0:8

0:8

�

�

�

�

�

�

�

�

Construction of scoring matrices

For a sequence of lbp long, l-1 combinations of two adjacent positions are possible.

Again, in each combination, 16 pairs of nucleotides (AA, AT,… ,CG, CC) are possible.

Thus, scoring matrices, each of order 16× (l-1), were constructed using di-nucleotide

association scores under all the three procedures. Figure 5 shows a sample scoring

matrix for 102 bp window length.

Ten-fold cross-validation and encoding of splice site sequence

TSS and FSS sequence datasets were separately divided into 10 random non-

overlapping sets for the purpose of 10-fold cross validation. In each fold, one set of

TSS and one set of FSS together were used as the test dataset and remaining 9 sets of

Fig. 5 A sample scoring matrix. There are 101 columns for different combination of positions and 16 rows

for all possible combinations of nucleotides. This scoring matrix was prepared under all the three

encoding procedures
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TSS and 9 sets of FSS together were used as the training dataset. This was performed

because 10-fold cross validation procedure is a standard experimental technique for de-

termining how well a classifier performs on a test data set [21]. For each training set,

scoring matrices for TSS and FSS were constructed independently and then the differ-

ence matrix was derived by subtracting the TSS scoring matrix from the FSS scoring

matrix. The training and test datasets were then encoded by passing the corresponding

sequences through the difference matrix (Fig. 6), where each sequence was transformed

into a vector of scores of length l-1. A detailed explanation on encoding of the se-

quence is provided in Additional file 1.

Classification using Random Forest

Let L(y, x) be the learning dataset, where x is a matrix of n rows (observations) and p

columns (variables), y is the response variable that takes values from K classes. Then,

the RF consists of ensemble of B tree classifiers, where each classifier is constructed

upon a bootstrap sample of the learning dataset. Each classifier of RF votes each test in-

stances to one of the pre-defined K classes. Finally, each test instance is predicted by

the label of winning class. As the individual trees are constructed upon a bootstrap

sample, on an average 36.8 % 1− 1
n

� �n
≈ 1

e
; e≈2:718ð Þ

� �

of instances do not play any role

in the construction of each tree, and are called as Out Of Bag (OOB) instances. These

OOB instances are the source of data used in RF for estimating the prediction error

(Fig. 7). RF is computationally very efficient and offers high prediction accuracy with

less sensitiveness to noisy data. For classification of TSS and FSS, RF was chosen over

the other classifiers as it is a non-parametric (i.e., it does not make any assumption

about the probability distribution of the dataset) method as well as its ability to handle

large data sets. For more details about RF, one can refer [10].

Fig. 6 Diagrammatic representation for preparation of encoded training and test datasets from TSS and FSS

sequences. For each of the training set in 10 fold cross validation procedure, TSS and FSS scoring matrices

were constructed followed by the construction of difference scoring matrices. The encoded training and

test sets were obtained after passing the ss sequence data of training and test sets through the

difference matrix
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Tuning of parameters

There are two important parameters in RF viz., number of variables to choose at each

node for splitting (mtry) and number of trees to grow in the forest (ntree). Tuning of

these parameters is required to achieve maximum prediction accuracy.

mtry

A small value of mtry produces less correlated trees that consequently results in

lower variance of prediction. Though, integer (log2(p+1)) number of predictors per node

has been recommended by Breiman [10], this mayn• t provide best possible result al-

ways. Thus, RF model was executed with different mtry values i.e., 1, √p, 20%*p,

30%*p, 50%*p and p to find out the optimum one. The parameterization that gener-

ated the lowest and stable OOB Error Rate (OOB-ER) was chosen as the optimal mtry.

ntree

Many times, the number of trees to be grown in the forest for getting the stable

OOB-ER is not known. Moreover, OOB-ER is totally dependent on the type of data,

where the stronger predictor leads to quicker convergence. Therefore, the RF was

grown with different number of trees, and the number of trees after which the error

rate got stabilized was considered as the optimal ntree.

Margin function

Margin function is one of the important features of RF that measures the extent to

which the average vote for right class exceeds the average vote for any other class. Let

(x, y) be the training set having n number of observations where each vector of attri-

butes (x) is labeled with class yj (where, j = 1, 2 for binary class), i.e., the correct class is

denoted by y (either y1 or y2). Further, let prob (yj) be the probability of class yj, then

the margin function of the labeled observation (x, y) is given by

m x; yð Þ ¼ prob h xð Þ ¼ y½ �− max
j ¼ 1
yj≠y

2
prob h xð Þ ¼ yj

h i

If m (x, y) > 0, then h (x) correctly classifies y, where h (x) denotes a classifier that

predicts the label y for an observation x. The value of margin function always lies

between-1 to 1.

Implementation

The RF code was originally written in Fortran by Breiman and Cutler and also included

as a package • randomForest ” in R [22] and this package was implemented (for execu-

tion of RF model) on a windows server (82/GHz and 32 GB memory). Run time was

Fig. 7 Diagrammatic representation of the steps involved in RF methodology
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dependent on data size and mtry, ranging from 1 second per tree to over 10 seconds

per tree.

Performance metrics

The performance metrics viz., Sensitivity or True Positive Rate (TPR), Specificity or

True Negative Rate (TNR), F-measure, Weighted Accuracy (WA), G-mean and Mat-

thew • s Correlation Coefficient (MCC), all of which are the functions of confusion

matrix, were used to evaluate the performance of RF. The confusion matrix contains

information about the actual and predicted classes. Figure 8 shows the confusion

matrix for a binary classifier, where TP is the number of TSS being predicted as TSS

and TN is the number of FSS being predicted as FSS, FN is the number of TSS being

incorrectly predicted as FSS and FP is the number of FSS being incorrectly predicted as

TSS. The different performance metrics are defined as follows:

TPR or Sensitivity ¼
TP

TP þ FN
Sameasrecall f or binaryclassificationð Þ

TNR or Specificity ¼
TN

TN þ FP

F−measure αð Þ ¼
1þ αð Þ � recall � precision

α� recallð Þ þ precision
α takesdiscrete valuesð Þ; Precision

¼
TP

TP þ FP

F−measure βð Þ ¼
1þ β2
� �

� recall � precision

β2 � recall
� �

þ precision
β takesdiscretevaluesð Þ

WA ¼
1

2

TP

TP þ FN
þ

TN

TN þ FP

� �

G−Mean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TP þ FN

� �

TN

TN þ FP

� �

s

MCC ¼
TP � TNð Þ− FP � FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

Fig. 8 Diagrammatic representation of confusion matrix. TP, FP, TN and FN are the number of true

positives, false positives, true negatives and false negatives respectively. TP is the number of TSS being

predicted as a TSS and TN is the number of FSS being predicted as FSS. Similarly, FN is the number of

TSS being incorrectly predicted as FSS and FP is the number of FSS being incorrectly predicted as TSS
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Comparison of RF with SVM and ANN

The performances of RF was compared with that of SVM [23], ANN [24] using the

same dataset that was used to analyze the performance of RF. The • e1071” [25] and

• RSNNS” [26] packages of R software were used for implementing the SVM and ANN

respectively. The SVM and ANN classifiers were chosen for comparison because these

two techniques have been most commonly used for prediction purpose in the field of

bioinformatics. In classification, SVM separates the different classes of data by a hyper-

plane. In terms of classification performance, the optimal hyper-plane is the one that

separates the classes with maximum margin (a clear gap as wide as possible). The sam-

ple observations on the margins are called the support vectors that carry all the rele-

vant information for classification [23]. ANNs are non-linear mapping structures based

on the function of neural networks in the human brain. They are powerful tools for

modeling especially when the underlying relationship is unknown. ANNs can identify

and learn correlated patterns between input datasets and corresponding target values.

After training, ANNs can be used to predict the outcome of new independent input

data [24]. The SVM model was trained with the radial basis function (gamma = 0.01) as

kernel. In the ANN model, multilayer perceptron was used with • Randomize_Weights ”

as initialization function, • Std_Backpropagation” as learning function and • Act_Logis-

tic ” as hidden activation function. The 10-fold cross validation was performed for SVM

and ANN, similar to RF. All the three techniques were then compared in terms of

performance metrics. Also, the MCC values of RF, SVM and ANN were plotted to

analyze the consistency over 10 folds of the cross validation. A similar kind of compari-

son between RF, SVM and ANN was also made using the imbalanced dataset. To han-

dle the imbalanced data, one additional parameter i.e., cutoff was used in RF, where

90 % cutoff was assigned to the major class (class having larger number of observations)

i.e., FSS and 10 % to the minor class (class having lesser number of observations) i.e., TSS,

based on the degree of imbalanced-ness in the dataset. Similarly, one additional parameter

i.e., class.weights was used in SVM model, and the weights used were 19 and 1 for TSS

and FSS respectively (keeping in view the proportion of TSS and FSS in the dataset).

However, no parameter to handle imbalanced-ness was found in • RSNNS” package, there-

fore the same model of ANN was trained using imbalanced data.

In the case of imbalanced test dataset, the performance metrics were computed by

assigning weights w1 to TP & FN and w2 to FP & TN. Here, w1 ¼ nFSS
.

nTSSþnFSSð Þ
and

w2 ¼
nTSS

.

nTSSþnFSSð Þ
, where nTSS is the number of TSS and nFSS is the number of FSS in

the test dataset. Further, the Mann Whitney U test at 5 % level of significance was per-

formed to evaluate the difference among the prediction accuracies of RF, SVM and

ANN, by using the stats package of R-software.

Comparison with other prediction tools

The performance of the proposed approach was also compared with other splice site pre-

diction tools such as MaxEntScan (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_-

scoreseq.html), SpliceView (http://bioinfo4.itb.cnr.it/~webgene/wwwspliceview_ex.html)

and NNSplice (http://www.fruitfly.org/seq_tools/splice.html) using an independent test set.

Besides, three more methods viz., Maximal Dependency Decomposition (MDD), Markov
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Model of 1st order (MM1) and Weighted Matrix Method (WMM) given under MaxEntS-

can were also used for comparison. The independent test set was prepared using two

different genes (AF102137.1 and M63962.1) downloaded from Genbank (http://

www.ncbi.nlm.nih.gov/genbank/) randomly. Comparison among the approaches was made

using the values of performance metrics.

Web server

A web server for the prediction of donor splice sites was developed using HTML and

PHP. The developed R-code was executed in the background using PHP script upon

the submission of sequences in FASTA format. The web page was designed to facilitate

the user for a sequence input, selection of species (human) and encoding procedures.

In the server, the model has been trained with human splice site data and the user has

to supply only the test sequence (s) of his/her interest to predict the donor splice sites.

Results

Analysis of sequence distribution

The removal of the identical sequences from the TSS dataset resulted in 2775 unique

TSS. A graphical representation of degree of similarity within TSS, within FSS and be-

tween TSS & FSS is shown in Fig. 9. It is observed that each sequence of TSS is 40 %

(blue) similar with an average of 56 (0.02*2775) sequences of TSS (Fig. 9a) and 15

(0.005*2775) sequences of FSS (Fig. 9c). On the other hand, each sequence of FSS is

40 % (blue) similar with an average of 17 (0.006*2775) sequences of FSS (Fig. 9b) and

17 sequences of TSS (Fig. 9d). Similarly, each sequence of TSS is 30 % (green) similar

Fig. 9 Graphical representation of sequence distribution in the dataset. a. Similarities of each sequence of

TSS with rest of the sequences in TSS. b. Similarities of each sequence of FSS with rest of the sequences in

FSS. c. Similarities of each sequence of TSS with all the sequences in FSS. d. Similarities of each sequence of

FSS with all the sequences in TSS. X-axis represents the sequence entries and Y-axis represents fraction of

similar sequences
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with an average of 1276 (0.46*2775) sequences of TSS (Fig. 9a) and 805 (0.29*2775) se-

quences of FSS (Fig. 9c). On the other hand, each sequence of FSS is 30 % (green) simi-

lar with an average of 832 (0.30*2775) sequences of FSS (Fig. 9b) and 805 (0.29*2775)

sequences of TSS (Fig. 9d). Further, more than 90 % of sequences of entire dataset

(both TSS and FSS) are observed to be at least 20 % similar with each other.

Optimum values of parameters

The graph of OOB error against ntree (500) for different mtry values is shown in

Fig. 10. From Fig. 10 it is observed that the OOB errors are stabilized after 200

trees, for all mtry values and that too in all the three encoding procedures. Besides,

it is observed that OOB error is minimum at mtry=50, irrespective of the encoding

procedures. Hence, the optimum values of mtry and ntree were determined as 50

and 200 respectively. The final prediction was made with optimum values of the

parameters.

Performance analysis of random forest

The plot of margin function for all the 10 folds of the cross-validation under P-1 is

shown in Fig. 11. The points in red color in Fig. 11 indicate the predicted FSS and

blue color indicate the predicted TSS. The same for P-2 and P-3 are provided in Add-

itional files 2 and 3 respectively. The instances having the values of margin function

greater than or equal to zero are correctly predicted test instances and less than zero

are incorrectly predicted test instances. From Fig. 11 it is observed that most of the

values of margin function are above zero both in TSS and FSS i.e., the RF achieved

Fig. 10 Graphical representation of OOB-ER with different mtry and ntree. Graphs a, b and c represents the

trend of error rates with varying mtry for three encoding procedures, P-1, P-2 and P-3. The OOB-ER was

minimum for mtry = 50 and stabilized with 200 trees (ntree)
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high prediction accuracy. Similar results are also found in case of P-2 and P-3. Fur-

ther, the performance of RF is measured in terms of performance metrics and is pre-

sented in Table 1. From Table 1 it is seen that the number of correctly predicted TSS

is higher than that of FSS, in all the three encoding approaches. Also, it is observed

that the average prediction accuracies are ~93 %, ~91 % and ~92 % under P-1, P-2

and P-3 respectively.

Fig. 11 Graphical representation of margin functions for ten-fold cross-validation. Red color points for FSS

and blue color for TSS. The instances having value of margin function greater than or equal to zero are

correctly predicted test instances and instances having value below zero indicate incorrectly predicted

test instances

Table 1 Performance metrics of RF for three encoding procedures

Approaches Performance Metrics

TPR TNR F (β = 2) F (α = 1) WA G-mean MCC

P-1 0.9539 0.9236 0.9313 0.9397 0.9387 0.9386 0.8782

P-2 0.9373 0.9009 0.9108 0.9205 0.9191 0.9189 0.8383

P-3 0.9398 0.9077 0.9163 0.9250 0.9238 0.9236 0.8483
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Comparative analysis among different classifiers

The performance metrics of RF, SVM and ANN under P-1, P-2 and P-3 for both bal-

anced and imbalanced training datasets are presented in Table 2. The plots of MCC for

RF, SVM and ANN are shown in Fig. 12. From Table 2 it is observed that the predic-

tion accuracies of RF are higher than that of SVM and ANN under both balanced and

imbalanced situations. It is further observed that for the balanced training dataset the

performances of RF and SVM are not significantly different in P-1 but significantly dif-

ferent in P-2 and P-3 (Table 3). However, the RF performed significantly better than

that of ANN in all the three procedures. Furthermore, all the three classifiers achieved

higher accuracies in case of balanced training dataset as compared to the imbalanced

training dataset. Besides, RF achieved consistent accuracy over the 10 folds under all

the three encoding procedures (Fig. 12). On the other hand, SVM and ANN could not

achieve consistent accuracies in P-2 and P-3 over different folds of the cross validation.

Though RF performed better than SVM and ANN, its performance was further com-

pared with that of Bagging [27], Boosting [28], Logistic regression [29], kNN [30] and

Naïve Bayes [29] classifiers to assess its superiority. The functions bagging (), ada (),

glm (), knn () and NaiveBayes () available in R-packages • class ” [31], • klaR ” [32], • stats ”

[33], • ada ” [34] and • ipred ” [35] were used to implement Bagging, Boosting, Logistic

regression, kNN and Naïve Bayes classifiers respectively. The values of performance

metrics, their standard errors and P-values for testing the significance are provided in

Table 4, Table 5 and Table 6 respectively. It is observed that the performance of RF is

not significantly different from that of Bagging and Boosting in case of balanced dataset

(Table 6). On the contrary, RF outperformed both Bagging and Boosting classifiers

under imbalanced situation (Table 6). It is also noticed that the classification accuracies

(performance metrics) of RF are significantly higher than that of Logistic regression,

kNN and Naïve Bayes classifiers under both the balanced and imbalanced situations

(Table 4, Table 6).

Comparison of RF with other prediction tools

The performance metrics of the proposed approach and the considered existing

methods computed by using an independent test dataset is presented in Table 7. It is

seen that none of the existing approaches achieved above 90 % TPR. On the other

hand, all other approaches (except SpliceView) achieved higher values of TNR than that

of proposed approach (Table 7). Furthermore, the proposed approach achieved more

than 90 % accuracy in terms of different performance metrics (Table 7).

Online prediction server-MaLDoSS

The home page of the web server is shown in Fig. 13 and the result page after execu-

tion of an example dataset is shown in Fig. 14. Separate help pages are provided as

links in the main menu with complete description on encoding procedures and

input-output. The gene name, start and end coordinates of splice sites, splice site se-

quences and probability of each splice site being predicted as TSS are given in the

result page. Since RF is observed to be superior over the other classifiers, it is only

included in the server for prediction. The prediction server is freely available at

http://cabgrid.res.in:8080/maldoss.
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Table 2 Comparison of the performance of RF, SVM and ANN under all encoding procedures with both balanced and imbalanced training dataset

EP MLA Balanced Dataset Imbalanced Dataset

TPR TNR F (α = 1) F (β = 2) G-mean WA MCC TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

P-1 RF 0.954 0.924 0.940 0.932 0.939 0.939 0.878 0.842 0.896 0.865 0.880 0.869 0.869 0.739

(0.014) (0.014) (0.010) (0.012) (0.010) (0.010) (0.020) (0.064) (0.018) (0.032) (0.049) (0.030) (0.028) (0.043)

SVM 0.935 0.930 0.933 0.931 0.933 0.933 0.865 0.104 0.982 0.185 0.349 0.320 0.543 0.180

(0.015) (0.017) (0.015) (0.015) (0.016) (0.016) (0.031) (0.027) (0.018) (0.041) (0.031) (0.040) (0.013) (0.061)

ANN 0.892 0.896 0.894 0.895 0.894 0.894 0.787 0.032 0.988 0.061 0.136 0.178 0.510 0.068

(0.064) (0.080) (0.063) (0.062) (0.066) (0.065) (0.129) (0.026) (0.010) (0.046) (0.032) (0.065) (0.011) (0.055)

P-2 RF 0.937 0.901 0.920 0.911 0.919 0.919 0.838 0.883 0.894 0.888 0.891 0.888 0.889 0.777

(0.020) (0.016) (0.016) (0.018) (0.016) (0.016) (0.033) (0.038) () (0.025) (0.030) (0.019) (0.019) (0.035)

SVM 0.720 0.773 0.740 0.752 0.746 0.746 0.493 0.321 0.989 0.482 0.689 0.563 0.655 0.417

(0.029) (0.106) (0.041) (0.026) (0.049) (0.051) (0.108) (0.051) (0.008) (0.055) (0.053) (0.043) (0.025) (0.048)

ANN 0.775 0.777 0.776 0.776 0.776 0.776 0.552 0.305 0.978 0.460 0.661 0.546 0.642 0.383

(0.067) (0.037) (0.049) (0.059) (0.048) (0.045) (0.090) (0.049) (0.014) (0.052) (0.051) (0.043) (0.022) (0.046)

P-3 RF 0.940 0.908 0.925 0.917 0.924 0.924 0.848 0.879 0.891 0.884 0.888 0.885 0.885 0.770

(0.017) (0.015) (0.012) (0.014) (0.012) (0.012) (0.246) (0.044) (0.022) (0.029) (0.034) (0.022) (0.022) (0.042)

SVM 0.789 0.807 0.796 0.800 0.798 0.798 0.595 0.249 0.988 0.395 0.609 0.496 0.619 0.352

(0.044) (0.068) (0.042) (0.042) (0.046) (0.045) (0.090) (0.052) (0.008) (0.062) (0.056) (0.049) (0.026) (0.055)

ANN 0.757 0.760 0.758 0.759 0.759 0.759 0.517 0.272 0.979 0.421 0.626 0.516 0.626 0.355

(0.118) (0.099) (0.067) (0.098) (0.057) (0.048) (0.086) (0.066) (0.009) (0.081) (0.072) (0.064) (0.034) (0.076)

The values inside the brackets () are the standard errors

EP encoding procedure, MLA machine learning approaches
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Discussion

Many statistical methods like, Back Propagation Neural Networks (BPNN), Markov

Model, SVM etc. have been used for prediction of ss in the past. Rajapakse and CaH

[4] introduced a complex ss prediction system (combination of 2nd order Markov

model and BPNN) that achieved higher prediction accuracy than that of Genesplicer

[36], but at the same time it is required longer sequence motifs to train the model.

Moreover, BPNN is computationally expensive and may increase further with the inclu-

sion of 2nd order Markov model. Baten et al. [6] reported improved prediction accuracy

by using SVM with Salzberg kernel [37], where the empirical estimates of conditional

positional probabilities of the nucleotides around the splicing junctions are used as in-

put in SVM. Sonnenburg et al. [7] employed weighted degree kernel method in SVM

for the genome-wide recognition of ss, which is based on complex nonlinear transform-

ation. In the present study we applied RF as it is computationally feasible and user

friendly. Furthermore, the fine tuning of parameters of RF helps in improving the pre-

diction accuracy.

Most of the existing methods capture position specific signals as well as nucleotide

dependencies for the prediction of ss. In particular, Roca et al. [9] explained the pivotal

role played by the nucleotide dependencies for the prediction of donor ss. Therefore,

Fig. 12 Graphical representation of MCC of the RF, SVM and ANN. MCC is consistent in all the three

procedures for the RF over the tenfold cross-validation
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the proposed encoding procedures are based on di-nucleotide dependencies. Further,

the earlier ss prediction methods such as Weighted Matrix Method (WMM) [38],

Weighted Array Model (WAM) [39] and Maximal Dependency Decomposition (MDD)

[40] only considered the TSS but not the FSS to train the prediction model. However,

FSS are also necessary [41], and hence RF was trained with both TSS and FSS datasets.

There is a chance of occurrence of same ss motifs in both TSS and FSS when the

length of ss motif is small. To avoid such ambiguity, instead of 9 bp long motif (3 from

exons and 6 from introns) [42], the longer ss motif (102 bp long) was considered in this

study. Further, duplicate sequences were removed and a similarity search was per-

formed to analyze the sequence distribution. It is found that each sequence of TSS is

40 % similar with an average of 0.5 % sequences of FSS (Fig. 9c) and each sequence of

FSS is 40 % similar with an average of 0.6 % sequences of TSS (Fig. 9d). Also, the se-

quences are found to be similar (20 % similarity) within the classes (Fig. 9a-b). This im-

plies that the presence of within class dissimilarities and between class similarities in

the dataset. Thus the performance of the proposed approach is not over estimated.

The procedure followed in the present study includes WMM and WAM procedures

to some extent in finding the weights for the first order dependencies. Besides, the

difference matrix captured the difference in the variability pattern existing among the

adjacent di-nucleotides in the TSS and FSS. Li et al. [43] have also used di-nucleotide

frequency difference as one of the positional feature in prediction of ss.

The optimum value of mtry was observed as 50, determined on the basis of lowest

and stable OOB-ER. This may be due to the fact that each position was represented

twice (except the 1st and 102nd positions) in the set of 101 variables (1_2, 2_3, 3_4, … ,

Table 3 P-values of Mann Whitney U statistic for testing the significant difference between RF-

SVM, RF-ANN and SVM-ANN at 5 % level of significance for all the performance measures under

both balanced and imbalanced training datasets

$D EP MLA TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

Balanced P-1 RF-SVM 0.02008 0.42473 0.32557 0.04117 0.40550 0.38378 0.32557

RF-ANN 0.00356 0.73286 0.01854 0.00520 0.02323 0.02569 0.01854

SVM-ANN 0.01696 0.30585 0.07526 0.03546 0.07526 0.09605 0.10512

P-2 RF-SVM 0.00018 0.02564 0.00001 0.00001 0.00001 0.00001 0.00001

RF-ANN 0.00018 0.00018 0.00001 0.00001 0.00001 0.00001 0.00001

SVM-ANN 0.05869 0.54505 0.16549 0.06301 0.14314 0.14017 0.24745

P-3 RF-SVM 0.00018 0.00066 0.00001 0.00001 0.00001 0.00001 0.00001

RF-ANN 0.00018 0.00129 0.00001 0.00001 0.00001 0.00001 0.00001

SVM-ANN 0.93961 0.16150 0.10512 0.68421 0.07526 0.06954 0.07526

Imbalanced P-1 RF-SVM 0.00018 0.00018 0.00001 0.00001 0.00001 0.00001 0.00001

RF-ANN 0.00017 0.00017 0.00001 0.00001 0.00001 0.00001 0.00001

SVM-ANN 0.00048 0.46778 0.00008 0.00008 0.00008 0.00008 0.00021

P-2 RF-SVM 0.00018 0.00017 0.00001 0.00001 0.00001 0.00001 0.00001

RF-ANN 0.00018 0.00018 0.00001 0.00001 0.00001 0.00001 0.00001

SVM-ANN 0.64854 0.05130 0.39305 0.52885 0.48125 0.32557 0.05243

P-3 RF-SVM 0.00018 0.00018 0.00001 0.00001 0.00001 0.00001 0.00001

RF-ANN 0.00018 0.00018 0.00001 0.00001 0.00001 0.00001 0.00001

SVM-ANN 0.49483 0.05210 0.63053 0.57874 0.57874 0.73936 0.91180

$D type of dataset (balanced or imbalanced), EP encoding procedures (P-1, P-2, P-3), MLA machine learning approaches
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Table 4 Performance metrics of Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers for all the three encoding procedures under both balanced and

imbalanced situations

EP MD Balanced Imbalanced

TPR TNR F (α = 1) F (β = 2) G-mean WA MCC TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

P-1 BG 0.944 0.921 0.934 0.940 0.933 0.933 0.866 0.069 0.996 0.127 0.084 0.258 0.533 0.172

BS 0.952 0.919 0.936 0.945 0.935 0.935 0.872 0.041 0.898 0.079 0.051 0.192 0.470 0.129

LG 0.895 0.882 0.889 0.892 0.888 0.888 0.777 0.008 0.993 0.016 0.010 0.087 0.502 0.012

NB 0.835 0.836 0.836 0.835 0.834 0.835 0.674 0.202 0.838 0.297 0.231 0.409 0.520 0.067

KN 0.856 0.840 0.847 0.852 0.847 0.848 0.697 0.048 0.854 0.087 0.058 0.200 0.451 0.012

P-2 BG 0.927 0.882 0.907 0.919 0.904 0.904 0.810 0.112 0.992 0.198 0.135 0.330 0.552 0.216

BS 0.934 0.901 0.918 0.928 0.917 0.917 0.835 0.090 0.996 0.163 0.109 0.296 0.543 0.200

LG 0.742 0.734 0.739 0.741 0.737 0.738 0.478 0.112 0.981 0.198 0.135 0.330 0.547 0.190

NB 0.772 0.758 0.767 0.770 0.764 0.765 0.532 0.159 0.884 0.250 0.186 0.373 0.521 0.073

KN 0.813 0.678 0.760 0.790 0.739 0.746 0.502 0.173 0.981 0.290 0.207 0.412 0.577 0.262

P-3 BG 0.924 0.904 0.915 0.920 0.914 0.914 0.828 0.125 0.991 0.220 0.151 0.351 0.558 0.230

BS 0.941 0.898 0.922 0.933 0.920 0.920 0.841 0.095 0.995 0.171 0.115 0.305 0.545 0.205

LG 0.813 0.775 0.798 0.807 0.793 0.794 0.589 0.120 0.983 0.210 0.144 0.342 0.551 0.202

NB 0.784 0.761 0.775 0.780 0.771 0.772 0.547 0.178 0.945 0.289 0.210 0.410 0.562 0.196

KN 0.795 0.700 0.756 0.778 0.742 0.747 0.501 0.065 0.989 0.120 0.080 0.247 0.527 0.142

MD methods, EP encoding procedures, BG bagging, BS boosting, LG logistic regression, NB naïve bayes, KN K nearest neighbor
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Table 5 Standard errors of different performance metrics for Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers for all the three encoding procedures under

both balanced and imbalanced situations

EP MD Balanced Imbalanced

TPR TNR F (α = 1) F (β = 2) G-mean WA MCC TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

P-1 BG 0.0201 0.0178 0.0114 0.0156 0.0113 0.0113 0.0226 0.0234 0.0036 0.0409 0.0282 0.0474 0.0108 0.0334

BS 0.0146 0.0149 0.0111 0.0125 0.0113 0.0112 0.0224 0.0177 0.3156 0.0334 0.0218 0.0715 0.1652 0.0504

LG 0.0569 0.0740 0.0601 0.0575 0.0624 0.0621 0.1238 0.0065 0.0056 0.0121 0.0076 0.0313 0.0045 0.0267

NB 0.0630 0.0826 0.0560 0.0571 0.0573 0.0577 0.1169 0.0357 0.1043 0.0500 0.0390 0.0439 0.0549 0.1579

KN 0.1502 0.1279 0.1386 0.1454 0.1364 0.1354 0.2701 0.0221 0.3023 0.0389 0.0267 0.0765 0.1595 0.0799

P-2 BG 0.0201 0.0272 0.0192 0.0188 0.0201 0.0200 0.0397 0.0261 0.0060 0.0429 0.0310 0.0421 0.0130 0.0364

BS 0.0207 0.0179 0.0161 0.0184 0.0163 0.0163 0.0327 0.0273 0.0033 0.0456 0.0325 0.0461 0.0134 0.0358

LG 0.0688 0.0799 0.0617 0.0644 0.0630 0.0632 0.1272 0.0182 0.0148 0.0290 0.0214 0.0273 0.0107 0.0410

NB 0.0546 0.0629 0.0421 0.0472 0.0405 0.0407 0.0824 0.0316 0.0733 0.0487 0.0363 0.0436 0.0426 0.1342

KN 0.0925 0.0811 0.0362 0.0681 0.0266 0.0280 0.0598 0.0235 0.0044 0.0337 0.0269 0.0282 0.0117 0.0270

P-3 BG 0.0156 0.0186 0.0117 0.0130 0.0120 0.0119 0.0237 0.0185 0.0052 0.0291 0.0217 0.0267 0.0089 0.0235

BS 0.0121 0.0178 0.0102 0.0102 0.0108 0.0107 0.0210 0.0194 0.0039 0.0324 0.0231 0.0323 0.0095 0.0256

LG 0.0406 0.0586 0.0376 0.0377 0.0409 0.0402 0.0795 0.0210 0.0116 0.0334 0.0247 0.0303 0.0132 0.0440

NB 0.0380 0.0689 0.0330 0.0323 0.0372 0.0368 0.0735 0.0254 0.0434 0.0397 0.0295 0.0333 0.0286 0.0913

KN 0.1017 0.0829 0.0629 0.0842 0.0566 0.0544 0.1076 0.0292 0.0078 0.0504 0.0352 0.0629 0.0116 0.0334

MD methods, EP encoding procedures, BG bagging, BS boosting, LG logistic regression, NB naïve bayes, KN K nearest neighbor
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Table 6 P-values of the Mann Whitney statistic to test the significant difference between the

performance of RF with that of Bagging, Boosting, Logistic regression, kNN and Naïve Bayes

classifiers in all the three encoding procedures under both balanced and imbalanced situations

$D EP CLs TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

Balanced P-1 RF-BG 0.343066 0.676435 0.272856 0.212122 0.185711 0.240436 0.272856

RF-BS 0.820063 0.939006 0.314999 0.795936 0.314999 0.383598 0.314999

RF-LG 0.001672 0.053092 0.002879 0.000725 0.005196 0.009082 0.005196

RF-NB 0.000242 0.002796 1.08E-05 1.08E-05 1.08E-05 0.000181 1.08E-05

RF-KN 0.053182 0.087051 0.028806 0.063013 0.035463 0.025581 0.028806

P-2 RF-BG 0.41319 0.594314 0.356232 0.356232 0.277512 0.315378 0.356232

RF-BS 0.837765 0.367844 0.968239 0.968239 0.842105 0.743537 0.842105

RF-LG 0.000275 0.000439 2.17E-05 2.17E-05 2.17E-05 2.17E-05 2.17E-05

RF-NB 0.000275 0.004216 2.17E-05 2.17E-05 2.17E-05 2.17E-05 2.17E-05

RF-KN 0.000376 0.000273 2.17E-05 2.17E-05 2.17E-05 0.000278 2.17E-05

P-3 RF-BG 0.171672 0.879378 0.14314 0.14314 0.165494 0.15062 0.14314

RF-BS 0.494174 0.381613 0.970512 0.528849 0.853428 0.820197 0.911797

RF-LG 0.000181 0.000181 1.08E-05 1.08E-05 1.08E-05 1.08E-05 1.08E-05

RF-NB 0.000182 0.000279 1.08E-05 1.08E-05 1.08E-05 0.000182 1.08E-05

RF-KN 0.000182 0.000181 1.08E-05 1.08E-05 1.08E-05 0.000182 1.08E-05

Imbalanced P-1 RF-BG 0.000269 0.000251 2.17E-05 2.17E-05 2.17E-05 0.000278 2.17E-05

RF-BS 0.000176 0.002555 0.000181 0.000181 0.000181 0.000178 0.000181

RF-LG 0.000263 0.000268 2.17E-05 2.17E-05 2.17E-05 0.000263 2.17E-05

RF-NB 0.000271 0.177338 2.17E-05 2.17E-05 2.17E-05 2.17E-05 2.17E-05

RF-KN 0.000175 0.025526 1.08E-05 1.08E-05 1.08E-05 0.000182 0.000179

P-2 RF-BG 0.000179 0.000173 0.000182 0.000182 0.000182 0.000181 0.000182

RF-BS 0.000181 0.000158 1.08E-05 1.08E-05 1.08E-05 0.000181 1.08E-05

RF-LG 0.00018 0.000178 1.08E-05 1.08E-05 1.08E-05 0.00018 1.08E-05

RF-NB 0.000182 0.733634 1.08E-05 1.08E-05 1.08E-05 0.000182 1.08E-05

RF-KN 0.000181 0.000174 1.08E-05 1.08E-05 1.08E-05 0.000182 1.08E-05

P-3 RF-BG 0.000176 0.000168 0.000182 0.000182 0.000182 0.000181 0.000182

RF-BS 0.000179 0.000149 1.08E-05 1.08E-05 1.08E-05 1.08E-05 1.08E-05

RF-LG 0.000179 0.000177 1.08E-05 1.08E-05 1.08E-05 0.000182 1.08E-05

RF-NB 0.000177 0.009082 1.08E-05 1.08E-05 1.08E-05 1.08E-05 1.08E-05

RF-KN 0.00018 0.00018 1.08E-05 1.08E-05 1.08E-05 0.000178 1.08E-05

$D data type, RF random forest, CLs classifiers, BG bagging, BS boosting, LG logistic regression, NB naïve bayes, KN K

nearest neighbor

Table 7 The performance metrics for the proposed approach and other published tools using the

independent test set

Methods TPR TNR F (α = 1) F (β = 2) G-mean WA MCC

MaxEntScan 0.627 0.990 0.766 0.884 0.788 0.809 0.662

MDD 0.651 0.991 0.784 0.894 0.803 0.821 0.682

MM1 0.581 0.988 0.730 0.862 0.758 0.785 0.623

WMM 0.415 0.986 0.581 0.764 0.640 0.701 0.488

NNSplice 0.733 0.954 0.824 0.891 0.837 0.844 0.705

SpliceView 0.888 0.879 0.884 0.882 0.883 0.884 0.767

Proposed 0.977 0.922 0.951 0.936 0.949 0.949 0.900
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100_101, 101_102). Further, OOB-ER was found to be stabilized with small number of

trees (ntree = 200) and this may be due to the existence of di-nucleotide dependencies

in the ss motifs that leads to the high correlation between trees grown in the forest.

However, we considered the ntree equal to 1000 as (i) the computational time was not

much higher than that required for ntree = 200, and (ii) the prediction accuracy may in-

crease with increase in the number of trees. Hence, the final RF model was executed

with mtry = 50 and ntree = 1000. The classification accuracy of RF model was measured

in terms of margin function, over 10 folds of cross-validation. It is found that the prob-

ability of instances being predicted as the correct class over the wrong class is very high

(Fig. 11), which is a strong indication that the proposed approach with RF classifier is

well defined and capable of capturing the variability pattern in the dataset.

As far as the encoding procedures are concerned, it is analyzed that the dependencies

between the adjacent nucleotide positions in the ss positively influenced the prediction

accuracy. Out of the three procedures (P-1, P-2 and P-3), P-1 is found to be superior

with respect to different performance metrics. Though the accuracy of P-2 is observed

to be lower than that of P-3, the difference is negligible. Therefore, it is inferred that

the ratio of the observed frequency to the random frequency of di-nucleotide is an im-

portant feature for discriminating TSS from FSS.

Among the classifiers, RF achieved above 91 % accuracy in all the three encoding

procedures, while SVM showed a similar trend only for P-1 and ANN could not

achieve above 90 % under any of the encoding procedures (Table 2). The MCC values

of RF, SVM and ANN also supported the above finding. Though SVM and ANN per-

formed well in P-1, their consistencies were relatively low in P-2 and P-3 over 10 folds

Fig. 13 Snapshot of the server page
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of cross validation. On the other hand, RF was found to be more consistent in all the

three encoding procedures. Further, the prediction accuracy of RF was not significantly

different (P-value > 0.05) from that of SVM, whereas it was significantly higher (P-value

< 0.05) than that of ANN in balanced training set under P-1. However, under P-2 and

P-3, RF performed significantly better than that of SVM and ANN in both balanced

and imbalanced situations (Table 3). Further, the performance of SVM was not signifi-

cantly different than that of ANN in P-1, whereas it was significantly different in P-2

and P-3 under both balanced and imbalanced datasets (Table 3). In case of imbalanced

dataset, RF performed better than SVM and ANN in terms of sensitivity and overall ac-

curacy (Table 2). Besides, the performances of SVM and ANN were biased towards the

major class (FSS) whereas RF performed in an unbiased way. Furthermore, all the clas-

sifiers performed better under P-2 and P-3 as compared to P-1, in case of imbalanced

dataset (Table 2).

Besides SVM and ANN, the performance of Bagging, Boosting, Logistic regression,

kNN and Naïve Bayes classifiers were also compared with that of RF. Though the per-

formance of RF was found at par with that of Bagging and Boosting in balanced situ-

ation, it was significantly higher than that of Logistic regression, kNN and Naïve Bayes

classifiers. However, in case of imbalanced dataset, RF performed significantly better

than Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers in all the

three encoding procedures. Thus, RF can be considered as a better classifier over the

others.

RF achieved highest prediction accuracy under P-1 as compared to the other combi-

nations of encoding procedures (P-2, P-3) and classifiers (SVM, ANN, Bagging, Boost-

ing, Logistic regression, kNN and Naïve Bayes). Therefore, the performance of RF

under P-1 was compared with different existing tools i.e., MaxEntScan (Maximim

Entropy Model, MDD, MM, WMM), SpliceView and NNSplice using an independent

Fig. 14 Snapshot of the result page after execution of an example dataset with all the three encoding

procedures
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test set. The overall accuracy of the proposed approach (RF with P-1) was found better

than that of other considered (existing) tools.

The purpose of developing the web server is to facilitate easy prediction of donor

splice sites by the users working in the area of genome annotations. The developed

web server provides flexibility to the users for selecting the encoding procedures and

the machine learning classifiers. As the test sequences belong to two different classes,

the instances with probability >0.5 are expected to be true splice sites. Besides, higher

the probability more is the strength of instance being a donor splice site. Though, the

RF achieved higher accuracy under P-1 as compared to the other combinations, all

combinations are provided in the server for the purpose of comparative analysis by the

user. To our limited knowledge, for the first time, we have used RF in ss prediction.

Conclusion

This paper presents a novel approach for donor splice site prediction that involves three

splice site encoding procedures and application of RF methodology. The proposed ap-

proach discriminated the TSS from FSS with higher accuracy. Also, the RF outperformed

SVM, ANN, Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers in

terms of prediction accuracy. Further, RF with the proposed encoding procedures showed

high prediction accuracy both in balanced and imbalanced situations. Being a supplement

to the commonly used ss prediction methods, the proposed approach is believed to con-

tribute to the prediction of eukaryotic gene structure. The web server will help the user

for easy prediction of donor ss.

Availability and requirement

MaLDoSS, the donor splice site prediction server, is freely accessible to the non-profit

and academic biological community for research purposes at http://cabgrid.res.in:8080/

maldoss.
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