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Abstract

High-throughput drug combination screening provides a systematic strategy to discover 

unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic 

combinatorial screening with multi-dose matrix assays is experimentally expensive, especially 

when the aim is to identify selective combination synergies across a large panel of cell lines or 

patient samples. Here we implemented DECREASE, an efficient machine learning model that 

requires only a limited set of pairwise dose-response measurements for accurate prediction of drug 

combination synergy and antagonism. Using a compendium of 23,595 drug combination matrices 

tested in various cancer cell lines, and malaria and Ebola infection models, we demonstrate how 

cost-effective experimental designs with DECREASE capture almost the same degree of 

information for synergy and antagonism detection as the fully-measured dose-response matrices. 

Measuring only the diagonal of the matrix provides an accurate and practical option for 

combinatorial screening. The open-source web-implementation enables applications of 

DECREASE to both pre-clinical and translational studies.

Keywords

drug combination effects; dose-response landscapes; high-throughput screening; supervised 
machine learning; open-source software

*Corresponding author. tero.aittokallio@helsinki.fi.
**Equal contribution
Author contributions
T.A, K.W., and A.I. designed and conceived the study. A.I. developed cNMF and implemented the web platform. A.I. and A.K.G. 
selected and tested various machine-learning methods. P.G. performed the drug combination screening experiments. A.I, A.K.G, A.K 
managed data integration from various sources. A.I. and A.K. prepared the figures and tables for the manuscript. A.I, A.K.G and T.A 
wrote the manuscript. A.K., P.G., S.P., J.S., K.W. critically reviewed and edited the manuscript. All authors reviewed and approved the 
final version of the manuscript.

HHS Public Access
Author manuscript
Nat Mach Intell. Author manuscript; available in PMC 2020 May 04.

Published in final edited form as:
Nat Mach Intell. 2019 December ; 1(12): 568–577. doi:10.1038/s42256-019-0122-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Combination therapies have become a standard clinical management of several complex 

diseases, including cancer, asthma, diabetes and bacterial infections, since drug 

combinations can increase therapeutic efficacy and reduce toxic side-effects compared to 

mono-therapies.1–8 Accordingly, there is an increasing interest in exploring the massive 

combinatorial spaces spanned by both approved drugs and investigational agents, with the 

aim to identify effective and safe combination therapies for multiple indications. High-

throughput screening (HTS) instruments have made it possible to profile the phenotypic 

effects of thousands of drug combinations in pre-clinical model systems (e.g. cell lines or 

primary patient-derived cells), and systematic combinatorial screens are being widely used 

by pharma industry, medical chemistry community as well as by translational researchers to 

provide actionable hypotheses for pre-clinical or clinical studies9–11. However, most HTS 

combinatorial experiments are performed at single concentrations of individual agents, 

which make it difficult to capture combinatorial dose-response effects. Multi-dose 

combinatorial response matrices over various concentration ranges provide better insights 

into the synergistic (or antagonistic) dose windows, and enable the use of more robust 

surface-based synergy models (e.g. Loewe) for detection of the most potent hits from 

combinatorial screens12,13. However, due to the massive number of potential drug-dose 

combinations, large-scale multi-dose combinatorial screening requires extensive resources 

and instrumentation14, beyond the capability of most academic laboratories15.

To make the HTS combinatorial screening more feasible, especially in studies based on 

primary patient specimens, one solution is to use the half-maximal inhibitory concentration 

(IC50) of the individual compounds to pre-select the concentrations or combinations to be 

profiled16. However, this approach may miss potent synergies beyond the selected sets of 

doses or combinations. Another solution to the combinatorial explosion of potential dose 

and compound combinations is to measure only a part of the multi-dose-response matrix 

when screening for synergistic effects17–19. For instance, the popular Combination Index 

(CI)20 can be calculated using only the diagonal elements of the full dose-response matrix 

(i.e. fixed-ratio diagonal design) to identify synergistic compound pairs (Fig. 1, upper panel). 

Another popular approach to detect synergy with reduced experimental costs is to use a 

fixed-concentration design, in which various concentrations of one agent are tested with a 

pre-defined concentration (e.g. IC50) of the second agent21–23 (Fig. 1, upper panel). 

However, such cost-effective designs have also several shortcomings; for instance, any 

outlier measurements will have a drastic influence on the synergy detection, and the pre-

defined concentration points can easily miss a narrow synergistic dose window of new drug 

pairs. Furthermore, many synergy scoring software, including Combenefit24, 

SynergyFinder25, and Chalice (Horizon Discovery Inc.), require the full dose-response 

matrix to calculate the overall synergy metrics, including those based on Loewe additivity or 

Bliss independence models26,27.

To address these challenges, we introduce DECREASE (Drug Combination RESponse 

prEdiction), an efficient machine learning approach to guiding and speeding-up the 

conduction of unbiased HTS-based screening for synergistic drug combination effects using 

cost-effective combinatorial screening with a minimal set of experiments. DECREASE 
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implements a two-step procedure for robust synergy prediction and scoring (Fig. 1, second 

panel). In the first step, outlier measurements inherent in HTS experiments are detected 

using differences between the observed responses and those expected based on the Bliss 

approximation (Supplementary Fig. 1), followed by prediction of the complete dose-

response combination matrices with our novel, composite Non-negative Matrix Factorization 

(cNMF) algorithm. Based on the predicted combinatorial dose-response landscapes (Fig. 1, 

third panel), the overall synergy scores of the drug combinations are calculated using any 

selected reference model (e.g. Loewe26, Bliss27, HSA28 or ZIP29) to identify the most 

synergistic hits (Fig. 1, bottom panel). Since combination effects between drugs are known 

to depend on a variety of factors, including their mode-of-action, tested concentration ranges 

and biological heterogeneity across model systems30–32, we carried out a systematic 

evaluation among 23,595 pairwise combinations tested in various cancer cell lines, as well 

as in malaria and Ebola infection models, to demonstrate the wide applicability of 

DECREASE. The source code and web-implementation as well as dose-response matrices 

of 210 novel anti-cancer drug combinations are available at http://decrease.fimm.fi.

Results

We initially developed the DECREASE method based on an in-house compendium of 192 

anti-cancer agent combinations among both approved drugs and investigational compounds, 

tested in 8×8 dose-response matrix designs in 10 breast cancer cell lines (BT-549, CAL-148, 

CAL-51, CAL-85–1, DU-4475, HCC-1599, MDA-MB-231, MDA-MD-436, MFM-223, and 

MCF10A). These combinations present with a wide spectrum of both synergistic and 

antagonistic mechanisms (the unpublished dose-response matrix data are available at http://

decrease.fimm.fi/data_availability), and were used to investigate the performance of various 

machine learning algorithms in the task of predicting drug combination responses 

(Supplementary Fig. S2). Our comparative analysis indicated that the best prediction 

accuracy was obtained with the cNMF method, together with regularized boosted regression 

trees (XGBoost). In applications of DECREASE to new drug combination datasets, the 

implemented ensemble of cNMF and XGBoost algorithms is trained independently for each 

user-provided incomplete dose-response matrix using Bayesian optimization with repeated 

cross validation (see Methods).

Combination synergy prediction using a minimal set of measurements

To test the robustness of the selected machine learning algorithms against technical, 

biological and pharmacological variability, we first validated the predictive accuracy of the 

best-performing learning algorithms implemented in DECREASE (an average ensemble of 

cNMF and XGBoost), using pairwise combinations of ibrutinib with 466 broadly-targeting 

anti-cancer compounds tested in 6×6 dose-response matrix experiments (the published dose-

response matrix data are available at http://tripod.nih.gov/matrix-data/m3-btk-6x6-ls)11. This 

extensive combinatorial data set covers a variety of agents with distinct mechanisms of 

action tested in activated B-cell-like subtype (ABC) of diffuse large B-cell lymphoma 

(DLBCL) cell line TMD8.
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The validation results in the external DLBCL dataset revealed that already a limited number 

of dose-combination response measurements, regardless whether they originated from a 

single row, column, diagonal, or random points of the dose-response combination matrix, led 

to a relatively high prediction accuracy for both synergistic and antagonistic effects of drug 

combinations with the DECREASE method (Pearson correlation rBLISS 0.82–0.91, Fig. 2a–

d; Supplementary Fig. S3a). Only the design where the concentration row was selected at 

IC50 of the single agents led to markedly decreased drug combination synergy prediction 

(rBLISS=0.58, Fig. 2e), suggesting that IC50 is not an optimal measure for defining the fixed-

concentrations for combination assays.

Overall, the top 5% of most synergistic combinations (23 out of 466) identified using the full 

dose-response matrices were found among the top 7% (32 out of 466) synergistic 

combinations identified with the DECREASE predictions, when using the fixed-

concentration, single row design (P<0.0001, Fisher’s exact text; the expected overlap is 2 

pairs based on random sampling). Similarly, the top 5% of most antagonistic combinations 

were present among the top 9% (43 out of 466) antagonistic pairs predicted with 

DECREASE (P<0.0001; see Supplementary Fig. S4). For comparison, the recently 

introduced Dose model42 led to markedly poorer combination effect predictions across the 

full synergy and antagonism spectrum (rBLISS=0.22, Fig. 2f; Supplementary Fig. S3b).

Accuracy of DECREASE in predicting dose combination surfaces

Even though the principal aim of the DECREASE pipeline is to predict the combination 

synergies across the tested drug pairs (Fig. 1), we also investigated how accurately the full 

dose-response matrices predicted by DECREASE capture the combinatorial dose-response 

patterns across various concentration levels (so-called combination surfaces). For this 

challenging prediction task, we experimentally measured 18 novel anti-cancer combinations 

tested in 8×8 matrix designs in three cancer cell lines (HEK293, HeLa and Hep G2). We 

used the fixed-concentration design (see Fig 2c), where the same middle-concentration row 

was selected in each of the 18 matrices to predict the full dose-response combination 

surfaces with both the DECREASE and Dose models. The models were trained 

independently for each incomplete dose-response matrix, and then tested on the remaining 

matrix elements.

We found that the Bliss synergy surfaces calculated based on the DECREASE predictions 

resemble those based on the full dose-response combination matrix (see Supplementary File 

1 for all the tested combinations). Notably, even though there existed marked differences 

(Fig. 3a), the DECREASE-predicted Bliss synergies deviated on average 1.7 units from the 

measured synergies at the level of dose combinations, showing significantly better predictive 

accuracy compared to the Dose model (P < 0.0001, Welch’s t-test; Fig. 3b). Furthermore, 

DECREASE-predicted dose-response matrices were closer to the measured inhibition levels 

also in terms of the root mean squared error (RMSE), calculated over the full range of 

concentrations (P = 0.004, Wilcoxon test; Fig. 3b). Similar results were obtained when using 

the middle-concentration column design (Supplementary Fig. S5; Supplementary File 2).
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Effect of the measured sub-matrix on DECREASE prediction accuracy

To find out which concentrations of the dose-response matrix should be measured for 

maximal predictive performance, we explored various experimental designs in terms of how 

much they provide information for the synergy prediction. DECREASE showed its best 

prediction performance when one of the middle rows of the dose-response matrix was 

selected for the model training (rBLISS of 0.90, Fig. 4a). In our in-house 8×8 dosing regimen, 

the middle rows corresponded to EC20–30% levels of the agents, but the variability in EC 

percentages among the combinations was relatively large. Strikingly, adding other 

concentration rows of the dose-response matrix did not markedly improve the synergy 

prediction performance beyond that obtained with the middle row alone (Fig. 4b). However, 

the use of the diagonal dose-combination pairs resulted in a similar accuracy with the same 

number of measurements (rBLISS = 0.92). As expected, when only the first row of the matrix 

(i.e., single-agent response profile) was used for training, the prediction accuracy remained 

very low (rBLISS = 0.22).

We next challenged the DECREASE model using a broader dataset from the study of O’Neil 

et al., which includes a total of 22,737 anticancer drug combinations (583 drug pairs tested 

in 39 diverse cancer cell lines with a 4×4 dosing regimen)3. This dataset is more 

challenging, not only due to various cancer cell lines, but also because the single-compound 

dose levels that were used to measure the monotherapy responses were not aligned with the 

concentrations used in the dose-combination matrix. Using the Hill equation for the singe-

compound dose-response curves (see Methods), we interpolated the corresponding dose-

responses and then applied the DECREASE method with the diagonal design to the 

interpolated 5×5 dose-response matrices. This rather small combinatorial matrix experiment 

led to a high correlation between the predicted and measured synergies (average rBLISS = 

0.94). Notably, the cell lines originating from six different tissues (breast, colon, lung, 

melanoma, ovarian and prostate) resulted in similar prediction accuracies (Supplementary 

Fig. S6).

To explore the optimal use of the measured sub-matrices for the cost-effective high-

throughput combinatorial screening, we further investigated several ways how to best utilize 

the information form the dose-response matrix for the prediction of combination effects 

(Supplementary Fig. S7a). Using the 6×6 dose-response combination matrix data from the 

DLBCL experiment, we found out that incorporating both the single agents’ concentrations 

together with their responses led to improved prediction accuracy of the combination 

responses (RMSE = 7.7 %inhibition, Supplementary Fig. S7b), compared to making use of 

merely the single agent concentrations (RMSE = 11.3 %inhibition) or responses (RMSE = 

10.7 %inhibition). Taken together, these results demonstrate that carefully-selected single-

concentration rows (or the diagonal) provide sufficient training data for accurate prediction 

of combination synergy. While additional combination measurements increase the accuracy 

to certain degree, these may not be warranted given the cost of the additional measurements.

Application of DECREASE to non-cancer drug combination datasets

To further illustrate the wide applicability and performance of DECREASE also in non-

cancer combinatorial screens, we used a published dataset of 104 anti-malarial agent 
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combinations (available at https://tripod.nih.gov/matrix-client/rest/matrix/blocks/506/

table)10, where the combinations were tested in the HB3 strain of Plasmodium falciparum, a 

unicellular protozoan parasite that causes malaria in humans. DECREASE was again able to 

pinpoint the most synergistic and antagonistic drug combinations using the fixed-

concentration and diagonal designs (rBLISS of 0.78 and 0.80, respectively, Fig. 5). The 

somewhat lower prediction accuracy indicates that a single row or diagonal cannot capture 

all the complex synergy patterns in such larger 10×10 dose-response matrices. However, the 

top 5% of most-synergistic combinations (5 out of 104) identified using the full dose-

response matrices were found among the top 7% (7 out of 104) synergistic combinations 

identified with DECREASE when using the single-row experimental design (P<0.0001, 

Fisher’s exact test). This is sufficient for practical screening applications, where the aim is to 

find a few most synergistic combinations for a given cancer patient or malaria strain. For 

instance, DECREASE identified artesunate-mefloquine as the most synergistic pair in the 

HB3 strain, which is one the combination therapies recommended by WHO for the 

treatment of uncomplicated falciparum malaria worldwide46.

In another non-cancer application case, we used DECREASE to prioritize the most potent 

synergistic antiviral combinations among 78 drug combinations for Ebola treatment47. These 

combinations were tested in 6×6 dose-response matrix format in the Huh7 liver cell line 

infected with Ebola virus Makona isolate (data are available at https://matrix.ncats.nih.gov/

matrix-client/rest/matrix/blocks/6324/table). Similar to the DLBCL and malaria 

applications, we observed a high prediction accuracy of the drug combination effects with 

the DECREASE model, when using both the fixed, single-row (rBLISS = 0.87, Fig. 5c) and 

the diagonal designs (rBLISS of 0.94, Fig. 5d). In particular, 24 out of 25-top synergistic 

combinations (Bliss synergy>10, 5% of all pairs) based on the fully-measured dose-response 

matrix were present among the top-25 synergistic pairs identified using the DECREASE 

model based on the diagonal design (the one remaining top-25 combination had a rank of 30 

in the DECREASE-predicted list). These results indicate that the DECREASE method is 

highly accurate and applicable also to a wide variety of model systems and experimental 

designs, other than high-throughput anticancer drug combination screening, where the aim is 

to prioritize top-synergistic combination effects for further experimentation using a minimal 

set of combinatorial measurements.

Discussion

With the aim to reduce the cost and time required for high-throughput combinatorial 

experiments, we introduced an efficient experimental-computational approach to identify 

most potent synergistic and antagonistic combinations with a minimal set of measurements. 

We illustrated this approach using a large number of pre-clinical model systems and 

experimental setups, encompassing a total of 23,595 pairwise drug combinations tested in 53 

cancer cell lines and also in a malaria and Ebola infection models. Notably, one can use 

DECREASE with cost-effective designs and still capture almost the same degree of 

information content for synergy and antagonism detection as provided by the fully-measured 

multi-dose combinatorial matrix. DECREASE was also shown to be robust and compatible 

with various experimental designs, dose ranges and model systems, making it thus widely 

applicable to various biomedical problems, such as those aiming at identification of anti-
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cancer, bacterial, fungal or antiviral drug combination synergies. To promote its wide 

application, alone or together with popular synergy scoring models (e.g., Bliss, Loewe, HSA 

or ZIP), we have implemented DECREASE as an interactive R Shiny-based web-tool (http://

decrease.fimm.fi). The R codes are freely available to enable its further extensions to other 

similar applications. The web-tool comes with a user documentation and website tour that 

walks the user through the steps of the DECREASE pipeline. The Methods section and 

Supplementary provide further details of the implemented methodology.

We have also made available 210 novel anti-cancer combinations tested in-house in 13 

cancer cell lines. These preclinical combination effects show rather heterogeneous synergy 

across the tested cell line panel (Supplementary Fig. S8), suggesting that individualized 

combination testing is critical for therapy decision. The DECREASE approach is therefore 

likely to prove useful also for accelerating drug combination testing in primary patient 

samples13, where the cost-efficient DECREASE design enables screening of a much larger 

set of combinations that would be possible with the traditional full matrix design. This is 

especially important when testing patient-derived samples that are scarce and often difficult 

to obtain. We note that the aim of the DECREASE model is not to completely replace the 

full combinatorial experiments, rather to prioritize the most potent combinations among the 

massive number of potential combinations for a given patient that should be focused on in 

further testing, and to de-prioritize those that are not showing any predicted synergy to avoid 

unnecessary human or animal studies. For instance, we found that two of the combinations 

with relatively high synergy in our cell line screens have completed Phase 1 trials and two 

combinations are currently undergoing Phase 2 clinical trials, suggesting these have already 

passed the safety and efficacy testing both in animal models and human subjects 

(Supplementary Fig. S8). The rest of the novel combinations provide a rich resource for the 

community toward further combination discoveries.

Several computational approaches to predict drug combination effects have been 

described32,43. However, we still have relatively poor understanding of the mechanisms that 

may lead to synergistic interactions between drugs, and mechanism-unbiased approaches are 

therefore important for identifying new synergies. Systematic HTS strategy traditionally 

involves very extensive experimental efforts. Here, we took a data-driven and a mechanism-

independent approach to allow for quick and cost-effective predictions of synergistic 

interactions using considerably fewer tested data points than the standard strategies. The 

only input needed for the DECREASE model is a sub-matrix of the drug combination dose-

response measurements, without the need to have structural or target information of 

compounds, nor molecular profiles of the cell models. This enables users to run the 

DECREASE model for each cell line and drug combination separately, trained on the fly 

based on user-provided incomplete dose-response matrix, hence enabling real-time 

personalized medicine applications. Compared to our previous approach to predicting cell-

contex44 or patient-specific synergy scores13, we demonstrated here that the single-

compound responses alone provide only a sub-optimal accuracy (Fig. 4), rather additional 

combinatorial measurements are required for obtaining maximal accuracies of the 

combinatorial patterns across several doses for a given drug pair. However, each additional 

dose-combination measurement comes with increased experimental costs, in terms of time, 

reagents, labour and specimens, which often needs to be minimized in practical applications.
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Many high-throughput drug combination experiments have used a fixed-concentration 

design, where a single concentration of one drug (e.g. IC50 or EC50) is combined with 

various concentrations of the other drug. Therefore, we wanted initially to examine the 

applicability of DECREASE to the fixed concentration designs. It was found out that the 

performance of DECREASE was not too sensitive to the selection of the concentration row, 

provided it is one of the middle rows (Fig. 4). This suggests that the concentration ranges of 

individual compounds of the combination assays investigated in this work were selected so 

that the middle rows or columns captured sufficient information for combination effect 

prediction. Surprisingly, the best concentrations did not originate from around IC50 or EC50 

levels, rather the EC percentages of the most informative concentrations were relatively 

variable across both the combinations and datasets (Supplementary Fig. S9). In larger-scale 

combination assays, it may be more challenging to select the concentration ranges of the 

individual compounds so carefully, which may result in cases where the middle 

concentration rows or columns turn out to be sub-optimal. In those applications, the diagonal 

design provides an accurate and robust option that avoids the selection of any fixed single 

concentration, either row or column. The diagonal design is implemented as the default 

option in the DECREASE tool, since it captures the widest range of different types of 

synergistic effects, and the diagonal pairs are practically feasible to measure in high-

throughput instruments, providing thus a valid compromise between the fixed-concentration 

(easiest) and the random design (most challenging experimentally).

As also shown in the earlier work42, linear models are not flexible enough for accurate 

prediction of drug combination effects across various drug classes and model systems 

(Supplementary Fig. 10). We further showed that our cNMF algorithm, combined with 

XGBoost, markedly outperformed the Dose model in terms of predicting the spectrum of 

combination effects (both synergy and antagonism, Fig. 2 and Fig. 3). We note that our 

outlier detection approach (Supplementary Fig. S1) shares similarities with the Dose 

model42 in that they are both based on the Bliss approximation for calculating the expected 

combination effects. However, the Dose model can go also beyond the pairwise 

combinations to predict the effects of combining three or more antibiotics or anticancer 

drugs at various doses, based only on measurements of drug pairs at selected doses. The 

focus of the present work was solely on pairwise combinations, but in the future extensions, 

we will also consider higher-order combination prediction using the DECREASE model, 

once there is large enough high-order dose-response tensor data available for testing its 

predictions. An additional future improvement would be to assess also the potential toxic 

effects of the drug combinations for clinical applications. In addition to machine learning 

predictions, the cost- and time-constraints of high-throughput drug combination screens can 

be reduced also by novel types of experimental assays, such as reagent-saving and cell-

sparing microfluidics devices, to support applications of combinatorial screening45.

Methods

In-house combination experiments

Our in-house experiments involved a total of in 210 anti-cancer combinations among 34 

distinct compounds tested in 13 cancer cell lines. The list of the tested compounds along 
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with their concentration ranges, target mechanisms and approval statuses are shown in 

Supplementary Table S1. The compound-specific concentration ranges were selected based 

on the single-agent activities and earlier dose-response assays in breast cancer cell lines33, 

which were used for defining a range of active and inactive concentrations for these agents. 

The 192 anti-cancer combinations used in developing of the DECREASE model were tested 

in 8×8 matrix designs in 10 breast cancer cell lines (BT-549, CAL-148, CAL-51, CAL-85–1, 

DU-4475, HCC-1599, MDA-MB-231, MDA-MD-436, MFM-223, and MCF10A), utilizing 

the drug-combination assay described in the previous study33. The 18 additional anti-cancer 

combinations used in validating the model predictions were also tested in 8×8 matrix 

designs using the same assay in HEK293 (embryonic kidney), HeLa (cervical cancer) and 

Hep G2 (hepatocellular cancer) cell lines. The cell lines were authenticated using 

microsatellite markers (Promega GenePrint 10 System, date: August 2, 2017). All the cell 

lines were grown in larger volume, and were regularly tested for mycoplasma each time 

assay ready cells were prepared using PCR based test kit and frozen in several ampules.

Before the screens, the cell lines were passaged twice after thawing. The cell lines were 

maintained in their culture media at 37 °C with 5 % CO2 in a humidified incubator (see 

Supplementary Table S2 for details of the culture conditions). The compounds and their 

combinations were plated in 7 different concentrations in half-log dilution (approximately 3-

fold), covering a 1000-fold concentration range on clear bottom 384-well plates (Corning 

#3712), using an Echo 550 Liquid Handler (Labcyte). As positive (total killing) and negative 

(non-effective) controls, we used 100 μM benzethonium chloride and 0.1 % dimethyl 

sulfoxide (DMSO), respectively, when calculating the relative inhibition %. All the liquid 

handling was performed with a MultiDrop Combi dispenser (Thermo Scientific). The pre-

dispensed compounds were dissolved in 5 μl of culture medium per well for 1 h on an orbital 

shaker, followed by 20 μl cell suspension per well seeded in the drugged plates (the optimal 

final cell densities were adjusted for each cell lines). After 72 h incubation, cell viability was 

measured using CellTiter-Glo (Promega) reagent. The unpublished dose-response matrix 

data for the 210 in-house combinations has been made available at http://decrease.fimm.fi/

data_availability.

Published combination datasets

A total of 466 anti-cancer compounds combined with ibrutinib were tested in 466 6×6 

matrix experiments in the ABC DLBCL line TMD8, cultured in triplicate in 96-well plates 

as described in the original study11. Briefly, 1,000 cells per well in 5 μL of media (RPMI 

−1640 supplemented with 5% FBS, 100 U/mL penicillin and 100 μg/mL streptomycin, and 

2 mM glutamine) were added into pre-plated matrix plates, immediately after compounds 

were acoustically dispensed using an ATS-100 (EDC Biosystems). The plates incubated at 

37 °C with 5% CO2 under 95% humidity for 48 h and then 3 μL of CellTiter Glo 

luminescent cell viability assay reagent (Promega) was added using a Bioraptor Flying 

Reagent Dispenser (Aurora DiscoveryBD) for cell proliferation assays. The plates were then 

incubated for 15 min at room temperature. The cell viability was measured using a 10 s 

exposure with a ViewLux (Perkin-Elmer) with a luminescent filter. For apoptosis assays, the 

cells were incubated for 8 or 16 h, followed by adding 3 μL of Caspase Glo 3/7 luminescent 

apoptosis assay reagent (Promega). Relative luminescence units (RLU) for each well were 
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normalized using the median RLUs from the negative (DMSO) and positive (bortezomib) 

controls.

The second published dataset of 104 antimalarial combinations among 29 distinct 

compounds were tested in 10×10 matrix designs in Plasmodium falciparum strain HB3, as 

described in the original study10. Briefly, Plasmodium falciparum strain was maintained in 

RPMI 1640 medium containing 5% human O+ erythrocytes (5% hematocrit), 0.5% Albumax 

(GIBCO), 24 mM sodium bicarbonate, and 10 μg/ml gentamycin at 37°C with 5% CO2, 5% 

O2, and 90% N2. Compounds were dissolved in either deionized water, 50% EtOH, or 

DMSO, depending on solubility. Pre-plating of the chemical library and plating of cells were 

done similar to the 466 anti-cancer drug combinations as described above for the DLBCL 

TMD8 cell lines. The parasite inhibition was measured using a the SYBR Green viability 

assay that measures the SYBR Green I fluorescence emission (530 ± 4.5 nm) from each well 

at an excitation wavelength of 490 nm. The intensity values in each well were normalized 

based on intensity from negative control (no compounds) and positive controls (chloroquine 

at high concentrations).

The third published dataset was from the study of O’Neil et al.3, and it included a total of 

22,737 experiments of 583 pairwise combinations measured using a 4×4 dosing regimen in 

39 diverse cancer cell lines obtained from ATCC or Sigma-Aldrich. Briefly, cells were 

plated in 1,536-well tissue culture-treated plates (Brooks Automation) at 400cells/well in 10 

mL growth media, followed by the addition of 50 nL of compounds in DMSO and 

incubation at 37 at 400cells/well in10 mL growth media. The total cell viability of each well 

was measured using CellTiter-Glo cell viability reagent (Promega), according to the 

manufacturer’s protocol. The high-throughput screen was carried out using a fully auto-

mated GNF PolyTarget robotic platform (GNF Systems).

The fourth published dataset of 78 antiviral drug combinations were tested in the Huh7 liver 

cells infected with Makona isolate, Ebola virus/H.sapiens-tc/GIN/14/WPG-C05, as 

described in the original study47. The Huh7 cells were maintained at the Integrated Research 

Facility, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes 

of Health (NIH; Frederick, MD), following cell source instructions described in the original 

manuscript47. Briefly, drugs in 50-μL of Dulbecco’s modified Eagle’s medium were 

transferred to the Huh7 cells seeded in black, clear-bottomed, 96-well plates 1 hour prior to 

inoculation with EBOV/Mak. After 48 hours, plates were fixed, and EBOV/Mak was 

detected with a mouse antiEBOV VP40 antibody. Drug combination efficacy was measured 

in triplicates with a 6 × 6 matrix design using Cell Titer Glo assays.

The DECREASE workflow

The DECREASE approach is based on a 2-step procedure: (i) detection of outlier 

measurements in the sparse matrices obtained by limited measurement experimental designs 

(e.g. fixed-concentration or diagonal designs; see Fig. 1, upper panel), followed by (ii) 

prediction of complete dose-response matrices using the cNMF algorithm (Fig. 1, second 

panel). Finally, top-synergistic drug combinations are identified using any of the synergy 

models (e.g., Bliss, Loewe, HSA or ZIP; Fig. 1, bottom panel).
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Outlier detection

Since the drug-combination inhibition responses in the dose-response matrices are usually 

non-monotonically increasing as a function of concentration levels, and drug synergy or 

antagonism may occur at any concentration range, none of the standard distribution-based 

methods is applicable to the outlier detection. This also complicates the discovery of two 

closely-located outliers, as they may be confused with synergistic or antagonistic areas. To 

detect outliers both in combination and individual agent response measurements used for 

model training, we applied a novel strategy based on the Bliss approximation 

(Supplementary Fig. S1a). More specifically, the Bliss formula calculates the expected 

combination responses measured at concentrations d1 and d2 of single drugs as g*12(d1, d2) 

= g1(d1) + g2(d2)-g1(d1)g2(d2). The deviations between the measured and expected 

combination responses are calculated as gd (d1, d2) = |g12 (d1, d2) - g*12 (d1,d2)|, where g12 

(d1,d2) are the experimentally-measured combination responses (Supplementary Fig. S1a). 

Next, the outlier(s) X(d1,d2) in deviations gd (d1,d2) are defined as those observations that (i) 

fall below Q1 − 4 × IQR or above Q3 + 4 × IQR, where Q1 and Q3 are the first and third 

quartiles, respectively, and IQR is the interquartile range (Supplementary Fig. S1b), and (ii) 

that deviate more than 25% from the measured inhibition level.

Furthermore, it is important to identify whether the detected outlier is due to error in 

combination response measurement, error in single drug response, or a result of both of 

these factors. For this purpose, the individual drug dose-response curves are fitted using the 

4-parameter nonlinear logistic equation, also called the Hill equation34, 35 (Supplementary 

Fig. S1c):

g = a +
b − a

1 +
c
d

s

where g is the response of single agent at dose d, a is the minimum asymptote (response at d 

= 0), b is the maximum asymptote (response at infinite d), c is the half-maximal effective 

concentration (EC50), and s is the slope of the curve. The fitting of the dose-response curves 

is done using the drc package (version: 3.0–1)36 in R. In case the single-agent response is 

deviating more than 10% inhibition from the fitted value of the dose-response curve, then 

both the combination response g12(d1, d2) as well as the single agent response g(d) are 

removed as outliers, before going into the full matrix prediction.

Full matrix prediction

The outlier removal is followed by prediction of the missing responses in the sparse dose-

response matrix (both non-measured and outlier combinations). We used constrained, 

weighted non-negative Matrix Factorization (NMF) for the prediction of drug combination 

response matrices, since the response values are always non-negative (% inhibition ranges 

between 0 and 100). The constrained NMF imposes additional regularization constraints to 

reduce overfitting and to enhance the uniqueness of the model estimation solutions, while a 

weighted formulation of NMF allows one to predict elements of sparse dose-response matrix 
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(X) by assigning zero weights to the missing elements of the matrix and ones to the 

measured combination responses in the matrix decomposition:

X ≈ W (UV )

where W is the weight matrix (comprising elements of 0’s and 1’s), U is the basis matrix 

and V is the coefficient matrix (Supplementary Fig. S11). We utilized an alternating non-

negative least square (NNLS) algorithm for NMF decomposition implemented in the NNLM 

R-package (v 0.4.2). The alternating NNLS algorithm starts by random initialization of U 

and V matrices, which are iteratively updated to minimize

min
W ≥ 0, H ≥ 0

L(X, W UV ) + JU(U) + JV (V )

In this objective function, L is a loss (the mean square error) function, and

JU(U) = a1J1(U) + a2J2(U) + a3J3(U)

JV (V ) = β1J1 V I + β2J2 V I + β3J3 V T

Where

J1(Y ): =
1
2

‖Y ‖F
2 =

1
2

tr Y Y T

J2(Y ): = ∑
i < j

(Y i)TY j =
1
2

tr Y (E − I)Y T

J3(Y ): = ∑
i, j

|yij| = tr(Y E)

Here, I is an identity matrix, E is a matrix with all entries equal to 1, and i and j are the 

matrix row and column indices respectively. J1 is a ridge penalty to control for the 

magnitudes and smoothness, J2 is used to minimize correlations among columns and J3 is a 

LASSO like penalty, which controls both for magnitude and sparsity. The loss function is 

minimized by firstly fixing U and solving for V using NNLS, and then fixing V and solving 

for U. This procedure is repeated until the change of X–WUV is small enough (relative 

tolerance between two successive iterations < 0.0001) or maximum number of iterations 

(here, 500) is reached. Finally, the multiplication of U and V results in a full NMF predicted 

matrix.
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The NMF requires tuning of matrix rank r and regularization parameters (a1, a2, a3, β1, β2, 

β3) in order to achieve its optimal performance37. To avoid full parameter optimization, 

which easily leads to model overfitting, as very few combination measurements are given 

compared to the full matrix measurements, we adopted an approach similar to multiple 

imputation to maximize the prediction accuracy. Namely, we run NMF multiple times on the 

sparse dose-response matrix, with n random parameter sets (r ranging between 2 and 3, and 

regularization parameters between 0 and 1), resulting in n predicted full response matrices. 

Due to the regularization, m out of n predicted matrices include multiple zero responses and 

those m matrices were excluded. Finally, each element of the full dose-response matrix was 

predicted as Venter mode38 of n - m predicted matrices. We call this approach as composite 

of weighted penalized Non-negative Matrix Factorization (cNMF).

Synergy scoring and detection

The predicted complete dose-response matrix was utilized to calculate combinatorial 

landscapes over the full concentration ranges using a selected synergy scoring reference 

model. To allow straightforward synergy analysis and detection, DECREASE enables users 

to export the predicted combination response matrices in the format compatible with direct 

uploading to SynergyFinder25 and Combenefit24 software tools. The overall synergy score 

for a drug pair is calculated as the average score between the predicted and expected synergy 

over the dose-response combinatorial matrix with SynergyFinder (Supplementary Fig. 12). 

The positive and negative scores denote synergy and antagonism, respectively. The Bliss 

independence model was used as the primary method to score drug combination synergy in 

the datasets (see Supplementary Fig. S13), although the results based on the Loewe 

additivity, the highest single agent (HSA) and zero interaction potency (ZIP) model29 are 

additionally shown for providing complementary information from various models39. Since 

the dilution factors were constant within each study in this work, the unweighted synergy 

score was calculated for each drug combination (as implemented in SynergyFinder25). The 

constant dilution factor for the drugs makes the synergy score calculated by the unweighted 

synergy sum proportional to a synergy score integrated in the logarithmic space, and avoids 

the need to normalize the overall synergy scores by the dilution range that is required when 

non-constant dilution factor is used (the normalization would be needed is those applications 

to avoid the spurious increase of synergy due to a large number of drug concentrations 

chosen around the maximum synergy).

Comparative evaluation

Using our in-house dataset of 192 anti-cancer combinations, we compared the performance 

of cNMF against seven state-of-the-art supervised machine learning algorithms in terms of 

their prediction accuracy at predicting missing values in the sparse dose-response matrices 

(Supplementary Fig. S2). For each algorithm, we trained 192 matrix-specific models using 

the single-agent drug responses and given subset of combination responses (e.g. row/column 

or diagonal elements) from the dose-response matrix as training data. For each algorithm, 

the best parameter set was identified using Bayesian optimization (mlrMBO R-package, 

version: 1.1.1)40, with three times repeated 5-fold cross validation. Supplementary Table S3 

lists the R-packages used for implementation of the prediction algorithms in the comparative 

evaluation, along with their optimized parameters. After model training, each optimized 
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matrix-specific model was used to predict the missing responses within the incomplete 

matrix it was trained on. The performance of each model was calculated as Root Mean 

Square Error (RMSE) between the predicted and measured values of the matrix (see 

Statistical analysis). Our comparative analysis indicated that cNMF together with 

regularized boosted regression trees (XGBoost) implementing extreme gradient boosting in 

xgboost R-package41 outperformed all the other supervised machine learning algorithms 

(Supplementary Fig. S2). To further increase the robustness of our prediction, we therefore 

complemented our cNMF predictions with the XGBoost results using their averaging as the 

final DECREASE prediction model. In applications of DECREASE to any given drug 

combination dataset, the implemented ensemble of cNMF and XGBoost algorithms is 

optimized and tuned independently for each user-provided incomplete dose-response matrix 

using the Bayesian optimization with three times repeated 5-fold cross validation.

Code and data availability

The source-code of the DECREASE prediction algorithm is freely available at http://

decrease.fimm.fi/source_code to allow replication of the results and also comparing or 

combining the cNMF algorithm with other prediction models. The source-codes of the other 

algorithms are publicly available (web-links and package versions are listed in 

Supplementary Table S3). The recent Dose model42 implementation was provided by 

request from the authors, Drs. Zimmer and Alon. All the data used in developing and testing 

of the models are openly available. The unpublished in-house anti-cancer dose-response 

matrix data for all the 210 combinations are available at http://decrease.fimm.fi/

data_availability. The published DLBCL anti-cancer dose-response matrix data are available 

at http://tripod.nih.gov/matrix-data/m3-btk-6x6-ls11. The data for 22,737 anticancer drug 

combination from the study of O’Neil et al.3 was downloaded from http://

mct.aacrjournals.org/content/15/6/1155.figures-only#fragments-additional-data. The 

published anti-malarial dose-response matrix data are available at https://tripod.nih.gov/

matrix-client/rest/matrix/blocks/506/table10. The published antiviral dose-response matrix 

data for Ebola treatment are available at https://matrix.ncats.nih.gov/matrix-client/rest/

matrix/blocks/6324/table.47

Statistical analysis

Prediction accuracy for synergy detection was evaluated with the Pearson correlation 

coefficients calculated between the predicted and measured synergy scores, using Bliss, 

Loewe, the highest single agent (HSA) or the zero interaction potency (ZIP) model29 across 

all the combinations. Prediction accuracy for dose-combination patterns was evaluated with 

the root mean squared error (RMSE), calculated between the predicted and measured 

combination effects (% inhibition), over the dose-response submatrix that was predicted and 

not used by DECREASE or Dose models in their training phase. The effective concentration 

(EC) values were estimated based on the single-agent dose-response curves fitted using the 

4-parameter nonlinear logistic equation. The relative ECx percentage value corresponds to 

the concentration that causes an inhibition effect that is x% of the maximum effect for the 

agent. Statistical significance of the overlap in drug combinations detected using the full 

dose-response matrix and the DECREASE model was assessed with the Fisher’s exact test. 

Differences in the synergy scores and combination effects were assessed with either the 
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Welch’s t-test or Wilcoxon’s test, depending on normality of the distributions tested with the 

Shapiro-Wilk test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A schematic representation of the computational steps implemented in the 
DECREASE approach.
1. Experimental input is a limited number of drug combination measurements (e.g. single 

row or column of the dose-response matrix or its diagonal). 2. For each incomplete dose-

response matrix, DECREASE method first detects outliers, followed by the prediction of the 

complete dose-response matrix using an ensemble of composite non-negative matrix 

factorization (cNMF) and regularized boosted regression trees (XGBoost) algorithms. 3. The 

predicted complete dose-response matrices enable investigation of patterns of combination 

synergy (or antagonism) across various concentration ranges. 4. The full dose-response 

matrices are finally utilized to score the overall drug combination synergy or antagonism 

over the entire, predicted combinatorial landscape using a selected reference model (e.g., 
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Bliss, Loewe, HSA or ZIP), followed by the identification of the top hits for further 

experimental or clinical validation.
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Figure 2: DECREASE predicts accurately combinatorial responses with cost-effective 
experimental HTS designs.
Each point corresponds to one of the 466 combinations tested in the DLBCL dataset11. 

Pearson correlation coefficient (r) between the synergy scores was calculated based on the 

measured and predicted dose-response matrices using four synergy scoring models (Bliss, 

Loewe, HSA and ZIP) in different cost-effective designs (the insets): (a) primary diagonal 

design, (b) secondary diagonal design, (c) fixed concentration design, where the fixed 

concentration row is selected as floor(row number/2)+1 (corresponding to concentration row 

5 in this matrix assay and to relative ECx mean of 27.1%, with standard deviation of 23.3%), 

(d) random concentration design, (e) fixed concentration design at EC50 of one of the agents, 

(f) Dose model42 predictions using the fixed concentration design. The colored lines on the 

x-axis show the marginal distribution of the measured Bliss synergies. The overall synergy 

scores were calculated with the SynergyFinder web-application25.
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Figure 3: DECREASE predicts accurately drug combination landscapes with a fixed-
concentration design.
(a) Representative examples of two combinatorial response distributions across various 

concentration ranges in the in-house combination screens. Bliss synergy (red) and 

antagonism (green) patterns calculated based on the DECREASE-predicted dose-response 

matrices resemble to those calculated based on the original 8×8 dose-response matrices in 

HEK293 (upper panel) and Hep G2 (lower panel) cell lines. DECREASE cannot predict all 

the detailed combination patterns (e.g., the antagonistic area in the bottom-left corner of the 

LY3009120-BMS-754807 combination), rather its aim is to predict the overall synergy 
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landscapes. The fixed-concentration experimental design was used both in the DECREASE 

and Dose models (the row used as input to the models is marked with dotted rectangle and it 

corresponds to EC40 and EC15 of BMS-754807 and NVP-LCL161, respectively). The 

synergy surfaces were calculated as percent inhibition excess over the Bliss reference model. 

The relative ECx levels of the selected concentrations are shown in Supplementary Fig. S14. 

The prediction results across all the 18 novel anti-cancer combinations tested in the three 

cell lines are shown in Supplementary File 1. (b) Left, deviations in the Bliss synergy scores 

(ΔBliss synergy) calculated based on the experimentally-measured and DECREASE or 

Dose-predicted full dose-response matrices. Statistical evaluation was done using the 

Welch’s t-test. Right, the root-mean-squarer error (RMSE) was calculated between the 

predicted and measured combination effects (relative inhibition %), averaged over the 

remaining part of the dose-response submatrix that was predicted and not used by 

DECREASE or Dose models. Statistical evaluation was done using the Wilcoxon test. The 

points correspond to 6 anti-cancer agent combinations tested in each of the three cell lines. 

The box plot shows the first and third quartiles (top and bottom of the boxes), the median 

(vertical line inside the box), and the lowest and highest values (whiskers).
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Figure 4: Selection and use of dose-response matrix rows for the prediction of drug combination 
effects.
This experiment investigates how much the selection of a concentration row affects the 

prediction accuracy (left panel), as well as how much adding more than one concentration 

row improves the prediction accuracy (right panel), as investigated in the 8×8 dose-response 

combination matrices measured in-house across 192 anti-cancer drug combinations in the 

breast cancer cell lines. (a) Prediction accuracy of DECREASE in single-row experimental 

design with different concentration rows. The first row corresponds to the case where only 

the single-agent responses of one of the agents were used as input for the prediction. The 

diagonal design was used as comparison point (the horizontal dotted line). Pearson 

correlation coefficient (r) was calculated between the predicted and measured synergy scores 

for the four synergy scoring models (Bliss, Loewe, HSA and ZIP). The root-mean-square 

error (RMSE) was calculated between the predicted and measured combination effects 

(relative inhibition %), over the dose-response submatrix that was predicted and not used by 

DECREASE. The average ECx values indicate the relative effective concentration (EC) 

percentages that correspond to the particular concentration row, and the standard deviation 

(SD) is calculated over the 192 combinations (Supplementary Fig. S9 shows the optimal 

ECx distributions for comparison). (b) Synergy prediction accuracy when additional rows of 

the dose-response matrix are used for the DECREASE training. The lowest bar indicates the 

case when both the first row (single-agent responses) and the fifth row (maximal single-row 

accuracy) was used for the model training, and the highest bar the case where all the eight 

rows were used (i.e. the full matrix). The other rows between these two extremes were 

selected based on the concentration that maximally increases the prediction accuracy. The 

overall synergy scores were calculated using the SynergyFinder web-application25.

Ianevski et al. Page 23

Nat Mach Intell. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: DECREASE predicts accurately combinatorial responses in anti-malaria and antiviral 
applications.
Upper panel: prediction accuracy across 104 anti-malarial agent combinations tested 10×10 

dose-response matrices in Plasmodium falciparum parasite10. Lower panel: prediction 

accuracy across 78 antiviral drug combinations tested in 6×6 dose-response matrices in liver 

cells infected with Makona isolate Ebola virus. The Pearson correlation coefficient (r) 

between the synergy scores were calculated based on the measured and predicted dose-

response matrices over the combinations (points) using (a) fixed concentration design, where 

the middle concentration row is selected as floor (row number / 2) + 1, or (b) primary 

diagonal design. The contour curves in the plot and colored lines on the x-axis show the 2D 
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and marginal distributions of the measured Bliss synergies, respectively. The overall synergy 

scores were calculated using the SynergyFinder web-application25.
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