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ABSTRACT 

An analytical model based on an equivalent impedance circuit for effective 
permittivity of a composite dielectric as a function of frequency with complex-
shaped inclusions is presented. The geometry of the capacitor containing this 
composite dielectric is discretized into partial impedance elements, the total 
equivalent impedance is calculated, and the effective permittivity of the composite 
dielectric is obtained from this equivalent impedance. An example application using 
this method is given for an individual cell of a diphasic dielectric consisting of a 
high-permittivity spherical inclusion enclosed in a low-permittivity parallelepiped. 
The capacitance and resistance for individual discretized elements in the composite 
cell are modeled as a function of an inclusion radius. The proposed approach is then 
extended to a periodic three-dimensional structure comprised of multiple individual 
cells. The equivalent impedance model is valid for both static and alternating 
applied electric fields, over the entire range of volume fraction of inclusions.  The 
equivalent impedance model has a few advantages over existing effective medium 
theories, including no limitations on the shape of inclusions or their separation 
distance.  
  

             Index Terms — Dielectric composites, frequency, effective permittivity, equivalent 
        impedance. 
 

1   INTRODUCTION 

     THEORETICAL efforts to predict the dielectric 
behavior of multiphase composites have been investigated 
for more than 100 years [1-5], and have resulted in a 
number of effective medium theories. The fundamental 
approach is to focus on one particular inclusion and then 
replace all of the rest by an effective homogenous medium. 
Any effective medium theory then is invariant to which 
particular inclusion is taken as a focus [6-9], since each 
inclusion must be surrounded by the same effective 
medium. One of the most widely-used formulations for 
calculating the effective permittivity of mixtures is the 
Maxwell Garnett (MG) theory [9-12]. MG theory is 
satisfactory when exact interparticle interactions are not 

significant, i.e., for small concentrations (inclusion volume 
fraction< 0.1) of inclusions in a dielectric host [13]. The 
MG theory is applicable for inclusions of any arbitrary 
ellipsoidal shape, including spheres, spheroids, cylinders, 
and disks, through introducing depolarization factors [14].  
Complex inclusion shapes can only be approximated by 
assuming a closest shape [15], which limits the overall 
applicability. The empirically derived logarithmic mixing 
rule is also widely applied for fitting experimental data [3]. 
However, the experimental fit of logarithmic mixing rule in 
some cases might be fortuitous, as was pointed out by 
Payne [16]. 
     Properties of composite media have been intensively 
studied in the last two decades using various numerical 
techniques. The most prominent among these have been 
Monte Carlo simulations (MC) [17], the finite element 
method (FEM) [18, 19], the finite difference method [20] Manuscript received on 28 May 2008, in final form 6 November 2008. 
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and the boundary integration method [21, 22]. It is 
noteworthy to consider the contribution of Sareni et al. 
who through use of numerical analysis techniques 
calculated the effective dielectric constant of periodic 
composites [21], random composites [23], and then also 
analyzed the complex effective permittivity of a lossy 
composite material [24]. Myroshnychenko et al [6] have 
developed an algorithm for predicting the complex 
permittivity of two-dimensional diphasic statistically 
isotropic heterostructures, and compared their results with 
different effective medium approaches.  
   Through numerical approaches it is possible in principle 
to study a system of any complexity, however, numerical 
analysis requires enormous computational resources that 
are costly and might not be always available. 
   The objective of this work was to obtain a simple 
closed-form analytical model that would allow for 
predicting the effective complex permittivities of diphasic 
composites. This model should be free from limitations 
on inclusion size and shape, as well as distances between 
inclusions. However, this model will remain in the 
quasistatic class, that is, sizes of inclusions will be much 
smaller compared to the corresponding wavelengths.  
   The model presented herein is based on discretization of 
a dielectric body into partial impedances, specifically, R-
C elements, equivalent to “lossy capacitors.” This can be 
applied to any inclusion shape. The effective permittivity 
is then calculated from the resultant impedance of the 
appropriate equivalent circuit. It should be mentioned that 
the analogous electric circuit approach was used by Pan et 
al [25] to predict the properties of a multilayer dielectric, 
with each single-phase layer having various grain sizes. 
   The approach presented herein has been applied to a 
high-permittivity inclusion in a low-permittivity host 
dielectric. As an example, the host dielectric is a 
parallelepiped (in particular, a cube). An inclusion in this 
example is a sphere, which is the simplest geometry to be 
compared with the MG theory and logarithmic mixing 
rule. This structure is referred to as “an individual cell” 
(or just “a cell”).  The impedance of the cell is modeled as 
a function of an inclusion radius, or a volume fraction of 
an inclusion. The model is then extended to a composite 
three-dimensional (3D) structure comprised of 
periodically placed individual cells. Such a structure is 
found experimentally in systems as epoxy/BaTiO3 [26-
30]. 
 It should be mentioned that the presented model 
considers only dielectric-dielectric mixtures, and only in 
quasistatic condition. There are known models, where the 
effective parameters of composites are considered based 
on equivalent circuits of inclusions, derived based on 
their polarizabilities [31, 32]. In these references, 
artificial magnetodielectrics are considered with 
conducting wire-shaped inclusions. The corresponding 
circuit models represent each inclusion as a radiating 
dipole, or a scatterer, so these are “antenna equivalent 
parameters” associated with plane wave exposure and 
scattering. This phenomenon is characteristic for 

metamaterials at very high, even optical frequencies. 
Radiation resistance of such “antennas” is different from 
ohmic loss, which is the only taken into account in our 
case.  
   Our case is different from [31, 32], since in our model 
we first assign equivalent capacitor model to a diphasic 
dielectric structure, and do not use polarizability. This is 
a comparatively low-frequency, quasistatic approach 
(unlike high-frequency up to optical band in considering 
metamaterials with artificial molecules). In our approach, 
the bulk of a capacitor individual cell is sliced into thin 
layers, each representing a partial capacitor, and this 
approach would be valid at dc. As frequency of voltage 
applied to the electrodes of the capacitor increases, some 
loss due to polarization of dielectric and very small 
conductivity current due to impurities in phases would 
appear and affect frequency response of the composite 
material. 

 
2  MODEL DESCRIPTION 

2.1 ONE INDIVIDUAL IMPEDANCE CELL 
(SPHERICAL INCLUSIONS) 

    A general diphasic slab with a three-dimensional 
periodic structure of inclusions is subdivided into 
individual cells (cubes), each containing one high-
permittivity inclusion surrounded by a lower permittivity 
host material. Figure 1 shows the basic building block of 
the composite and its three-dimensional translation. First 
consider an individual cell with an inclusion of an 
isotropic shape, i.e., a sphere, placed at the center of a 
cube. The inclusion and the host are assumed to be linear 
isotropic and homogeneous dielectric materials, with an 
alternating electric field applied along the vertical 
dimension of the cell. In this case, any cell is simply an 
individual capacitor with an inhomogeneous dielectric 
inside, and can be discretized into parallel and series 
parallel-plate partial impedances, each containing a 
homogeneous dielectric. Figure 2a shows, how this 
structure is discretized into partial elements. Each 
element has its own impedance, in which a partial 
capacitor is parallel to the corresponding partial resistor, 
responsible for loss. The equivalent circuit 
corresponding to an individual cell is shown in Figure 
2b. The total equivalent reactance, Xeq, and impedance, 
Zeq, of the individual cell are  
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eq Cj
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ω

1
=   
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where eqR  and eqC  are the equivalent resistance and 

capacitance of the structure. 
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Figure 1. Basic building block of composite sphere enclosed in a cube and 
its 3-D translation in x, y, z directions.  

 

   The equivalent capacitance parallel-plate capacitor filled 
by effective dielectric medium is,  
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where ω  is frequency of alternating electric field and '
eqZ  

and "
eqZ are real and imaginary parts of impedance, 

respectively.  
 
   Figure 3 shows the planar projection of the 3D view 
presented in Figure 2a. 1Z  and 2Z  are the impedances that 
are present on left and right hand side of the inclusion 
sphere. 
  
 

 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  3-D view of the discretized diphasic dielectric body and its 
corresponding equivalent circuit. 

 

   Assuming the structure is symmetrical, the capacitances 
C1 and C2 are   
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where hε  is the relative permittivity of the host material. 
These capacitances linearly decrease as the radius of the 
inclusion increases.  
 
 

   3D      Translation 

Low Permittivity Host Phase 

High Permittivity Inclusion 

(b) 

(a) 
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Figure 3.  2-D view of the discretized diphasic dielectric body and 
discretization pathway of corner shape and inclusion sphere. 
 
   The corresponding reactance for any α -th element 

is
α

α ωCj
X 1

= . If the loss in the host material due to 

impurities is taken into account, then the resistances of each 
element are  
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where hσ  is the d.c. effective conductivity of the host; 

ca , cb , and cd are the dimensions of the individual cell (in 

a particular case of a cube, ccc dba == ), and r  is the 
radius of the inclusion.  
   It should be mentioned that loss in the host matrix, which 
may be a lossy polymer in general case, in our model may 
be taken into account not just as an effective conductivity, 
but through the host material frequency dependence, such 
as Debye, Cole-Cole, Cole-Davidson, or other model. Then 
it is more convenient to deal with conductances Gα , rather 

than resistances Rα , where α  are the corresponding 
indices for partial elements of the equivalent circuit. Then 
capacitances are determined by the real part of the 
permittivity of the host matrix, and conductances depend on 
the imaginary part of permittivity. In this case it is more 
convenient to consider the equivalent circuit in terms of 
admittances, as done below in the section 2.3 regarding 
cylindrical inclusions. 
  The partial capacitances C3 and C4 and partial 
resistances R3 and R4 are the elements located on the top 
and the bottom of the inclusion, respectively, and are 
calculated as 
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 The partial capacitances C6 and C7 and partial resistances 

6R  and 7R , located in front of and behind the sphere (see 
Figure 2(a)), are calculated as  
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     Figure 3 shows the discretization pathway for the corner 
shape and inclusion sphere. The same discretization is 
adopted for calculating both partial capacitances and 
resistances. The resistance and capacitance of the corner 
elements are calculated using smaller discretization into 
elemental slices parallel to the electrode planes of the cell. 
They are connected in series, and the integration over the 
corner space is accomplished. The calculation of 
capacitance of corner capacitor elements and the inclusion 
sphere have been presented by Patil et al [33]. The detailed 
calculation of the resistance of the corner element is 
presented in the attached Appendix A. The total resistance 
and capacitance for all four corner elements- two bottom 
and two top )4...1( =i  are 
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    To calculate the capacitance of the high-permittivity 
sphere, it is convenient to cut it into thin parallel slices, and 
consider series connection of the elements. The integration 
procedure yields the capacitance of the quarters of the 
dielectric sphere

i
C5 , )4...1( =i which is the same as of 

the total sphere 
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     To assure convergence of the integral in the 
denominator, zero in the integration was substituted by 

710− . The resistance of the inclusion sphere is calculated 
by first calculating the conductance of the sphere as shown 
below.  
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     The real and imaginary parts of the inclusion phase 
permittivity are calculated using the Debye expression 
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     The impedance of any partial element with an index α  
is calculated as an impedance of parallel resistive element 

αR  and the reactive element αX , connected in parallel 
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The impedance of the central part of the equivalent circuit 
is 
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   Finally, the equivalent impedance of the cell can be found 
as 
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     Since this equivalent impedance is comprised of 
equivalent capacitance and equivalent resistance elements 
connected in parallel, the values eqR and eqC can be 

obtained from the real and imaginary parts of 

eqeqeq ZjZZ ′′−′= . The equivalent capacitance of the 

individual cell is  
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     Then, assuming that the homogeneous dielectric with 
permittivity '

effε fills the space between the cell capacitor 

plates, the real part of the effective permittivity is 
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      By utilizing the equivalent impedance approach, 

'
effε and effε ′′  can be found as shown below. The effective 

permittivity ( effε ′  ) captures the shape of the inclusion, and 

there are no restrictions on the inclusion size. Thus from the 
equivalent capacitance, the effective static permittivity can 
be found. 
     The equivalent resistance of the individual cell is  
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The equivalent conductance of the individual cell is simply 
the inverse of the equivalent resistance, 
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The imaginary part of the effective permittivity can be 
calculated from the equivalent conductance.  
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2.2 N3 INDIVIDUAL IMPEDANCE CELL 
 

    Herein, a case with N spherical inclusions along each of 
the three dimensions of the total capacitor, resulting in 3N  
individual cells, is considered. If the dimensions of the total 
capacitor are ,,ba and d , then the dimensions of an 
individual cell are  
 

      ,/ ,/ NbbNaa cc == and ,/ Nddc =  (23) 

 
respectively.  
    The equivalent circuit of the total impedances contains 
individual cells in vertical branches connected in series, 
while all the branches are connected in parallel, as is shown 
in Figure 4. This means that the total equivalent impedance 
of all the branches is  

 

      
N

Z
N

Z
Z cellbranch

eq == 2
 

(24) 

 
Then the effective permittivity of an inhomogeneous 
dielectric inside the total capacitor can be calculated using 
equations (17) and (24) for effε ′ and effε ′′ , respectively. 
     The effective permittivity of an inhomogeneous 
dielectric obtained using the method presented above is 
compared later on with the well-known homogenization 
technique based on the Maxwell Garnett (MG) mixing rule 
[9-12, 14] and logarithmic mixing rule [15].  For a mixture 
of a host material with relative permittivity hε  and 
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spherical inclusions with relative permittivity iε  , the 
Maxwell Garnett mixing rule is 
 

 
3 ( ) ( 2 )
1 ( ) ( 2 )

vi h i h i h
eff MG h

i i h i h

f
f
ε ε ε ε ε

ε ε
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where i
vi

V
f

VΣ

=  is the volume fraction of spherical 

inclusions in the total mixture. Here iV  represents volume 

of inclusion and ΣV  represents volume of composite.  
 
 
 
 

 
 
 
 
 
 
 
 

 

Figure 4.  Discretization pathway for N3 impedances. 

 
   The formulation for logarithmic mixing rule is given by 

 

iihhcLogarithmieff VV εεε loglog +⋅≅     (26) 

 
Herein, hV  and hε  is the volume fraction and permittivity 

of the host phase respectively. Also, iV  and iε  is volume 
fraction and permittivity of the inclusion phase 
respectively.  
 

2.3 INCLUSIONS OF CYLINDRICAL SHAPE 
 

The similar equivalent impedance model can be applied 
to inclusions of any shape. For example, let us consider 
cylindrical high-permittivity inclusions embedded in a low-
permittivity host. First consider an individual cell, 
comprised of a vertically placed cylinder at the center of a 
cube, as is shown in Figure 5.  

 
The cube has dimensions a b d× × , as before. The 

height of the cylinder is h , and its radius is r .  For every 
cylinder one can introduce its aspect ratio /(2 )cylA h r= . 
The equivalent circuit is shown in Figure 6. 
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Figure 5.  Cylindrical inclusion in a host cube and discretization for partial 
capacitors.   
 

For the symmetrical location of the cylinder inside the 
host cube, the partial capacitances are 
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The central part of the equivalent circuit would have the 
capacitance 
 

1 32 2 4central cyl cornerC C C C C= + + +  (28) 

and the equivalent capacitance of the total cell will be 
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Y1 Y2 Y3 Y4 Ycyl 4Ycorner 

 
Figure 6. Equivalent circuit for a cylindrical inclusion in a host matrix. 
 

 
However, this is a static capacitance without any loss. 

Loss in the circuit can be taken into account through the 
complex admittance for every element with index “n” 
 

n n nY j C Gω= + , (30) 

with a partial conductance 
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n

CG ω ε
ε
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(31) 

 
corresponding to every n-th element of the circuit with its 
own dielectric properties – either host or inclusion. 
 
   The central admittance will be 
 

1 32 2 4central corner cylY Y Y Y Y= + + +  (30) 

 
   Then the resultant complex equivalent admittance is 
calculated as 
 

51/ 1/ 2 /eq centralY Y Y= +  (31) 

and its real and imaginary parts give equivalent 
conductance and capacitance. 
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   Then the real part of the effective permittivity is 
calculated as 
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and the imaginary part is calculated as 

eq eff
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ε

ε
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′
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(34) 

If the cube is subdivided in 3N smaller cells, the 
equivalent circuit will contain 2N parallel similar branches 
of N series elements, so that the admittance of the total 
circuit will not change. Therefore, the effective parameters 
can still be calculated using equations (33) and (34). Some 
results of calculations using this approach for cylindrical 
inclusions with different sizes and aspect ratios will be 
shown in the next section of the paper. 

 

3 RESULTS AND DISCUSSION 
Computations of the complex effective permittivity of a 
composite based on the equivalent RC circuit model are 
presented herein.  

 
3.1 MIXTURE WITH INCLUSIONS OF SPHERICAL 

SHAPE 
The 3D model is set up to mimic the real world system of a 
high permittivity phase inclusion in a polymeric host 
(ceramic - polymer composite) with 0-3 connectivity. Two 
cases have been investigated: the first with just one 
inclusion in the host matrix, and the second with 1000 
inclusions inside the cube. 
    The experimental data for computations is taken from the 
paper of M.P. McNeal et al [34] which presented the 
microwave behavior of BaTiO3, which can be 
approximated using the Debye frequency dependence [35], 
 

      ( )
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ii jωτ
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εωε
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(27) 

 
   In McNeal et al [34], the static permittivity for a coarse-
grain BaTiO3 ceramic is reported to be siε =1900, the 

“optical limit” permittivity is i∞ε =280, and the Debye 

constant is iτ  = 2.06 ns, which corresponds to a relaxation 

frequency 
π

ω
2

ri
rif = = 771 MHz. The host is assumed to be 

a low-loss dielectric, whose real part of relative permittivity 
is taken as hε = 4, and an effective ohmic conductivity in 

these computations is taken, for example, as hσ = 

3.79 1210−⋅  S/m (this value corresponds to glass). If the host 
material is a comparatively low-lossy polymer, its loss 
tangent tanδ would be on the order of 10-3…10-5, 
depending on frequency in the microwave range. The 
dielectric cube surrounding one ceramic sphere (or multiple 
spheres) has the following dimensions: === ccc dba 1.1 
μ m. The radius of the sphere is a varying parameter, and, 
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hence, the volume fraction of the inclusion or inclusions is 
also varying.   
 Figure 7a depicts the equivalent capacitance of the 
dielectric composite as a function of frequency and 
inclusion volume fraction. The inclusion volume fractions 
chosen were 2.5%, 8.4%, 20.1%, 39.3% and 46.8%, 
respectively. The equivalent capacitance as a function of 
inclusion volume fraction is dominated by the capacitor 
elements 5C , 3C  and 4C . As the volume fraction of the 
inclusion phase increases from 2.5% to 46%, the 
contribution of capacitor elements 5C , 3C  and 4C increase 
due to the concurrent increase in area of the capacitor 
elements and decrease in the thickness of the host.  
 

 
Figure 7. Magnitude of the equivalent capacitance and equivalent 
conductance of composite as a function of frequency and inclusion volume 
fraction. 

 
   It is known that as the frequency increases beyond the 
relaxation frequency, there is a decrease of dipolar and 
space charges, which results in the decrease of charge 
formed on capacitor plates, leading to the reduction in the 
equivalent capacitance. Figure 7a demonstrates this effect.   
 In Figure 7b, the equivalent conductance of the 
dielectric composite is plotted as a function of frequency. 
To understand the results generated by the analytical 
model, it is imperative to understand the physical response 
of a dielectric to an applied field as a function of frequency. 
As capacitors "conduct" current in proportion to the rate of 
voltage change, they will pass more current for faster-
changing voltages (as they charge and discharge to the 
same voltage peaks in shorter time interval), and less 
current for slower-changing voltages. Therefore there 
would be an increase in the effective conductivity of the 
dielectric for frequencies above the relaxation frequency for 
all inclusion volume fractions. It is also seen from Figure 

7b that with the increase in the volume fraction of the high-
permittivity inclusion phase, the equivalent resistance 
decreases, and the equivalent conductance of the composite 
dielectric increases.  
     Figure 8 depicts the response of effective permittivity 
( '

effε ) of the dielectric composite as a function of 
frequency.  Figure 6 shows very clearly relaxation in 
dielectric properties. The real part of permittivity predicted 
by the equivalent impedance model at 310 Hz is ≈′effε  47, 
and it decreases to ~11 at 1012 Hz, so that the difference 

∞′−′=  eff seffeff  εεεΔ (dielectric relaxation strength) is 

about 35. The '
effε  remains essentially flat up to ~ 710 Hz, 

and above this frequency it decreases and follows the 
Debye frequency dependence. This prediction is for the 
highest inclusion volume fraction of 46.8 %. With the 
reduction of inclusion volume fraction to 39.3%, the 
effective permittivity '

effε  of the composite reduced to 27 at 
103 Hz and saturated to around 1012 Hz and yielding 

≈effεΔ 17. effεΔ  continues to decrease with the 
inclusion volume fraction decrease, and this is an expected 
result as dispersive phase’s volume fraction decreases in the 
non-dispersive host phase.  All these predictions of 
permittivity were for a single inclusion in the host phase. 

 The dielectric relaxation in BaTiO3 takes place at 771 
MHz [34]. The frequency dependence of ferroelectricity 
including apparent disappearance of ferroelectric response 
in the microwave regions has been explained by von Hippel 
[36]. For a ferroelectric material like BaTiO3, there are 
permanent electric dipoles which are firmly anchored into 
position and not available for free rotation. They are unable 
to follow the applied field at frequencies above the 
relaxation frequency, and this causes the decrease in the 
permittivity, as the contribution of dipolar polarization is no 
longer there. Another interesting observation can be made 
on examination of Figure 8. The characteristic peak of the 
imaginary part of the composite ( "

effε ) shifts to lower 
frequency with increase in inclusion volume fraction. This 
shift in the frequency of the "

effε  peak to the lower 
frequencies for the bigger inclusions ( r > 0.3 mμ ) might 
be explained as follows. The dipole moments of the bigger 
and “heavier” inclusions start opposing the high-frequency 
variations at the lower frequencies than the inclusions of 
smaller sizes. At the same time, the peak value for eff"ε  
increases as the size of the inclusion increases, and this is 
related to the enhanced total loss within the bigger 
inclusion. Also, there is a factor of loss (effective 
conductivity) contrast between the inclusion and the host 
phase. The effective conductivity of a BT inclusion with 
the Debye dependence under consideration, iσ , is on the 
order of a few S/m in the frequency range of interest, as 
opposed to the conductivity of the host, hσ , which  is 
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frequency-independent and on the order of 710− S/m. 
Therefore, there is not much influence of the loss in the 
host phase upon the maximum loss frequency of the 
composite. However, if 310/ −>ih σσ , there is a 
substantial shift of the maximum loss peak to the lower 
frequencies. 
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Figure 8.  Prediction of effective permittivity of diphasic composite by 
equivalent impedance model for various inclusion volume fractions as a 
function of frequency. 

 

   These analytical equivalent impedance modeling results 
for spherical inclusions, as in Figure 8, were compared with 
numerical modeling results using the periodic finite-
difference time-domain (FDTD) technique described in 
[37]. The FDTD results were obtained for a coarse mesh 
with x y zΔ = Δ = Δ = 0.044 μm, while the total host cell 
had each side of 1.1 μm, similar to the setup in our 
analytical model. The results were compared for volume 
fractions of spherical inclusions of 46.8 % and 8.4 %, with 
identical BT and host phases. Figures 9 and 10 contain the 
extracted permittivity data using the FDTD technique. As is 
seen from the comparison, the results obtained using these 
two approaches agree reasonably.  

The results of modeling using the equivalent impedance 
approach were also compared with modeling based on the 
Maxwell Garnett mixing rule. Figure 11 shows frequency 
dependencies of real and imaginary parts of permittivity for 
the same system with one inclusion in the host phase, 
modeled using Maxwell Garnett formulation.   

 
 

Figure 9.  Prediction of effective permittivity of diphasic composite by 
FDTD numerical model [37] as a function of frequency for two different 
inclusion volume fractions.  

 
  It is seen that for the inclusion volume fraction of 46.8%, 

≈′effε  14 at 103 Hz, and it decreases to ≈′effε  13 at 

f =1012 Hz, yielding a dielectric constant difference 

≈effεΔ 1.  
 This demonstrates that the MG model is unable to 
accurately predict the frequency dependence of dielectric 
properties in mixtures with higher inclusion volume 
fractions. The MG model predictions considerably 
underestimate the effective permittivity of the composite. 
The results of simulations, shown in Figure 8 can also be 
compared with the simulations based on the well-known 
logarithmic mixing rule. As is seen from Figure 12, the real 
part of permittivity predicted by the equivalent impedance 
model at 310 Hz is ≈′effε  71, and decreases to ~29 at 1012 
Hz, so that the difference ∞′−′=  eff seffeff  εεεΔ  is about 42. 
The logarithmic mixing rule gives the static real 
permittivity value of approximately 1.5 times greater than 
that predicted by the equivalent impedance model for the 
inclusion volume fraction of 46.8%. 
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Figure 10.  Comparison of equivalent impedance model and FDTD 
simulations for permittivity. 

 
Figure 11. Prediction of the effective permittivity of a diphasic composite 
by Maxwell Garnett model for various inclusion volume fractions as a 
function of frequency. 
 
   The “optical” limit permittivity predicted by the 
logarithmic rule is about 2.5 times higher than in the 
equivalent impedance model for the same inclusion volume 
fraction. The discrepancy between the logarithmic mixing 

rule and the equivalent impedance model decreases as the 
inclusion volume fraction reduces. The results of 
computations based on both models almost coincide, when 
the inclusion volume fraction is less than 20%. At the same 
time, the Maxwell Garnett model agrees well with our 
model for the volume fraction of inclusions less than 10%. 
The logarithmic rule and Maxwell Garnett formulation and 
does not take into account shapes of inclusions, and 
multiple inclusions in three dimensions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Effective permittivity of diphasic composite calculated using 
Logarithmic rule for various inclusion volume fractions.  
 

The consistency of the equivalent impedance model for 
multiple inclusions in three dimensions has also been tested 
by studying a diphasic dielectric, but with N=1000 high-
permittivity inclusions instead of a single one.   
 The maximum radius of each inclusion is 10 times 
smaller than in the previous example, and the inclusion 
volume fraction was held constant in both cases. In this 
particular case the inclusion size reduces and is varied 
from 10 nm to maximum 54.9 nm as opposed to the 
earlier case when single inclusion size was varied from 
0.1 mμ  to a maximum of 0.549 mμ . It has been verified 
that the equivalent impedance model for multiple smaller 
inclusions mathematically does not change compared to 
the single-inclusion prediction, as long as shape of 
inclusions and host cells remain the same. However, it is 
out of the scope of current research to be able to take into 
account extrinsic effects like particle size, temperature, 
electrode geometry, waveform of applied field, as well as 
electrical and thermal properties of electrodes. This 
research has primarily focused on studying the intrinsic 
attributes of diphasic composites system and evaluating 
their impact on effective permittivity through analytical 
modeling. All these extrinsic attributes have multiple 
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effects intertwined with other properties as well. For 
example, considering particle size, it should be pointed 
out that the permittivity of BT powder is highly sensitive 
to the grain size [38, 39], and it has been reported that 
coarse grain BT (20-50 mμ ) shows rε =1500…2000 at 
room temperature, whereas the permittivity for fine-
grained BT (~1 mμ ) is 3500…4000. As the grain size 
decreases below 1 mμ , the permittivity is most likely to 
be around 950…1200. However, it is worth mentioning 
that the effects due to a grain size (in a bulk body) and 
due to a particle size (isolated inclusion) may be different 
in the general case. 
 

 
3.2. MIXTURE WITH CYLINDRICAL INCLUSIONS  
Another example of a composite structure to be 

considered using the equivalent impedance method is a 
mixture of vertically aligned cylindrical high-permittivity 
inclusions in a low-permittivity host.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. Real (a) and imaginary (b) parts of effective permittivity for a 
mixture of cylindrical inclusions with aspect ratio =1 at different radii 
(volume fractions) of inclusions. 

 
 

Let us consider the same materials of phases as in the 
example with spherical inclusions. Static permittivity of 
inclusions is siε =1900, high-frequency permittivity is 

i∞ε =280, and the Debye constant is iτ  = 2.06 ns. The host 

has dielectric constant hε = 4, and an equivalent d.c. 

conductivity of hσ =3.79 710−⋅ S/m.  

Calculated frequency dependencies for composites with 
different sizes of inclusions (radii, aspect ratios, and 
corresponding volume fractions) are presented in Figures 
13, 14, and 15. It is seen from these graphs that frequency 
dependencies of permittivity follow the Debye-type law 
(33). As radius of inclusions and the corresponding volume 
fraction increase, static values of effective permittivity also 
increase, and the loss peak becomes higher. These results 
agree well with those obtained in [40]. 

 
 

Figure 14. Real (a) and imaginary (b) parts of effective permittivity for a 
mixture of cylindrical inclusions with aspect ratio = 2 at different radii 
(volume fractions) of inclusions. 
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Figure 15. Real (a) and imaginary (b) parts of effective permittivity for a 
mixture of cylindrical inclusions with aspect ratio = 5 at different radii 
(volume fractions) of inclusions. 
 

 Aspect ratio significantly affects permittivity curves. It 
is seen that it is possible to achieve a higher static 
permittivity and corresponding loss peak when aspect ratio 
becomes higher, and this happens at much smaller inclusion 
volume fraction. In these simulations it is not allowed that 
two cylinders would touch, so maximum volume fraction of 
inclusions is determined by their aspect ratio.  
 This is a useful result from the point of view of 
developing materials with high permittivity, though not 
quite new, since this is an expected result. Similar 
phenomenon, i.e., an increase of effective permittivity as 
aspect ratio of inclusions increases, has been studied in 
composites with conducting sticks [41-43], and also with 
dielectric rods [44, 45]. The calculations based on our 
model agree well with those published in literature – both 
numerical and experimental [46, 47]. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Real part of effective permittivity (a) and loss tangent (b) for a 
high-dielectric-constant ceramic-powder polymer composite – comparison 
with data in [47]. 

 
 

3.3. COMPARISON OF MODELING WITH SOME 
EXPERIMENTAL RESULTS 

The equivalent impedance model presented herein has 
been applied to simulate some published results available 
from experiment. The ceramic that was studied was PMN-
PT (Pb-Mg-Nb – PbTi03) powder with an average particle 
diameter of 0.5 μm, and the host was P(VDF-TrFE) 
copolymer matrix, as reported in [47]. Frequency 
dependencies for dielectric constant and loss tangent of this 
composite at different temperatures were measured. The 
typical measuring method up to 1 GHz is based on 
application of impedance analyzers [48]. The measured 
data for 22 0C [47, Fig. 4] was compared with simulations 
based on the equivalent impedance approach. In this 
simulation, the Cole-Cole model was adopted for ceramic 
inclusions, rather than the Debye model.  
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PMN-PT bulk ceramic with low porosity is known to have 
an outstanding static permittivity, which may be on the 
order of ~ 30,000 [49]. In these computations, the power 
s =0.484 (the same as in [47]), siε =11,000, iε∞ =1,000, 

and iτ =5.2 μs. At the same time, the host matrix was 

modeled using the Debye dependence with shε =7.0, 

hε∞ =4.5, and hτ =1.8 ps. Figures 16a and 16b contains 
measured data taken from [47, Figure 4] and our simulated 
results. 

 
 

4  CONCLUSIONS 
    The equivalent impedance circuit model for estimating 
the effective permittivity of a composite mixture as 
function of frequency was presented in this paper. The 
equivalent impedance model is simple solution to a 
complex problem and is able to take into account any 
inclusion shape and can predict dielectric permittivity and 
dielectric loss as a function of frequency.  
   This model is based on discretizing a dielectric body into 
partial impedance elements. The discretization process 
uniquely takes into account any inclusion size and shape. 
An RC-circuit analogy was used to account for loss in this 
model by assigning partial conductances along with the 
partial capacitances.  
   The model addressed in this paper is applicable to a 
periodic system consisting of high-permittivity spherical or 
cylindrical inclusion(s) enclosed in a cube with a lower 
permittivity phase. The model can be applied to any 
smooth-surface inclusions that could be discretized as 
slices. This approach can be further adopted by numerical 
electromagnetic techniques that deal with dispersive 
composite media that could be modeled as periodic 
disposition of inclusions in a host matrix.  
 In the particular cases studied in this paper, the 
complex permittivity of the equivalent impedance model 
showed the relaxation nature that could be approximated by 
Debye or Cole-Cole dependencies. However, in the general 
case, frequency characteristics of a composite depend on 
partial frequency responses of constituents, and may be 
either of the relaxation (RC-circuit analogy), or of 
resonance, narrowband or wideband Lorentzian (RLC-
circuit analogy) behavior [50].  

The equivalent impedance model was compared to 
Maxwell Garnett theory and Logarithmic mixing rule, 
FDTD numerical modeling permittivity extraction, and 
some published experimental results. It was shown that the 
Maxwell Garnett model considerably underestimates 
effective parameters predictions, especially for composites 
with volume fraction of inclusions greater than 20%. The 
logarithmic law, on the contrary, substantially 

overestimates the effective permittivity. Numerical 
simulation results and equivalent impedance model agree 
well and lie between the Maxwell Garnett (lower bound) 
and logarithmic law (upper bound) estimations.  

As for limitations of the model, it is valid only in a 
quasistatic approximation, when any phase is considered in 
terms of lumped-element circuit analogy. Retardation, 
propagation, and multiple scattering effects are out of scope 
of this model.  

This paper deals only with linear dielectrics, for which 
analysis in terms of frequency characteristics and circuit 
analogy is straightforward, since linear dielectrics behave 
as linear filters. Real and imaginary parts of permittivity 
satisfy Kramers-Kroenig relations for causality and 
passivity, analogous to Hilbert transform relations for linear 
passive circuits. However, the approach can be generalized 
for non-liner dielectrics as well, if their characteristics 
could be linearized locally in a “small-signal” regime. The 
approach can be also generalized for non-passive materials, 
if negative loss is modeled. It is also possible to extend this 
approach to consider random disposition of inclusions in a 
host material. However, these would be topics for separate 
papers. 
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APPENDIX 
Calculation of the Corner Resistance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Vertically cut section of the inclusion sphere and corners 
detailing the discretization process for calculating the corner capacitance 
value. 
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   Consider the corner resistor elements, as shown in Figure 
17.  
   The area of the discretized corner plate for calculating 
corner resistances can be calculated from the Figure 18 as  
 

2
cos2

22
2 θπ rrS ⋅

−=  
(A1) 

 
   From the triangle Δ  EDO, the length ED is 
 

)sin()( θdrEDl ⋅=  (A2) 

 
   As the angle θd  is very small,  
 

θrdEDl ≈)(  (A3) 

 
From the triangle Δ ECD, the thickness d of any 
discretized plate can be found as 
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The resistance is derived as follows.  
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Figure 18. Sectional front and top view of the inclusion sphere and 
corner elements to illustrate the mathematics of the discretization process. 
 
 
   Substituting θsin=x into equation (B6), one can get  
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   After integrating, the final expression for the corner 
resistance is obtained, 
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