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Abstract 

Recently, regression artificial neural networks are used to model various sys-

tems that have high dimensionality with nonlinear relations. The system un-

der study must have enough dataset available to train the neural network. The 

aim of this work is to apply and experiment various options effects on 

feed-foreword artificial neural network (ANN) which used to obtain regres-

sion model that predicts electrical output power (EP) of combined cycle 

power plant based on 4 inputs. Dataset is obtained from an open online 

source. The work shows and explains the stochastic behavior of the regression 

neural, experiments the effect of number of neurons of the hidden layers. It 

shows also higher performance for larger training dataset size; at the other 

hand, it shows different effect of larger number of variables as input. In addi-

tion, two different training functions are applied and compared. Lastly, sim-

ple statistical study on the error between real values and estimated values us-

ing ANN is conducted, which shows the reliability of the model. This paper 

provides a quick reference to the effects of main parameters of regression 

neural networks. 
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1. Introduction 

Electricity has been one of the main essential resources to the human activities. 

Power plant has been established to provide human communities with the 
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needed amount of electricity. Power provided from power plants fluctuates 

through the year due to many reasons including the environmental conditions. 

The accurate analysis of thermodynamic power plants using mathematical mod-

els requires high number of parameters and assumptions, in order to represent 

the actual system unpredictability [1] [2]. Instead of mathematical modelling the 

system’s thermodynamics, machine learning approaches can be used [3] [4]. 

One of these methods is artificial neural networks (ANNs). With the ability of 

artificial neural networks to address nonlinear relationships, environmental 

conditions are studied as inputs of the model, and the generated power as the 

output of the model. Using this model, we can predict the output power of the 

plant given the environmental conditions. 

Artificial neural networks (ANNs) were originally proposed in the mid-20th 

century as a computational model of the human brain. Their use was limited due 

to the limited computational power available at the time, and some unsolved 

theoretical problems. However, they have been increasingly studied and applied 

with the recent existence of higher computational power and the availability of 

datasets [5]. In a typical modern power plant, a large amount of parametric data 

is stored over long periods of time; therefore, a large data based on the opera-

tional data is always ready without any additional cost [2]. 

Researches have considered ANN to model many various engineering systems 

[6]-[13]. Many researchers reported the feasibility and reliability of ANN models 

as simulation and analysis tool for power plant processes and components 

[14]-[22]. Relatively few studies have considered the Steam Turbine (ST) in a 

combined cycle power plant (CCPP) [2] [23] [24] [25]. In [1] the total power 

output of a cogeneration power plant with three gas turbine, three HRSGs and 

one steam turbine were predicted. Niu [24] studied the control strategy of the 

gas turbine in a combined cycle power plant using a linearization model tech-

nique. Samani [2] used two subsequent artificial neural networks to model com-

bined cycle power plant with inputs as the relative humidity, atmospheric pres-

sure, ambient temperature and the exhaust vacuum of the steam turbine. The 

exhaust steam pressure alone is a function of ambient conditions and is not a 

deterministic parameter. Tüfekci [23] and Kaya [25] compared various machine 

learning methods to predict the full load electrical power output of a base load 

operated combined cycle power plant. In this work, detailed study of regression 

ANN model is studied. 

1.1. Combined Cycle Power Plant (CCPP) 

One kind of power plants is the combined cycle power plant (CCPP), which is 

composed of gas turbines (GT), steam turbines (ST) and heat recovery steam 

generators (HRSG) (Figure 1). 

In a CCPP, the electricity is generated by gas and steam turbines, which are 

combined in one cycle [24]. A combined-cycle power plant produces up to 50 

percent more electricity from the same fuel than a traditional simple-cycle plant  
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Figure 1. Combined Cycle Power Plant CCPP diagram [23]. 

 

by routing the waste heat from the gas turbine to the nearby steam turbine, 

which generates extra power [26]. Combined cycle power plant mechanism can 

be stated as follows [26]: 

1) Fuel burns at the gas turbine, makes the turbine blades spinning and driv-

ing electricity generators. 

2) Heat Recovery Steam Generator (HRSG) captures exhaust heat from the 

gas turbine. The HRSG creates steam from the gas turbine exhaust heat 

and delivers it to the steam turbine. 

3) Steam turbine uses the steam delivered by the heat recovery system to 

generate additional electricity by driving an electricity generator. 

Gas turbine load is sensitive to the ambient conditions; mainly ambient tem-

perature (AT), atmospheric pressure (AP), and relative humidity (RH). Howev-

er, steam turbine load is sensitive to the exhaust steam pressure (or vacuum, V) 

[21] [23]. 

Combined cycle power plants (CCPPs) have a higher fuel conversion efficien-

cy compared to the conventional power plants, i.e. consuming less fuel to pro-

duce the same amount of electricity, which results in lower power price and less 

emission to the environment [26]. 

1.2. ANN Definition 

Artificial neural networks (ANNs) or connectionist systems are a computational 

model used in computer science and other research disciplines, which is based 

on a large collection of simple neural units (artificial neurons), loosely analogous 

to the observed behavior of a biological brain’s axons. Each neural unit is con-

nected with many others, and links can enhance or inhibit the activation state of 

adjoining neural units. Each individual neural unit computes using summation 

function. There may be a threshold function or limiting function on each con-

nection and on the unit itself, such that the signal must surpass the limit before 
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propagating to other neurons. These systems are self-learning and trained, ra-

ther than explicitly programmed, and excel in areas where the solution or feature 

detection is difficult to express in a traditional computer program [5]. The 

training of ANN starts with random weights and then neurons works to make 

sure the error is minimal. 

1.3. ANN Advantages 

Major advantage of using ANN is non-parametric model while most of statistical 

methods are parametric model that need higher background of statistic. In addi-

tion, ANNs easily handles highly non-linear modelling (main advantage). How-

ever, ANN is a black box learning approach, cannot interpret relationship be-

tween input and output and cannot deal with uncertainties [5]. 

1.4. Regression ANN 

Neural networks are good at fitting functions. In fact, there is proof that a fairly 

simple neural network can fit any practical function [5]. 

1.5. ANN in MATLAB 

Neural Network Toolbox™ provides algorithms, functions, and apps to create, 

train, visualize, and simulate neural networks. It includes algorithms and tools 

for regression, pattern recognition, classification, clustering, deep learning, time 

series and dynamic systems, and many others which cover the usage of ANN 

models [27] [28]. The work flow for the neural network design process has seven 

primary steps: 

1) Collect data 

2) Create the network 

3) Configure the network 

4) Initialize the weights and biases 

5) Train the network 

6) Validate the network 

7) Use the network 

Some of these steps could be done automatically using default values and set-

tings in the toolbox; however, user can set every detail by himself. Neural Net-

work Toolbox offers four levels of design i.e. four different levels at which the 

Neural Network Toolbox™ software can be used. 

The first level is represented by the GUIs. These provide a quick way to access 

the power of the toolbox for many problems of function fitting, pattern recogni-

tion, clustering and time series analysis. In addition a.m Matlab code script can 

be generated with the desired level of details copying settings used in the net-

work study. 

The second level of toolbox use is through basic command-line operations. 

The command-line functions use simple argument lists with intelligent default 

settings for function parameters. (Users can override all of the default settings, 
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for increased functionality.) 

A third level of toolbox use is customization of the toolbox. This advanced 

capability allows user to create custom neural networks, while still having access 

to the full functionality of the toolbox. 

The fourth level of toolbox usage is the ability to modify any of the code files 

contained in the toolbox. Every computational component is written in 

MATLAB® code and is fully accessible. 

1.6. Regression ANN in MATLAB 

Regression (Fit Data) in Neural Network Toolbox in Matlab can be accessed us-

ing GUI or command-line functions [5]. There are two GUIs can be used to de-

sign and train the network [15]: 

1) Neural Network tool (nntool), which is the general neural network tool, 

offers full control of settings. Using this GUI, user can design any type of 

neural network, not only the regression ANN. 

2) Neural Fitting tool (nftool), which leads user through solving a data fitting 

problem, solving it with a two-layer feed-forward network trained with 

Levenberg-Marquardt or scale conjugate gradient back-propagation. It has 

limited set of options. User can select data from the MATLAB® workspace 

or use one of the example datasets. After training the network, evaluate its 

performance using mean squared error and regression analysis. Further, 

analyze the results using visualization tools such as a regression fit or his-

togram of the errors. User can then evaluate the performance of the net-

work on a test set. 

1.7. Aim of the Study 

Aim of this work is to apply and experiment various options effects on 

feed-foreword artificial neural network (ANN) which used to obtain regression 

model that predicts electrical output power (EP) of combined cycle power plant 

based on 4 inputs. More specifically, this work uses MATLAB neural networks 

toolbox to study stochastic behavior of the regression neural, effect of number of 

neurons of the hidden layers, effect of data subset size for training, effect of 

number of variables as input, different training functions results, data prepro-

cessing, and statistical error study. 

2. Method Description 

In this study, MATLAB neural networks toolbox is used; database is obtained 

freely from [29]. Through this paper, terms Test and Performance have the fol-

lowing meanings: 

1) Test: refers to the test of the whole dataset (9568 observations) which gives 

results that are more realistic. 

2) Performance: means squared errors (MSE). 

The main scheme in this study is conducting comparisons between resulted 
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networks using various variations of options. Comparison will always be be-

tween the performances of networks on the whole dataset (Test dataset). The 

following subsections describe the data, shows how training sub dataset is ob-

tained, illustrates which features (inputs) to be studied, discusses data normali-

zation and shows selection of neural network structure size. 

2.1. Data Overview 

Dataset is obtained from online site [29]. The dataset contains 9568 data points 

collected from a Combined Cycle Power Plant over 6 years (2006-2011), when 

the power plant was set to work with full load. Features consist of hourly average 

ambient variables Temperature (AT), Ambient Pressure (AP), Relative Humidi-

ty (RH) and Exhaust Vacuum (V) to predict the net hourly electrical energy 

output (EP) of the plant. Dataset features are summarized at Table 1. 

Figure 2 shows the relationships between each of the variables (AT, AP, RH, 

and V) and output power (EP) with the linear regression for each chart. 

 

Table 1. Features (dataset variables) summary. 

Feature Symbol Type minimum maximum unit 

Ambient temperature AT Input 1.81 37.11 ˚C 

Ambient Pressure AP Input 992.89 1033.30 mbar 

Relative Humidity RH Input 25.56% 100.16% ---- 

Exhaust Vacuum V Input 25.36 81.56 cm Hg 

Net hourly electrical  

energy output 
EP Output 420.26 495.76 MW 

 

 

Figure 2. Linear Correlation between inputs and output PE. 
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2.2. Sub Dataset Selection 

Since the main goal of this work is to apply and test regression with neural net-

work, so no need for all the dataset. Only a smaller subset is systematically 

picked from the dataset to train, validate and initial test of the network. Matlab 

Neural Network toolbox divides the dataset to subsets of train, validate and test, 

by default percentages as 75%, 15% and 15%. Since we have huge dataset, we can 

run the test on it, so we will reduce the test subset to 0%, training subset will be 

75% and validation subset will be 25%. Finally, test is performed with all the data 

points from the original dataset and compared with different subset sizes. 

2.3. Normalization 

One way to improve training networks is to linearly normalize inputs and out-

puts to certain range. The standard normalization maps the feature to the range 

of (−1, 1); which is default in the Matlab Neural Network toolbox; both inputs 

and outputs are normalized by default. Other range may be used, e.g. (0.01, 

0.09). Another normalization practice is to map feature to a range with specified 

mean and variance. Typically the mean would be (0) and standard derivation 

would be (1). Since Matlab Neural Network toolbox makes this step for us, we 

do not have to worry about it. However, mapping to range (0.01, 0.09) is also 

applied and results are compared to the use of not normalized data. 

2.4. Feature Selection 

As shown in Figure 2, AT and V have a strong negative linear relations to the 

output PE, AP and RH have weak positive linear relations to the output PE. This 

can be further shown with the correlation coefficients between inputs and the 

output (PE) as shown at Table 2. 

The linear relations strength between the variables are shown in Table 3 of 

correlation R and correlation strength R2. It can be seen that AT and V are 

strongly linearly related to each other and to the output PE, while AP and RH 

have weak linear relations to all other variables and output. 

Although it is obvious that the governing variables are AT and V, the effect of 

absence and presence of each of variables is studied. 

2.5. Setting of Networks 

2.5.1. Two-Layer Feed-Forward Network 

We are using the tan-sigmoid transfer function in the hidden layer, and a linear 

output layer. This is the standard network for function approximation [5]. This 

network has been shown to be a universal approximating network. The used 

network diagram is shown in Figure 3. 

2.5.2. Training Algorithms 

Here we will examine two algorithms: (trainlm) Levenberg-Marquardt algorithm 

(default) and (trainbr) Bayesian regularization algorithm. 
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Table 2. Variables correlation with output PE. 

Input R R2 description 

AT −0.9481 0.8989 Negative & strong 

V −0.8698 0.7565 Negative & strong 

AP 0.5184 0.2688 Positive & weak 

RH 0.3898 0.1519 Positive & weak 

 

Table 3. Correlation between features. 

R AT V AP RH PE 

AT 1 0.84 −0.51 −0.54 −0.95 

V 0.84 1 −0.41 −0.31 −0.87 

AP −0.51 −0.41 1 0.1 0.52 

RH −0.54 −0.31 0.1 1 0.39 

PE −0.95 −0.87 0.52 0.39 1 

R2 AT V AP RH PE 

AT 1 0.71 0.26 0.29 0.9 

V 0.71 1 0.17 0.1 0.76 

AP 0.26 0.17 1 0.01 0.27 

RH 0.29 0.1 0.01 1 0.15 

PE 0.9 0.76 0.27 0.15 1 

 

 

Figure 3. Universal approximating network (Regression Neural Network Structure [28]). 

2.5.3. Hidden Layer Size 

The number of neurons in the hidden layer will depend on the function to be 

approximated. This is something that cannot generally be known before train-

ing. Levenberg-Marquardt algorithm needs the number of neurons (hidden layer 

size) to be given to the algorithm. However, the effect of the hidden layer size 

will be examined in this study by applying a variety of hidden layer sizes. 

3. Results and Discussion 

Here are the results of many options variation on the neural networks: 

3.1. Variation of Results Using Same Settings and Sub Datasets  

Data 

Training the same network with the same settings and the same dataset gives 

different output each run; because of: 
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1) The randomness of the initial weights and bias at every training run of the 

neural network. 

2) The randomness of dividing dataset into train, validate and test sets. 

Table 4 shows the setting used for each run. 

Results are shown at Table 5; we can observe this behavior of variation in re-

sulted network each run. By looking at the resulted performance (MSE) values 

for the same test data, we can see that it varies between 0.78 up to 0.94 and the 

resulted performance (MSE) values varies between 140 and 32. 

3.2. Effect of Different Values of Hidden Layer Size (Number of  

Neurons) 

To examine the effect of the hidden layer size the network is trained with the 

settings shown at Table 6. Note that each value of hidden layer size is trained for 

10 times, and only the best resulted network is considered. This is done to over-

come the variation behavior shown in section (3.1). 

From Table 7 it can be observed that for the same dataset and settings higher 

size of the hidden layer is not always useful for the network. Comparing the 

performance (MSE) values for the test dataset, we can notice that at size 100 the 

worst network obtained, while the best performance obtained with size of 3. The 

tendency to have better network with smaller hidden layer size indicates that the 

relation is strongly linear; given that zero hidden layer size means just a linear 

relationship. Same results are shown in Figure 4. 

 

Table 4. Settings of Experiment (Variation of results using same settings and sub datasets data). 

Dataset size 50 

Variables used AT, V, AP and RH 

Hidden layer size (#neurons) 10 

Training Function Levenberg-Marquardt (trainlm) 

 

Table 5. Variation of the results using same settings and sub datasets data. 

Run 
Training  

Performance 

Validation 

Performance 

Training  

Regression 

coefficient 

Validation 

Regression 

coefficient 

Test  

Performance 

Test Regression 

coefficient 

Stopping  

Criteria 
#Epochs 

Best 

Epoch 

1 2.71 97.78 1 0.8 67.79 0.88 Validation 12 6 

2 22.47 41.17 0.98 0.9 65.75 0.89 Validation 11 5 

3 21.7 117.89 0.97 0.84 138.66 0.84 Validation 12 6 

4 70.82 72.25 0.95 0.89 123.49 0.9 Validation 12 6 

5 44.96 70.81 0.94 0.91 140.11 0.78 Validation 10 4 

6 16.66 96.47 0.98 0.88 94.97 0.86 Validation 10 4 

7 11.87 117.59 0.98 0.94 59.11 0.9 Validation 11 5 

8 6.03 106.22 0.99 0.92 32.35 0.94 Validation 16 10 

9 15.65 47.82 0.98 0.94 52.78 0.92 Validation 13 7 

10 40.16 66.53 0.95 0.86 68.51 0.9 Validation 9 3 
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Table 6. Settings of Experiment (Effect of different values of hidden layer size). 

Dataset size 50 

Variables used AT, V, AP and RH 

Hidden layer size (#neurons) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 70, 100] 

Training Function Levenberg-Marquardt (trainlm) 

 

Table 7. Effect of different values of hidden layer size. 

Hidden 

Layer 

Size 

Training  

Performance 

Validation 

Performance 

Training  

Regression 

coefficient 

Validation 

Regression 

coefficient 

Test  

Performance 

Test  

Regression 

coefficient 

Stopping  

Criteria 
#Epochs 

Best 

Epoch 

1 34.38 30.09 0.95 0.97 27.21 0.97 Max mu. 23 22 

2 27.98 39.5 0.96 0.93 24.76 0.96 Validation 9 3 

3 22.1 43.33 0.97 0.94 23.56 0.96 Validation 18 12 

4 21.38 67.48 0.97 0.93 24.12 0.96 Validation 13 7 

5 18.98 68.08 0.97 0.95 25.59 0.96 Validation 9 3 

6 27.78 33.05 0.95 0.98 26.53 0.95 Validation 11 5 

7 25.9 67.61 0.97 0.92 46.96 0.95 Validation 9 3 

8 12.4 82.42 0.98 0.85 36.1 0.94 Validation 19 13 

9 27 58.42 0.96 0.95 38.19 0.95 Validation 10 4 

10 16.74 70.42 0.98 0.91 38.33 0.94 Validation 10 4 

15 50.09 40.39 0.96 0.93 93.12 0.92 Validation 9 3 

20 2.56 113.75 1 0.87 148.28 0.82 Validation 13 7 

25 17.9 94.46 0.98 0.92 104.4 0.88 Validation 9 3 

30 616.45 460.98 0.85 0.85 817.02 0.85 Validation 7 1 

40 0.14 366.38 1 0.76 195.48 0.76 Validation 10 4 

50 49.72 365.31 0.96 0.84 551.68 0.76 Validation 6 2 

70 1.88 102.07 1 0.89 256.06 0.66 Min gradient 6 2 

100 3.6 1589.4 1 0.22 925.24 0.63 Min gradient 10 4 

 

 

Figure 4. Effect of different values of hidden layer size on performance (MSE). 
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3.3. Effect of Different Train Dataset Size 

Here we will examine different sizes of train datasets, which actually train and 

validate datasets. Settings for this experiment are shown at Table 8. 

As shown at Table 8, network is trained for each dataset size for 10 times to 

overcome the variation in results mentioned in section (3.1). From the results in 

Table 9 we can observe that by increasing the train dataset size generally net-

works improves. Notice that at small dataset size any increase results in im-

proved network performance. In the other hand, by reaching dataset size of 100 

only little improvement is obtained by increasing in the dataset size. The same 

results are in Figure 5. 

 

 

Figure 5. Effect of different train dataset size on performance (MSE). 

 

Table 8. Settings of Experiment (Effect of different train dataset size). 

Dataset size [30, 40, 50, 60, 100, 150, 200, 250, 300] 

Variables used AT, V, AP and RH 

Hidden layer size (#neurons) 10 

Training Function Levenberg-Marquardt (trainlm) 

 

Table 9. Effect of different train dataset size. 

Dataset 

Size 

Training  

Performance 

Validation 

Performance 

Training  

Regression 

coefficient 

Validation 

Regression 

coefficient 

Test  

Performance 

Test  

Regression 

coefficient 

Stopping  

Criteria 
#Epochs 

Best 

Epoch 

30 42.13 68.15 0.94 0.96 45.49 0.92 Validation 8 2 

40 15.91 91.37 0.99 0.81 47.73 0.94 Validation 8 2 

50 14.54 108.62 0.98 0.85 35.85 0.94 Validation 11 5 

60 25.87 15.17 0.96 0.97 24.79 0.96 Validation 11 5 

100 21.77 18.57 0.97 0.97 24.55 0.96 Validation 11 5 

150 20.06 17.45 0.97 0.97 20.66 0.96 Validation 11 5 

200 18.82 15.28 0.97 0.97 19.14 0.97 Validation 13 7 

250 19.68 40.41 0.97 0.93 20.73 0.96 Validation 9 3 

300 17.4 25.72 0.97 0.96 19 0.97 Validation 10 4 
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3.4. Effects of Absence and Presence of Each Variable 

Each variable has certain effect on the output, some has huge effect (main va-

riables) while others may have little effect if at all. Here we will examine the four 

variables (AT, V, AP and RH), which makes 15 different combinations. Each is 

repeated for 10 times as to overcome problem of randomness discussed in sec-

tion (3.1). These settings are shown at Table 10. 

From the results shown at Table 11, it is obvious that presence of AT has the 

main effect of the quality of the network; actually, even just using AT alone gives 

us satisfying model. Introducing the remaining variables to the network so as to 

increase its quality. In addition, V also has good impact on the model quality. 

AP and RH have just improving effect on the model. Notice that the best net-

work obtained when using only AT, V and RH. It has the best performance and 

the best correlation (Regression) when tested on the complete dataset (9538 data 

point). Imposing AP has generally bad effect on the model quality. Therefore, we 

can conclude that: introducing some variables may act negatively on the network 

quality; i.e. not every added variable has improving effect on the model. 

3.5. Effect of Using Different Training Function 

In all previous sections, we used Levenberg-Marquardt algorithm (trainlm) 

function. Here we will examine and compare another famous training function, 

Bayesian regularization (trainbr), which is an improved algorithm to the former 

one. Setting is shown at Table 12. 

From the result Table 13, we can notice that for the same settings and dataset 

Bayesian regularization (trainbr) is better than Levenberg-Marquardt algorithm 

(trainlm) function. It is also notable that it has no validation sub set, only train-

ing set. Lastly, notice that the number of epochs needed to obtain the network; it 

is more than 10 times of those needed by Levenberg-Marquardt algorithm 

(trainlm) function. 

3.6. Effect of Normalizing Dataset before Manipulate It to  

Network Training 

Here dataset is normalized to the range (0.01, 0.99) and the quality of the re-

sulted network is compared to network trained with not normalized dataset, 

which is normalized by Matlab Neural Network toolbox; which has two options 

for normalization. The first is the standard normalization to the range of (−1, 1), 

using the function (mapminmax) which is the default in the toolbox. Secondly, 

is the normalization to a range with specified mean (typically 0) and standard 

variation (typically 1), using the function (mapstd). Settings for this experiment 

are shown at Table 14. 

From the result Table 15 notice that performance values of the normalized 

data are also normalized, so they are here very small values. By comparing the 

regression (correlation) and the epochs numbers, we could notice that these 

three methods are equivalent. Using the not normalized data is easier in reading 

results and more convenient since Matlab Neural Network toolbox does it for us 
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anyway. Note that network training is run for 10 times for each set of settings as 

to overcome problem of randomness discussed in section (3.1). 

 

Table 10. Settings of Experiment (Effects of absence and presence of each variable). 

Dataset size 50 

Variables used AT and/or V and/or AP and/or RH = 15 different combinations 

Hidden layer size (#neurons) 10 

Training Function Levenberg-Marquardt (trainlm) 

 

Table 11. Effects of absence and presence of each variable. 

Variables 
Training  

Performance 

Validation 

Performance 

Training 

Regression 

coefficient 

Validation 

Regression 

coefficient 

Test  

Performance 

Test  

Regression 

coefficient 

Stopping 

Criteria 
#Epochs 

Best 

Epoch 

AT 28.88 25.95 0.95 0.96 29 0.95 Validation 11 5 

AT, V 11.93 56.69 0.98 0.96 27.35 0.95 Validation 8 2 

AT, V, AP 6.75 65.79 0.99 0.9 35.65 0.94 Validation 11 5 

AT, V, AP, RH 21.02 41.98 0.97 0.96 34.31 0.94 Validation 9 3 

AT, V, RH 13.18 74.47 0.98 0.94 26.88 0.96 Validation 12 6 

AT, AP 21.46 71.32 0.97 0.91 33.22 0.95 Validation 10 4 

AT, AP, RH 6.1 71.37 0.99 0.89 31.86 0.95 Validation 12 6 

AT, RH 38.72 20.2 0.95 0.95 31.38 0.95 Validation 11 5 

V 61.72 39.81 0.91 0.93 69.41 0.88 Validation 10 4 

V, AP 18.46 136.06 0.96 0.85 66 0.88 Validation 15 9 

V, AP, RH 35.73 88.24 0.94 0.9 69.86 0.87 Validation 12 6 

V, RH 70.55 81.22 0.9 0.94 67.49 0.88 Validation 12 6 

AP 241.5 215.07 0.48 0.44 222.95 0.49 Validation 10 4 

AP, RH 167.39 150.46 0.7 0.67 212.23 0.56 Validation 9 3 

RH 223.65 281.37 0.55 0.43 281.45 0.35 Validation 9 3 

 

Table 12. Settings of Experiment (Effect of using different training function). 

Dataset size 50 

Variables used: AT, V, AP and RH 

Hidden layer size (#neurons) 10 

Training Function Levenberg-Marquardt (Trainlm); Bayesian regularization (Trainbr) 

 

Table 13. Effect of using different training function. 

Used 

Function 

Training  

Performance 

Validation 

Performance 

Training  

Regression 

coefficient 

Validation 

Regression 

coefficient 

Test  

Performance 

Test  

Regression 

coefficient 

Stopping  

Criteria 
#Epochs 

Best 

Epoch 

Trainlm 39.79 12.86 0.95 0.98 35.84 0.95 Validation 8 2 

Trainbr 29.38 - 0.96 - 25.04 0.96 Max mu. 99 37 
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Table 14. Settings of Experiment (Effect of normalizing dataset). 

Dataset size 50 

Variables used AT, V, AP and RH 

Normalization method 

1. mapminmax normalization (default), 

2. mapstd normalization, 

3. normalized to the range (0.01, 0.99) 

Hidden layer size (#neurons) 10 

Training Function Levenberg-Marquardt algorithm (trainlm) 

 

Table 15. Effect of normalizing dataset. 

Dataset used 
Training  

Performance 

Validation  

Performance 

Training  

Regression  

coefficient 

Validation  

Regression  

coefficient 

mapminmax 26.11 20.02 0.96 0.98 

mapstd 24.81 26.04 0.96 0.97 

Normalized to range 

(0.01, 0.99) 
0.01 0 0.96 0.97 

Dataset used 
Test  

Performance 

Test  

Regression 

coefficient 

Stopping 

Criteria 
#Epochs Best Epoch 

mapminmax 30.33 0.96 Validation 8 2 

mapstd 29.56 0.96 Validation 8 2 

Normalized to range 

(0.01, 0.99) 
0 0.96 Validation 9 3 

3.7. Comparisons of Target and Resulted Outputs 

Here we consider the two groups of resulted outputs. 

1) Training & Validation group: outputs resulted from the network for the 

input data used in training and validation. This group gives a sense of the 

validity of the model. 

2) Test (Complete dataset) group: outputs resulted from the network for the 

test input data, which in our study is the complete dataset. This group 

gives success measure for the network. 

Comparisons are based on network with the settings and sub dataset size 

shown at Table 16. 

General comparison is presented visually in Figure 6 and Figure 7. It can be 

observed that the results from the network for input data used in train and vali-

dation are closer to their target outputs. Whereas the outputs resulted from 

complete dataset test are more deviated from their target outputs. That becomes 

clear when comparing the performance (MSE) of each output group as shown in 

Table 17. 

Furthermore, comparison of error for the two groups is also shown in Table 

17, Figure 8 and Figure 9. From Table 17, it is noticed the close values of error 

and standard deviation between the two studied groups. 
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Table 16. Experiment Settings (Comparisons of target and resulted outputs). 

dataset size 250 

Variables used AT, V, AP and RH 

Hidden Layer size (#neurons) 10 

Training Function Levenberg-Marquardt (Trainlm) 

 

Table 17. Error in result output. 

Group Train & Validation Test (Complete Dataset) 

Group size 250 9568 

Performance MSE (MW)2 17.942 18.682 

Mean error µ (MW) 0.1108 0.4564 

Standard deviation of error σ 

(MW) 
4.2429 4.2825 

Min error (Negative) (MW) −25.7167 −43.1750 

Max error (Positive) (MW) 10.9414 20.6876 

 

 

Figure 6. Target (MW) vs. Result Output PE (MW) (Training and Validation). 

 

 

Figure 7. Target (MW) vs. Result Output PE (MW) (Complete Database). 
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Figure 8. Output power (PE) Error (MW) Vs. No of Instances (Training and Validation). 

 

 

Figure 9. Output power (PE) Error (MW) vs. No of Instances (Complete Database). 

 

Figure 9 shows error in results for the train and validation group and for the 

test group (complete dataset) along with the amount of instances at the group 

with the same error value. By first look we find that error distributes among each 

groups’ instances as normal distribution. When compared to each other, it can 

be seen that they both have most error in range between −10 and +10, which 

agrees with the statistical fact that says 99.73% of data will fall in the range of 6 

sigma (6σ), i.e. range of (µ − 3σ, µ + 3σ) [30] [31] [32], using data from Table 17 

this range in our case is approximately (−12.5, 12.5). In addition, we can notice 

that the error range in test results (−44, +21) is double of the error range of thee 

train and validation group (−25, +11). The doubled error range resulted from 

doubled minimum and maximum errors in the two groups. Note that from Fig-
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ure 7, the model tends to overestimate output at some points, since the far nega-

tive range is wider than the right side range. But by looking at Table 17, mean 

errors which are positive values near zero, so, it can be concluded these far nega-

tive error points are just few points and there are more points with positive er-

rors. 

To compare the amount of instances vs. error between the two groups, it is 

more convenient to compare the normalized amount of instances, i.e. percentage 

of the group. This is shown in Figure 10 and Figure 11 along with lines of nor-

mal distribution of properties of mean and standard deviation shown in Table 

17. The two charts are very similar to each other. 

 

 

Figure 10. Output power (PE) Error (MW) vs. percentage of instances 

(Training and Validation). 

 

 

Figure 11. Output power (PE) Error (MW) vs. percentage of instances 

(Complete dataset). 
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If the error sign (Positive or Negative) is to be neglected, as we want to de-

scribe how close the group results to its target values, we can make the same 

chart but with absolute values. This is presented in Figure 12 and Figure 13. 

At this case, train and validation group has more percentage of its instances 

closer to zero mean error. It provides us with the same info we extracted from 

Figure 6 and Figure 7 that test results are more deviated from their target. 

As experiment, 20 data points are selected randomly and tested, results and 

errors are shown in Figure 14 and Figure 15. They show that our findings of 

range of error between (−12.5, +12.5) hold nicely for these randomly selected 

points. 

 

 

Figure 12. Absolute Output power (PE) Error (MW) vs. percentage of 

Instances (Training and Validation). 

 

 

Figure 13. Absolute Output power (PE) Error (MW) vs. percentage of 

Instances (Complete dataset). 
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Figure 14. Predicted Output Power (MW) and error (MW) at 20 random data points 

from test results. 

 

 

Figure 15. Prediction error (MW) at 20 random data points from test results. 

4. Conclusions 

Regression artificial neural networks (ANN) is used to model electrical output 

power (EP) of combined cycle power plant based on four inputs. Data are col-

lected from published work freely available online. MATLAB neural networks 

toolbox is used to program the ANN model. The ANN model is applied and stu-

died through experimenting various settings effects on the neural network per-

formance. Total seven experiments are applied. 

Results show the randomness of the ANN model performance for each time it 

trained, this is because of the randomness of the initial values of weights and bi-

as. It is also observed that increasing in number of neurons at the hidden layer 

does not necessarily lead to increased quality of the model; in fact, number of 

neurons has an oscillating effect on the model performance. Increasing dataset 

size (more data points for the same variables) provides better networks for some 
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extend. Increasing the number of input variables does not always lead to better 

network quality; some variables when introduced reduce the quality of the mod-

el, others increase it. It has to be studied through correlation between variables 

themselves and between variables and output. In addition, different training 

functions are compared for the same setting and dataset; in this work Bayesian 

regularization performed better than Levenberg-Marquardt algorithm. Dataset 

normalization methods provided by the toolbox are also experimented. 

Lastly, results are compared with target values of output for the train and va-

lidation group and for the test group, which is the complete dataset group. 

Comparison shows that results are very close to target outputs for both groups. 

In addition, it shows the normal distribution of error among each group with 

mean value of zero. The standard deviations of the error at the two groups are 

almost equal. 
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