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ABSTRACT

Motivation: The identification of interactions between drugs and
target proteins is a key area in genomic drug discovery. Therefore,
there is a strong incentive to develop new methods capable of
detecting these potential drug–target interactions efficiently.
Results: In this article, we characterize four classes of drug–target
interaction networks in humans involving enzymes, ion channels,
G-protein-coupled receptors (GPCRs) and nuclear receptors, and
reveal significant correlations between drug structure similarity, target
sequence similarity and the drug–target interaction network topology.
We then develop new statistical methods to predict unknown drug–
target interaction networks from chemical structure and genomic
sequence information simultaneously on a large scale. The originality
of the proposed method lies in the formalization of the drug–target
interaction inference as a supervised learning problem for a bipartite
graph, the lack of need for 3D structure information of the target
proteins, and in the integration of chemical and genomic spaces into
a unified space that we call ‘pharmacological space’. In the results,
we demonstrate the usefulness of our proposed method for the
prediction of the four classes of drug–target interaction networks. Our
comprehensively predicted drug–target interaction networks enable
us to suggest many potential drug–target interactions and to increase
research productivity toward genomic drug discovery.
Availability: Softwares are available upon request.
Contact: Yoshihiro.Yamanishi@ensmp.fr
Supplementary information: Datasets and all prediction results are
available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

1 INTRODUCTION
The identification of interactions between drugs and target proteins
is a key area in genomic drug discovery. Interactions with ligands
can modulate the function of many classes of pharmaceutically
useful protein targets including enzymes, ion channels, G protein-
coupled receptors (GPCRs), and nuclear receptors. Through various
high-throughput experimental projects for analyzing the genome,
transcriptome and proteome, we are beginning to understand
the genomic spaces populated by these protein classes. At the
same time, the high-throughput screening of large-scale chemical
compound libraries with various biological assays is enabling us
to explore the chemical space of possible compounds (Dobson,
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2004; Kanehisa et al., 2006; Stockwell, 2000). The aim of chemical
genomics research is to relate this chemical space with the genomic
space in order to identify potentially useful compounds such as
imaging probes and drug leads. However, our knowledge about
the relationship between the chemical and genomic spaces is very
limited. The PubChem database at NCBI (Wheeler et al., 2006), for
example, stores information on millions of chemical compounds, but
the number of compounds with information on their target protein is
very limited. This implies that many potential interactions between
the chemical and genomic spaces remain undiscovered. Therefore,
there is a strong incentive to develop new methods capable of
detecting these potential drug–target interactions efficiently.

Since experimental determination of compound–protein
interactions or potential drug–target interactions remains very
challenging (Haggarty et al., 2003; Kuruvilla et al., 2002), effective
in silico prediction methods need to be developed. The predicted
interactions can provide complementary and supporting evidence
to experimental studies. A variety of computational approaches
have been developed to analyze and predict compound–protein
interactions. Two of the most commonly used are docking
simulations (Cheng et al., 2007; Rarey et al., 1996) and literature
text mining (Zhu et al., 2005). However, both techniques have their
limitations, docking, for instance, cannot be applied to proteins
whose 3D structures are unknown, so it is difficult to use this
technique on a large scale. Text mining approaches are usually
based on keyword searching and so suffer from an inability to
detect new biological findings and also the problem of redundancy
in the compound/gene names in the literature (Zhu et al., 2005).

Recently, a classification of target proteins based on the structure
of their ligands (Keiser et al., 2007) and in related work an
analysis of the drug–target network revealed characteristic features
of its network topology (Yildirim et al., 2007). However, neither
protein sequence information nor chemical structure information
were taken into consideration in the network analysis. The next step
is to develop more integrative methods taking into account target
protein sequences, drug chemical structures and the available known
drug–target network information simultaneously.

In this article, we investigate the relationship between drug
chemical structure, target protein sequence and drug–target network
topology. We then develop a new supervised method to infer
unknown drug–target interactions by integrating chemical space and
genomic space into a unified space that we call ‘pharmacological
space’. In the proposed method, chemical space means the chemical
structure similarity space of possible chemical compounds, genomic
space means the amino acid sequence similarity space of possible
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Fig. 1. An illustration of the proposed method.

proteins and pharmacological space means the interaction space
reflecting the drug–target interaction network, where interacting
drugs and target proteins are close to each other. By supervised
we mean that reliable a priori knowledge about known interactions
is used in the inference process itself. Figure 1 shows an illustration
of our method. To our knowledge, there are no computational
methods to predict drug–target interactions from the integration
of chemical structure data, genomic sequence data and known
drug–target network information simultaneously on a large scale.
In the results, we make predictions for four classes of important
drug–target interactions in human involving enzymes, ion channels,
GPCRs and nuclear receptors. A comprehensive prediction of drug–
target interaction networks enables us to suggest new potential
drug–target interactions.

2 MATERIALS

2.1 Drug–target interaction data
We obtained the information about the interactions between drugs
and target proteins from the KEGG BRITE (Kanehisa et al., 2006),
BRENDA (Schomburg et al., 2004), SuperTarget (Gunther et al.,
2008) and DrugBank databases (Wishart et al., 2008). According
to our survey, the number of known drugs targeting enzymes,
ion channels, GPCRs and nuclear receptors are 445, 210, 223
and 54, respectively. At the time of writing, the number of target
proteins in these classes are 664, 204, 95 and 26, respectively,
and the number of known interactions are 2926, 1476, 635 and
90. Note that in the enzyme class we focused on the regulatory
interactions between enzymes and compounds rather than the
metabolic interactions, so all the ligands in the enzyme data are
inhibitors or activators rather than substrates or products. Cofactors
such as adenosine triphosphate (ATP) and nicotinamide adenine
dinucleotide phosphate (NADPH) are also not included except when
they are annotated as regulators in the BRENDA database. Also, we
do not use compounds whose molecular weights are <100, which
means that ions are removed from the dataset. The data statistics for
drugs and target proteins and their interactions are summarized in
Table 1.

The set of known drug–target interactions is regarded as the
‘gold standard’ data in this study, and is used for evaluating
the performance of the proposed method in the cross-validation
experiments as well as training data in the comprehensive prediction.

Table 1. Statistics for the drug–target interaction networks

Statistics Enzyme Ion
channel

GPCR Nuclear
receptor

No. of drugs 445 210 223 54
No. of target proteins 664 204 95 26
(Total in human genome) (2741) (292) (757) (49)
No. of drug–target

interactions
2926 1476 635 90

Average degree of drugs 6.57 7.02 2.84 1.66
Average degree of targets 4.40 7.23 6.68 3.46

Cluster coefficient of drugs 0.850 0.871 0.867 0.832
Cluster coefficient of targets 0.902 0.897 0.776 0.933

Proportion of unreachable
paths between drugs

0.479 0.019 0.345 0.615

Proportion of unreachable
paths between targets

0.447 0.029 0.593 0.778

Table 1 shows the number of target proteins, drugs and their
interactions in the gold standard data.

2.2 Chemical data
Chemical structures of the drugs were obtained from the DRUG and
COMPOUND Sections in the KEGG LIGAND database (Kanehisa
et al., 2006). We computed the chemical structure similarities
between compounds using SIMCOMP (Hattori et al., 2003), where
SIMCOMP provides a global similarity score based on the size of
the common substructures between two compounds using a graph
alignment algorithm. The similarity between two compounds c and
c′ is computed as sc(c,c′)=|c∩c′|/|c∪c′|. Applying this operation
to all compound pairs, we construct a similarity matrix denoted as
Sc. The similarity matrix Sc is considered to represent chemical
space.

2.3 Genomic data
Amino acid sequences of the target proteins were obtained
from the KEGG GENES database (Kanehisa et al., 2006).
In this study we focused on the proteins in human. We
computed the sequence similarities between the proteins
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using a normalized version of Smith–Waterman scores
(Smith and Waterman, 1981). The normalized Smith–
Waterman score between two proteins g and g′ is computed
as sg(g,g′)=SW (g,g′)/

√
SW (g,g)

√
SW (g′,g′), where SW (·,·)

means the original Smith–Waterman score. Applying this operation
to all protein pairs, we construct a similarity matrix denoted as Sg.
In this study the similarity matrix Sg is considered to represent
genomic space.

3 METHODS
The proposed supervised method is a two-step process. First, a model is
learned to explain the ‘gold standard’. Second, this model is applied to
compounds and proteins absent from the ‘gold standard’ in order to infer their
interactions. A supervised learning method is suitable in this case, because
information about reliable drug–target interactions is available from many
public databases recently. The set of compounds and proteins involved in the
known drug–target interactions are referred to as the training set. We first
propose two ‘naive’ approaches: the nearest profile method and the weighted
profile method, and we finally propose a more sophisticated approach: the
bipartite graph learning method.

In each case, suppose that we have sets of known drugs {ci}nc
i=1 and known

target proteins {gj}ng
j=1, where nc is the number of known drugs and ng is

the number of known target proteins. Also, the interaction patterns of ci

with target proteins and gj with drugs are represented by bit strings that
we call the interaction profiles xci and ygj , respectively. The interaction
profile xci is defined as a bit string (vector of size ng), where the presence
or absence of an interaction with target protein gj (j=1,2,...,ng) is coded
as 1 or 0, respectively. The interaction profile ygj is defined as a bit string
(vector of size nc), where the presence or absence of an interaction with drug
ci (i=1,2,...,nc) is coded as 1 or 0, respectively. Suppose that we have sets
of interaction profiles {xci }nc

i=1 and {ygj }ng
j=1. Given a new target candidate

protein gnew and a new drug candidate compound cnew, we want to predict
the corresponding interaction profiles xcnew and ygnew , respectively.

3.1 Nearest profile method
A straightforward approach is to use the idea of the nearest neighbor method.
In this method, we predict the new compound cnew to have the following
interaction profile:

xcnew =sc(cnew,cnearest)xcnearest , (1)

where xc is an interaction profile vector, sc(·,·) is a chemical similarity score,
and cnearest is the nearest compound which is most similar to cnew. We predict
the new protein gnew to have the following interaction profile:

ygnew =sg(gnew,gnearest)ygnearest , (2)

where yg is an interaction profile vector, sg(·,·) is a sequence similarity score
and gnearest is the nearest protein which is most similar to gnew. Finally, high
scoring compound–protein pairs (cnew,gj) and (ci,gnew) in the interaction
profiles xcnew and ygnew are predicted to interact with each other. The method
is referred to as nearest profile method in this study.

3.2 Weighted profile method
We consider a more generalized version of the above method. In this method,
we predict the new compound cnew to have the following weighted interaction
profile:

xcnew = 1

zcnew

nc∑
i=1

sc(cnew,ci)xci , (3)

where xc is an interaction profile vector, sc(·,·) is a chemical
structure similarity score and zcnew is a normalization term defined as

zcnew =∑nc
i=1 sc(cnew,ci). We predict the new protein gnew to have the

folowing weighted interaction profile:

ygnew = 1

zgnew

ng∑
j=1

sg(gnew,gj)ygj , (4)

where yg is an interaction profile vector, sg(·,·) is a sequence similarity
score and zgnew is a normalization term defined as zgnew =∑ng

j=1 sg(gnew,gj).
Finally, high-scoring compound–protein pairs (cnew,gj) and (ci,gnew) in the
interaction profiles xcnew and ygnew are predicted to interact with each other.
The method is referred to as weighted profile method in this study.

3.3 Bipartite graph learning method
The novel method used in this article is the bipartite graph learning
method. Here we propose a new method to learn the correlation between
the chemical/genomic space and the interaction space that we call
‘pharmacological space’. The proposed procedure is as follows:

(1) Embed compounds and proteins on the interaction network into a
unified space that we call ‘pharmacological space’.

(2) Learn a model between the chemical/genomic space and the
pharmacological space, and map any compounds/proteins onto the
pharmacological space.

(3) Predict interacting compound–protein pairs by connecting
compounds and proteins which are closer than a threshold in
the pharmacological space.

Figure 1 shows an illustration of the above procedure. The details of each
step are explained below.

First, the drug–target interaction network is described by a bipartite graph
G= (V1 +V2,E), where V1 is a set of drugs, V2 is a set of target proteins
and E is a set of the interactions. We propose to represent the bipartite graph
structure by an Euclidian space such that both compounds and proteins are
represented by sets of q-dimensional feature vectors {uci }nc

i=1 and {ugj }ng
j=1,

respectively. To do so, we first construct a graph-based similarity matrix K =(
Kcc Kcg

KT
cg Kgg

)
, where the elements of Kcc, Kgg and Kcg are computed by using

Gaussian functions as follows: (Kcc)ij =exp(−d2
cicj

/h2) for i, j=1,...,nc,

(Kgg)ij =exp(−d2
gigj

/h2) for i, j=1,...,ng and (Kcg)ij =exp(−d2
cigj

/h2) for
i=1,...,nc, j=1,...,ng, where d is the shortest distance between all objects
(compounds and proteins) on the bipartite graph, the distance between
unreachable object pairs is treated as infinity and h is a width parameter.
Note that the size of the resulting matrix K is (nc +ng)×(nc +ng). The
matrix K is not always positive definite, so an appropriate identity matrix
is added to the K such that the matrix K meets the positive definite
property. Borrowing a similar idea with kernel principal component analysis
(Scholkopf et al., 1998), we apply the eigenvalue decomposition of K as
K =��1/2�1/2�T =UUT , where the diagonal elements of matrix � are
eigenvalues and columns of matrix � are eigenvectors and U =��1/2. Then,
we represent all drugs and target proteins by using the row vectors of the
matrix U = (uc1 ,...,ucnc

,ug1 ,...,ugng
)T . The space spanned by features uc

and ug is referred to as ‘pharmacological feature space’.
Second, we consider a model representing the correlation between the

chemical/genomic space and the pharmacological feature space. To do so,
we propose to apply a variant of the kernel regression model f :X ×X →Rq

as follows:

u= f (x, xi)=
n∑

i=1

s(x, xi)wi +ε, (5)

where x is an object belonging to a set X , n is the size of the set X , f is the
projection from a similarity space to a Euclidean space, s(·,·) is a similarity
score function, wi is a weight vector and ε is a noise vector. The optimization
can be done by finding wi which minimizes the following loss function:

L=||UUT −SWWT ST ||2F , (6)
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Fig. 2. Degree distributions for drugs and target proteins. The top four panels show the histograms of the degree of drugs targeting enzyme, ion channel,
GPCR and nuclear receptor, respectively. The bottom four panels show the histogram of the degree of the corresponding target proteins.

where S is an n×n similarity matrix, W = (w1,..., wn)T , and ||·||F is
Frobenius norm. In this study, we learn two models: fc for the correlation
between the chemical space and the pharmacological feature space and fg for
the correlation between the genomic space and the pharmacological feature
space, respectively. Suppose that we have a new compound cnew and a new
protein gnew. Applying the model fc, we map the new compound cnew onto
the pharmacological feature space as

ucnew = fc(cnew,ci)=
nc∑

i=1

sc(cnew,ci)wci , (7)

where wci is a weight vector and sc(·,·) is a chemical structure similarity
score. Applying the model fg, we map the new protein gnew onto the
pharmacological feature space as

ugnew = fg(gnew,gj)=
ng∑

j=1

sg(gnew,gj)wgj , (8)

where wgj is a weight vector and sg(·,·) is a sequence similarity score.
Finally, based on the features in the pharmacological space, we compute

the feature-based similarity scores for three types of compound–protein
pairs by calculating the inner product as follows: (i) corr(cnew,gj)=ucnew ·
ugj , (ii) corr(ci,gnew)=uci ·ugnew and (iii) corr(cnew,gnew)=ucnew ·ugnew .
The feature-based similarity score is used as a measure of the closeness
between compounds and proteins in the pharmacological feature space. Then,
high-scoring compound–protein pairs are predicted to interact with each
other.

4 RESULTS

4.1 Drug–target interaction network construction
In this study we focus on interactions made by four pharmaceutically
useful drug–target classes: enzymes, ion channels, GPCRs and
nuclear receptors. We constructed the drug–target interaction
network for each protein class using a bipartite graph representation.
In the bipartite graph, the heterogeneous nodes correspond to
either drugs or target proteins, and edges correspond to interactions
between them. The edge is placed between a drug node and a target
node if the protein is a known target of the drug.

Figure 2 shows the degree distributions for drugs and target
proteins in the drug–target interaction network. The degree of the

drug (respective protein) node is the number of targets that the drug
has (respectively the number of drugs targeting the protein). Among
the four classes, ion channels and their corresponding drugs have
many nodes with large degree, compared with the other protein
classes.

Table 1 also shows the average degree, the clustering coefficient,
and the proportion of unreachable paths for the drug–drug, target–
target and drug–target pairs. The high values of the clustering
coefficients imply that drugs and their targets tend to be densely
clustered in the drug–target networks. We observe that the proportion
of unreachable paths in the ion channel network tends to be
smaller than those in the other protein classes, implying that most
compound–protein pairs are connected in the network. Inspection
of the network shows that the enzyme, GPCR and nuclear receptor
networks comprise many small unconnected components, while the
ion channel network tends to form one giant connected component.
This also suggests that enzymes, GPCRs and nuclear receptor have
strong binding specificity with their ligands, compared with ion
channels.

4.2 Relation with chemical space and genomic space
We also investigated how the network topology is related to the
chemical and genomic spaces. We used the SIMCOMP score to
measure the chemical structure similarity between compounds, and
we used the normalized Smith–Waterman score to measure the
sequence similarity between target proteins.

Figure 3 shows the distributions of drug–drug chemical structural
similarities and target–target sequence similarities against their
distances in the drug–target interaction network for the four classes
of targets. From the figure we observe several features. First, the
larger the network distance between drugs and between targets,
the smaller the variability of drug structure similarities and target
sequence similarities, respectively. Second, the larger the network
distance, the lower the averages of the drug structure similarity and
the target sequence similarity. These observations imply that two
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Fig. 3. Box-plots of chemical structure similarities between drugs and sequence similarities between target proteins against the network distance for enzyme,
ion channel, GPCR, and nuclear receptor, respectively. The top four panels show the box-plot of the SIMCOMP scores between drugs against the network
distance (d = 0, 2, 4, 6, ...). The bottom four panels show the box-plot of the normalized Smith–Waterman scores between target proteins against the network
distance (d = 0, 2, 4, 6, ...). Note that the distance means the shortest path between objects (drugs or target proteins in each case) on the bipartite graph
representation for the drug–target interaction network.

compounds sharing high structure similarity tend to interact with
similar target proteins. Likewise two target proteins sharing high
sequence similarity tend to interact with similar drugs and hence are
close in the network. These observations suggest a strong correlation
between interaction partners, structural similarities of drugs and the
sequence similarities of target proteins.

4.3 Performance evaluation of the proposed methods
The three methods: ‘nearest profile’, ‘weighted profile’and ‘bipartite
graph learning’ were tested on the four classes of drug–target
interactions involving enzymes, ion channels, GPCRs and nuclear
receptors. We performed the following 10-fold cross-validation
procedure: the gold standard set was split into 10 subsets of roughly
equal size, each subset was then taken in turn as a test set, and we
performed the training on the remaining nine sets. The performance
was evaluated by using a receiver operating curve (ROC; Gribskov
and Robinson, 1996), that is, the plot of true positives as a function
of false positives based on various thresholds, where true positives
are correctly predicted interactions and false positives are predicted
interactions that are not present in the gold standard interactions. In
the bipartite graph learning method we set parameter h to 2 in each
protein class, because the cross-validation experiment provided the
best prediction accuracy with h=2.

Figure 4 shows the ROC curves of the bipartite graph learning
method for the four classes of drug–target interactions. For each
drug–target interaction class, the ROC curves are drawn for different
sets of predictions depending on whether the compound and/or
the protein were in the initial training set or not. Compounds
and proteins in the training set are called ‘known’ whereas those
not in the training set are called ‘new’. Four different classes are
then possible: (i) new drug candidate compounds versus known
target proteins, (ii) known drugs versus new target candidate

proteins, (iii) new drug candidate compounds versus new target
candidate proteins and (iv) all the possible predictions (the average
of the above three parts), which are colored red, green, blue and
black, respectively. The bipartite graph learning method seems to
catch sufficient information to detect all four types of drug–target
interactions at high true-positive rates against low false-positive
rates at any threshold. Among the four classes of drug–target
interactions, the proposed method seems to have highest prediction
ability for enzymes and GPCR, followed by ion channels and nuclear
receptors.As one would expect, predictions where neither the protein
nor the compound are in the training set (iii) are weakest, but even
then reliable predictions are possible.

We compared the performance between the methods using several
statistics. Table 2 shows the AUC (area under the ROC curve),
sensitivity, specificity and PPV (positive predictive value) when
the upper one percentile in the prediction score is chosen as a
threshold, because high-confidence prediction results are interesting
in practical applications. All the methods have quite high specificity,
but the other statistics vary. The bipartite graph learning method
outperforms the other methods with not only high AUC, but also
high sensitivity and PPV. One explanation for the low sensitivity of
the nearest profile and weighted profile methods is that they cannot
predict interactions between new drug candidate compounds and
new target candidate proteins [prediction class (iii) earlier], while
this is possible with the bipartite graph learning method. These
results serve to highlight the significant performance of the bipartite
graph learning method.

4.4 Comprehensive prediction for unknown
drug–target interactions

After confirming the usefulness of our method we conducted
a comprehensive prediction of interactions between all possible
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Fig. 4. ROC curves of the bipartite graph learning method for four classes of drug–target interactions: enzymes, ion channels, GPCRs and nuclear receptors.

Table 2. Statistics of the prediction performance

Data Method AUC Sensitivity Specificity PPV

Enzyme Nearest profile 0.767 0.538 0.995 0.532
Weighted profile 0.812 0.386 0.993 0.384
Bipartite graph learning 0.904 0.574 0.995 0.570

Ion Nearest profile 0.751 0.166 0.995 0.576
channel Weighted profile 0.811 0.239 0.998 0.826

Bipartite graph learning 0.851 0.271 0.999 0.936
GPCR Nearest profile 0.729 0.156 0.994 0.474

Weighted profile 0.739 0.146 0.994 0.444
Bipartite graph learning 0.899 0.234 0.996 0.681

Nuclear Nearest profile 0.710 0.073 0.993 0.440
receptor Weighted profile 0.626 0.114 0.998 0.818

Bipartite graph learning 0.843 0.148 0.999 0.954

The AUC (ROC score) is the area under the ROC curve, normalized to 1 for a perfect
inference and 0.5 for a random inference. The sensitivity is defined as TP/(TP+FN), the
specificity is defined as TN/(TN+FP), and the PPV is defined as TP/(TP+FP), here TP,
FP, TN, FN are the number of true positives, false positives, true negatives and false
negatives, respectively.

compounds and proteins for the four classes of target proteins
studied: enzymes, ion channels, GPCRs and nuclear receptors. In the
inference process for these predictions, we used all the known
drugs and target proteins in the gold standard data as training data,
and predicted potential interactions between all human proteins
annotated as members of the four classes in KEGG GENES and all
compounds in KEGG LIGAND. According to our survey based on
the KEGG database, the number of enzymes, ion channels, GPCR
nuclear receptors coded in the human genome are at least 2741,
292, 757 and 49, respectively, while the number of compounds used
for the prediction is 15383 in each case. All the prediction results
and high resolution graph pictures can be obtained from the web
supplement. Because of space limitations, we have focused on the
results for enzymes and GPCRs below.

4.4.1 Predicted enzymes interaction network Figure 5 shows a
partial graph of the predicted network for enzyme data, where
the top 100 scoring predictions are shown. Table 3 shows some
examples of predicted enzyme-compound pairs with high interaction
scores. The top scoring predictions for the enzyme dataset are
dominated by interactions involving a few enzyme and compound
families. These families tend to be those where the enzymes
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Fig. 5. Predicted enzymes interaction network. Blue, red, light blue and orange nodes indicate known drugs, known targets, newly predicted compounds and
newly predicted proteins, respectively. Gray and pink edges indicate known interactions and newly predicted interactions with 100 highest scores, respectively.

Table 3. Top scoring predicted compound–protein pairs for enzyme data

Rank Score Pair Annotation

1 0.924 C06977 Enalapril
1636 angiotensin I converting enzyme 1

2 0.857 D01441 Imatinib mesilate (JAN)
2444 fyn-related kinase [EC:2.7.10.2]

3 0.857 D00160 Epsilon-Aminocaproic acid (JAN)
5644 protease, serine, 1 (trypsin 1) [EC:3.4.21.4]

4 0.844 C11720 Enalaprilate
1636 angiotensin I converting enzyme 1

5 0.833 D00160 Epsilon-Aminocaproic acid (JAN)
7177 tryptase alpha/beta 1 [EC:3.4.21.59]

6 0.824 D00043 Isoflurophate (USP)
5644 protease, serine, 1 (trypsin 1) [EC:3.4.21.4]

7 0.81 D01605 Meticrane (JP15)
759 carbonic anhydrase I [EC:4.2.1.1]

8 0.81 D00043 Isoflurophate (USP)
7177 tryptase alpha/beta 1 [EC:3.4.21.59]

9 0.809 D00160 Epsilon-Aminocaproic acid (JAN)
440387 chymotrypsinogen B2 [EC:3.4.21.1]

10 0.807 D01441 Imatinib mesilate (JAN)
5753 PTK6 protein tyrosine kinase 6 [EC:2.7.10.2]

Because of space limitation, all the prediction pairs are put on the Supplementary
website.

are both druggable and widely studied, or were a single initial
drug compound has been developed into many derivatives, leading
to a wealth of compound binding information being available
for them. The six commonest enzyme families are angiotensin
converting enzyme (ACE), tyrosine kinases, trypsin-related serine
proteases, carbonic anhydrases, cyclooxygenases (COX) 1/2 and
topoisomerases. Interactions with these six families account for 49
out of the top 50 predictions. Some of the predictions are trivial,
particularly where many chemically almost identical compounds are
available in the dataset, but interesting cases also come up.

COX enzymes are a common target for antiinflammatory
drugs due to their role in the synthesis of prostanoids and the
subsequent inflammation response (Rainsford, 2007). Amongst
the top predictions for COX is a known antiinflammatory drug
Cicloprofen (D03489), so the high predicted score is encouraging.
Two potentially novel COX interactions are also predicted with
4-hydroxyhydratropate (C03080) and 2,2-bis(4-hydroxyphenyl)-
propanoic acid (C13633), neither of which have previously been
identified as potential COX inhibitors to our knowledge.

A compound that appears several times in the top 50 predictions
is Imatinib mesilate (D01441), a tyrosine kinase inhibitor used in
the treatment of chronic myelogenous leukemia and gastrointestinal
tumors. Several of our top predictions include those where Imatinib
mesilate interacts with a number of other related tyrosine kinases,
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including protein tyrosine kinase 6 (PTK6) and B-lymphoid tyrosine
kinase both of which are either confirmed or candidate oncogenes.

4.4.2 Predicted GPCRs interaction network In the predicted
GPCRs interaction network, there are some network components
with respect to the GPCR families such as adrenergic receptor,
purinergic receptor, cholinergic receptor, histamine receptor and
dopamine receptor. β2-adrenergic receptor, for instance, interacts
with more than 30 drugs in the gold standard dataset, and more than
100 ligands are predicted to interact with β2-adrenergic receptor.
Opioid receptor is also known to interact with a wide variety of
analgesics, and more than 30 derivatives are predicted to interact
with opioid receptor. It is found that the drugs and compounds
predicted by our method are chemically similar to the gold standard
drugs and some of them are known analgesic agents.

Some GPCR families such as adrenergic receptor tend to have
their members (α1, α2 and β2) clustered together because they
share common ligands with each other. In the α2-adrenergic receptor
network, predicted ligands like tiamenidine (D06125) are linked
with all receptor nodes (α2a, α2b and α2c), while ligands like
nisbuterol mesylate (D05171) are preferably predicted for α2a-
adrenergic receptor. In the dopamine receptor network, many ligands
are preferably predicted for dopamine receptor D2, and small
number of ligands like perphenazine hydrochloride (D04965) is
common among all dopamine receptors (D1, D2 and D3). The
number of common ligands between dopamine receptors D1 and D2
is larger than that between dopamine receptors D1 and D3, which
might reflect the similarities between dopamine receptor families.

5 DISCUSSION AND CONCLUSION
In this article, we characterized four classes of drug–target
interaction networks in humans involving enzymes, ion channels,
GPCRs and nuclear receptors, and revealed significant correlations
between the drug structure similarity, the target sequence similarity
and the drug–target interaction network topology. We then
developed new statistical methods to predict unknown drug–
target interaction networks from chemical structure information and
genomic sequence information simultaneously on a large scale. The
originality of the proposed method lies in the formalization of the
drug–target interaction inference as a supervised learning problem
for a bipartite graph, the lack of need for 3D structure information of
the target proteins, and in the integration of chemical and genomic
spaces into a unified space that we call ‘pharmacological space’.
In the results, we demonstrate the usefulness of our proposed method
for the prediction of the four classes of drug–target interaction
networks.

To date, there have been two research directions toward the
detection of interactions between drug candidate compounds and
target candidate proteins: the traditional drug discovery approach
and the chemical biology approach. In the traditional drug discovery
approach, we attempt to find new drug candidate compounds
(or drug lead compounds) for a few certain proteins of interest. On
the other hand, in the chemical biology approach, we attempt to find
new target candidate proteins for a few certain chemical compounds
of interest. Our proposed method has the advantages of both of
the above approaches by finding new target candidate proteins and
new drug candidate compounds simultaneously. It should be also
pointed out that our proposed method can predict the interaction

between previously unseen target candidate proteins and previously
unseen drug candidate compounds which other methods including
the nearest profile and weighted profile methods cannot.

A key observation is that two compounds sharing high structure
similarity tend to interact with similar target proteins and hence are
close in the network. Likewise two proteins sharing high sequence
similarity tend to interact with similar drugs. However, there were
some exceptional examples where this tendency was weak. For
example, in the case of enzymes there exist many target proteins
which share low sequence similarity but bind to similar drugs. This
is reflected by the observation that the nearest profile and weighted
profile methods often fail to predict the correct interaction pairs,
because they are based on the direct use of sequence and chemical
structure similarities. In contrast, our graph learning method is
able to correct such biases, which is made possible by learning
a model based on the partially known drug–target interaction
network topology. It means that feature-based compound–protein
pair score is inversely proportional to the network distance in the
pharmacological feature space.

A variety of computational methods have been developed to
analyze drug–target or compound–protein interactions. A powerful
method is docking simulation (Cheng et al., 2007; Rarey et al.,
1996), but it requires 3D structure information for the target proteins.
Most pharmaceutically useful target proteins are membrane proteins
such as ion channels and GPCRs. Determining the 3D structures
of membrane proteins is still quite difficult which limits the use
of docking. Our method does not need 3D structure information,
but only the chemical structure information of the compounds and
the sequence information of the proteins. Therefore, an advantage
of our method is that it is suitable for screening a huge number
of drug candidate compounds and target proteins on a large
scale.

One previous research related with this study is the classification
of target protein families based on the structure of their ligands
(Keiser et al., 2007). However, sequence information was not taken
into consideration, and newly detectable interactions were limited to
the linkage between known ligands and different protein families.
The most recent work related with this study is the analysis of a
global drug–target network consisting of different protein classes
with a bipartite graph representation (Yildirim et al., 2007), but the
authors do not discuss the relationship with either protein sequence
information or chemical structure information. On the other hand,
we characterized four classes of drug–target interaction networks
separately to examine the network features for each protein class,
and revealed significant correlations between the target sequence
similarity, drug structure similarity and the drug–target interaction
network topology, which leads to the development of the methods
to predict unknown drug–target interactions.

From a technical viewpoint, the performance of our method could
be improved by using more sophisticated kernel similarity functions
designed for genomic sequences and chemical structures (Schölkopf
et al., 2004). The incorporation of information about the functional
sites into the protein similarity design is an interesting research
direction (Kratochwil et al., 2005). Recently, several kernel-based
supervised network inference methods have been developed (Vert
and Yamanishi, 2005; Yamanishi et al., 2004), but they are limited
to interactions between homogeneous molecules (e.g. protein–
protein interactions) with a simple graph representation. In this
study, we addressed the problem of predicting interactions between
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heterogeneous molecules by regarding the interaction network as a
bipartite graph. To our knowledge, there are no statistical methods
to predict bipartite graphs in a supervised context. Our method can
be applied to other biological network prediction problems such
as metabolic network reconstruction and host–pathogen protein–
protein interaction prediction as soon as they are represented by
bipartite graphs.

In the final part of this article, we predicted interactions between
all possible target candidate proteins and drug candidate compounds.
Our comprehensively predicted drug–target interaction networks
enable us to suggest many potential drug–target interactions. We
confirmed that some of the interactions detected by our method
corresponded to experimentally verified results in the literature. To
detect new biological findings and potentially useful drug leads,
we are currently working with collaborators on binding assays. We
believe that our method is able to increase research productivity
toward genomic drug discovery.
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