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ABSTRACT The fault tolerance method most used today in high-performance computing (HPC) is

coordinated checkpointing. This, like any other fault tolerance method, adds additional energy consumption

to that of the execution of the application. Currently, knowing and minimizing this energy consumption

is a challenge. The objective of this paper is to propose a model to estimate the energy consumption of

checkpoint and restart operations and a method for its construction. These estimates allow the evaluation of

different scenarios in order to minimize energy consumption. We focus on coordinated checkpoint/restart at

the system level, in single-program multiple-data (SPMD) applications, on homogeneous clusters. We study

the behavior of the power dissipated by the compute node during a checkpoint/restart operation, as well as

its execution time, considering different parameters of the system and the application. The experimentation

carried out on two platforms shows the validity of the proposal. We also evaluate the impact on power and

energy consumption of the processor’s C states, the configuration of the network file system (NFS), where

the checkpoint files are stored, and the compression of the checkpoint files. This paper contributes to the

objective of predicting energy consumption in the execution of applications that use checkpoint/restart. Not

counting the outliers, we can estimate the energy consumed by checkpoint/restart operations with errors

lower than 7.5%.

INDEX TERMS Checkpointing, energy consumption, fault tolerance, high performance computing.

I. INTRODUCTION

Today’s High Performance Computing (HPC) systems use

hundreds to billions of processing units and the tendency is

to continue increasing their computing power. However, this

growth in computing power leads to an increase in energy

consumption. Given the limitations that exist to supply energy

to these types of computers, it is necessary to know the

behavior of their energy consumption to findways to decrease

it. Specifically, there is a limit defined as a guide for exascale

of the 20 MW [1].

The fault tolerancemethodmost used today inHPC is coor-

dinated checkpoint. With this method, the processes involved

in the application are stopped in order to safeguard the cur-

rent execution status in stable storage [2]. These methods

add additional energy consumption to the execution of the
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application [3]. We ask ourselves, what energy saving oppor-

tunities does fault tolerance present? Is it possible to reduce

the energy consumption of the execution of an application by

making its fault tolerance method more energy efficient?

In this article, we propose amodel and amethod that allows

us to predict the energy consumption of checkpoint and

restart (CR) operations, considering different parameters of

the system and the application. We focus on coordinated CR

at the system level, in Single ProgramMultiple Data (SPMD)

applications, on homogeneous clusters. The model allows us

to answer questions such as, how does the compression of

checkpoint files affect energy consumption? Compression is

an operation that demands CPU and therefore dissipates more

power, but storing compressed files requires less transmission

time through the network and less storage space. This model

can be used to consider which parameters of the system and

the application to use while protecting an application, in order

to decrease its total energy consumption.

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 71791

https://orcid.org/0000-0002-6334-1190
https://orcid.org/0000-0001-5500-850X


M. Morán et al.: Prediction of Energy Consumption by Checkpoint/Restart in HPC

The contributions of this article are:

• A method for constructing energy consumption predic-

tion models, for coordinated CR at the system level,

in SPMD applications, on homogeneous clusters.

• A prediction model of energy consumption of the CR

for a heat propagation application that follows the par-

allel programming paradigm SPMD. The results show

that the model is able to predict the energy consump-

tion of CR with an error of 7.5% without considering

outliers.

• A study of the system (hardware and software) and

application factors that impact the energy consumption

produced by the checkpoint and restart operations.

The rest of the article is organized as follows. Section II

introduces concepts about CR and DMTCP, which is the CR

tool we use, as well as some definitions about power and

some ways to administer it. Section III brings together some

articles on topics related to CR and energy consumption.

Section IV presents the theoretical model in order to know the

energy consumption. In section V we see how to obtain the

formulas that implement the model. We explain the results of

the experimentation in Section VI and finally in Section VII

we analyze some factors of the system and the application

that influence the energy consumption of CR operations.

Section VIII has the conclusions.

II. BACKGROUND

In this section, we introduce some concepts about coordi-

nated CR and DMTCP, which is the CR tool used, and we

give some definitions related to the power and the ways to

administer it.

A. CHECKPOINT/RESTART

Currently, the fault tolerance method most widely used in

large computer systems is coordinated CR. With this method,

the consistent global state is guaranteed by synchronizing all

the processes at the time of the checkpoint. Faced with the

failure of a process, all processes must restart from the last

checkpoint. The wide use of this method is due to its simple

implementation, since the synchronization points required to

store the state of the processes are present in most parallel

MPI applications.

The recovery of failures through checkpoints consists

mainly of restarting the application replacing the component

that has failed, but to avoid a complete re-execution of the

application, the state of execution is periodically saved in

stable, local or remote, storage. When a fail-stop failure is

detected, the application is restarted from the last stored

execution state [2]. In the case of parallel applications, we can

define a consistent global checkpoint as the set of local

checkpoints, one for each process, which form a consistent

global state. Any consistent global checkpoint can be used to

restart the execution of an application after a failure [4].

Checkpoints have to be taken periodically. The time inter-

val between checkpoints depends on the duration of the

checkpoint and on the expected failure rate in the system.

There are proposals on how to estimate the optimal time

interval between checkpoints [5]–[7]. In this work we will

evaluate the energy behavior of individual checkpoints and

restarts, operations that are not affected by the checkpoint

interval.

B. DMTCP

With DMTCP (Distributed MultiThreaded Checkpointing)

[8], it is possible to make checkpoints on an application in

a transparent way. DMTCP runs at the user level, which

does not require privileged access to the system to operate it.

In the case of parallel applications, it is possible to restart the

processes in nodes which are different from those used at the

time of the checkpoint, and a different number of processes

per node or a different number of nodes can be restarted.

DMTCP provides a coordinator, which must be permanently

running in any node of the cluster. From this coordinator it

is possible to perform a checkpoint, abort the application,

among other functions. In our experiments, we inject the fault

by killing the processes from the coordinator. The checkpoint

image of each process is written to a file with a unique name,

in a directory indicated by the user.

By using the gzip program, DMTCP is able to compress

the process state to require less disk storage space and reduce

the amount of data transmitted over the network (between

the compute node and the storage node). It is possible to

indicate if we want to use compression or not by using an

environment variable, or with an option of the dmtcp_launch

command. The dmtcp_launch command is the command used

to execute an application. The first call to dmtcp_launch will

launch the coordinator, if it did not already exist. For example,

to launch an MPI application with 8 processes and without

using compression, we can use:

$dmtcp_launch -no-gzip mpirun -np 8 ./pr

To perform a checkpoint manually from the command line

we use:

$dmtcp_command c

To restart the application after a failure, the script generated

by DMTPC is used as follows:

$sh dmtcp_restart_script.sh

As we will see later, we are interested in knowing the

average power dissipated and the time of each CR operation.

These values depend on several factors, including the system

architecture, the file system, the application, and the fault

tolerance system used. In particular, from the DMTCP’s point

of view, the variables that the user can modify and that affect

power and time are:

• Application problem size: The totality of the memory

assigned to the user process must be safeguarded.

• Whether compression is used or not: A compressed file

takes less time to store, and compression dissipates more

power.
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FIGURE 1. Real power dissipated during checkpoint, restart, application,
and idle time.

• Whether incremental checkpoint is used or not:

An incremental checkpoint has a smaller size than a full

one.

C. POWER DEFINITIONS

In this subsection we define some power related terms used

throughout the article.

• Instantaneous power: This is the power absorbed by

an element at any instant of time, and is given by

the product of instantaneous voltage (V ) and instan-

taneous current (I ), which pass through that element,

as shown in 1. In this work, this power is obtained from

the voltage and current measurements delivered by the

oscilloscope.

P[Watts] = I [Amperes] × [Volts] (1)

• Active or real power: This is the average of the instan-

taneous power over an alternating current (AC) com-

plete cycle. In AC, a sine wave represents the value of

voltage and current through time. In countries where

the frequency is 50Hz, the change of direction occurs

50 times per second, giving a duration of the complete

cycle of 20 milliseconds.

• Average power: This is the average of the instantaneous

power in a given period of time. In our case, we will

average the real power for the duration of the checkpoint

or restart. From now on, when we mention power or

dissipated power, we mean average dissipated power.

• Base power: The power dissipated by the node when the

processor is idle.

• Dynamic power: This is the power dissipated without

considering the base power.

Fig. 1 shows the graph of the real power, obtained with

the measurements delivered by the oscilloscope, when an

application is executed and a fault is injected (to see how the

fault is injected, refer to subsection II-B). The execution of

the application starts at time ‘a’. At time ‘b’ the checkpoint

begins, and it finishes at time ‘c’. The fault is introduced at

time ‘d’, and a period of inactivity begins there (we can see

that the base power is around 50 W). At time ‘e’, the restart

is launched. Finally, at the end of the restart, the execution of

the application continues, at time ‘f’.

D. POWER ADMINISTRATION: P AND C STATES

The ACPI specification (Advanced Configuration and Power

Interface) provides an open standard that allows the operating

system to manage the power of the devices and the computing

system.1 It allows us to manage the energy behavior of the

processor, the component that consumes the most energy in a

computer system. ACPI defines Processor Power States (Cx

states), where C0 is the execution state, and C1. . .Cx are

inactive states.

A processor that is in the C0 state will also be in a Perfor-

mance State (Px states). The P0 state means an execution at

the maximum capacity of performance and power demand.

As the number of P state increases, its performance and

demanded power is reduced. The processors implement the P

states using the technique of Dynamic Frequency and Voltage

Scaling (DVFS) [9]. Reducing the voltage supply reduces the

energy consumption. However, the delay of the logic gates

increases, so it is necessary to reduce the clock frequency of

the CPU in order for the circuit to work correctly. In certain

multicore processors, each core is allowed to be in a different

P state.

When there are no instructions to execute, the processor

can be set in a state C greater than 0 to save energy. There

are different levels of C states, where each of the levels could

turn off certain clocks, reduce certain voltages supplied to idle

components, turn off the cache memory, etc. The higher the

number of the C state, the lower the power demanded, but a

high latency is required to return to state C0 (execution state).

In certain multicore processors, each core is allowed to be in

a different C state.2

III. RELATED WORK

Some studies evaluate the energy behavior of the coordi-

nated and uncoordinated CR with message logs. In [10] they

compare the power dissipated by saving the message logs in

RAM and in HDD. They measure the consumption of atomic

operations found in the coordinated and uncoordinated pro-

tocols. In [11] they also evaluate the parallel recovery and

propose an analytic model to predict the energy behavior

at exascale. They perform experiments on a cluster to mea-

sure the consumption and then compare with the energy

estimated with the model. They show how parallel recovery

can reduce the execution time and energy consumed in a

faulty scenario. Parallel recovery is based on task migra-

tion, so they use Charm++ instead of pure MPI. In this

work we measure the complete checkpoint operations on

MPI applications.

There are some other studies that do not take power

measures. In [12] an analytic model is used to compare the

1http://www.acpi.info
2https://software.intel.com/en-us/articles/power-management-states-p-

states-c-states-and-package-c-states
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execution time and the consumed energy of the replication

and the coordinated CR. References [13] and [14] use ana-

lytic models to estimate the optimal interval of a multilevel

checkpoint in terms of energy consumption. They do notmea-

sure dissipated power but use values from other publications.

An optimization problem is presented in [15], finding the

clock frequency that minimizes the power consumption of an

application that uses shadow processes as a fault tolerance

method. Each main process has its corresponding shadow

process, which executes the same program as the main one,

but at a slower clock frequency. When a main process fails,

the shadow replaces it, and the frequency at which it should

continue executing the new main process is calculated in

order to meet a stipulated maximum time limit. It is designed

primarily for cloud, and it performs all the analysis in an

analytic manner.

A framework to estimate the energy consumption of coor-

dinated, uncoordinated and hierarchical checkpoints is con-

sidered in [16]. They measure the power and the execution

time of the high level operations involved in the checkpoint,

varying the number of cores involved. They do not use differ-

ent processor frequencies, nor do they indicate whether the

checkpoint is compressed or not.

References [17], [18] and [19] all present a framework for

CR energy saving. In [17], many small I/O operations are

replaced by a few large ones, executing in a single core,

to make the checkpoint and restart more energy efficient.

They use RAPL to measure and limit energy consumption.

Reference [18] proposes having a core to execute a replica of

all the processes of the node in order to avoid re-execution

from the last checkpoint and analytically compare the energy

consumption of this proposal with the traditional check-

point. Another paper that focuses on I/O is [19]. Here, they

first characterize different storage media by executing a

microbenchmark that reads and writes large files, and then

they design a runtime that allows modifying the clock fre-

quency and the number of processes that perform the I/O

to optimize energy consumption according to the type of

storage used. In our case, we evaluate the energy behavior

of a specific checkpoint library.

Another study analyzing the impact of dynamic scaling

of frequency and voltage on the energy consumption of

checkpoint operations is [20]. They measure the power at

the component level while writing local and remote check-

point files. They also compare two remote storage media:

NFS using the kernel network stack and NFS using the IB

RDMA interface. They do not include the restart in the

measurements.

In [21] they evaluate the energy consumption of an applica-

tion that uses compressed checkpoints. They show that using

compression requires more power but saves time, so that

the complete execution of the application with all its check-

points can benefit in terms of energy. They do not modify

the frequency of the processor. Like us, they measure the

power dissipated by the entire checkpoint operation (and not

subtasks or suboperations).

FIGURE 2. Power dissipated during checkpoint and restart for different
CPU frequencies.

Our work focuses on the prediction of the energy con-

sumption of the system level coordinated CR, for an SPMD

application. The dissipated power values of the checkpoint

and restart operations are measurements obtained with an

external meter that measures the complete node, including the

source. We evaluate the impact that the CPU clock frequency,

the problem sizes, the processor C states, the compression of

the checkpoint files and the NFS configuration all have on the

energy consumption of the CR.

IV. ENERGY MODEL

Energy can be calculated as the product between power and

time, as in 2.

E[Jules] = P[w] × T [s] (2)

We need to know the average power dissipated and the

time of each operation, checkpoint or restart. The power,

P[w], is obtained by averaging the instantaneous power

(section II-C) corresponding to the execution period of check-

point or restart. The time, T [s], is obtained from DMTCP

(section II-B).

Now, what variables affect power? And what variables

affect time? Next, we analyze these variables to determine

which ones are significant for our model.

A. CLOCK FREQUENCY

The CPU clock frequency affects the voltage supplied, and

therefore, affects the dynamic power [22]. If the checkpoint

files are compressed, compression is a CPU intense opera-

tion. In Fig. 2 we observe that the higher the clock frequency,

the higher the power dissipated.

With regards to time, in Fig. 3, we observe how the clock

frequency especially affects the checkpoint time, whereas the

restart time is much less affected.

B. PROBLEM SIZE

Problem size refers to the size of the memory assigned to

the user process. As we can see in Fig. 4, problem size has

little impact on the dissipated power during a CR operation.

On the other hand, as the system level checkpoint has to save

the total memory assigned to the user process (section II-A),
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FIGURE 3. Time consumed by checkpoint and restart for different CPU
frequencies.

FIGURE 4. Power dissipated during checkpoint and restart for different
problem sizes.

FIGURE 5. Time consumed by checkpoint and restart for different
problem sizes.

the time of a CR is affected by the problem size, as shown

in Fig. 5.

C. NUMBER OF CORES

The number of cores used to execute the CR affects both

power and time. However, as we use the computation node

as a minimum unit, we did not include this variable in this

study.

In summary, we will evaluate the behavior of dissipated

power and time varying on the one hand, the frequency of

the processor, and on the other hand, the size of the problem.

In this way, we obtain the following general equations of

the energy consumed per node, during checkpoint, EC , and

during restart, ER:

EC = PC (f ) × TC (f , ps) (3)

ER = PR(f ) × TR(f , ps) (4)

where f is the clock frequency, ps is the problem size per

node, PC and PR indicate the average dissipated power

during a checkpoint and restart operation respectively,

and TC and TR indicate the checkpoint and restart time

respectively.

V. ENERGY CONSUMPTION ESTIMATION

In this section we show how to build the model to estimate

power and time. This construction consists of two steps:

collecting data through the characterization of the system, and

regression analysis.When characterizing the system, wewant

to know how it behaves with respect to power and time

while performing checkpoint and restart. Some considera-

tions on this characterization are presented in the following

subsection. The regression analysis allows us to obtain the

functions to build the model and to make the estimations.

Subsection V-B shows the regression analysis performed on

the data obtained from the experimentation on Platform 1.

A. SYSTEM CHARACTERIZATION

We want to be able to characterize the system with the lowest

possible cost, that is, with a small set of tests. The following

questions arise; what to measure and how tomeasure it?Mea-

suring the power of the cluster nodes requires the connection

of external instruments, and accesses to the cluster that can

be expensive. The number of repetitions of the experiment

should be considered according to the variability of the mea-

surement instruments.

In the following subsections, we describe some consid-

erations about the duration of the preheating and the fre-

quencies, problem sizes and application to be used in the

characterization.

1) PREHEATING

Before starting tomeasure the dissipated power, the processor

must be preheated, that is, the applicationmust be left running

until it reaches the maximum levels of power dissipated.

This period can be defined empirically, observing when the

dissipated power curve reaches the maximum values for the

application.

2) CLOCK FREQUENCIES SELECTION

The CPU frequencies for the experiments have to be defined.

Because the range of clock frequencies is discrete and limited,

if within the selected frequencies theminimum andmaximum

frequencies are included, the power function obtained, PCR,

will show the behavior of the remaining frequencies. In the

case that there is no curve that adequately represents the

power, a split function can be defined. In any case, this
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would result in a large number of experiments, and con-

sequently, longer access to the cluster with the measuring

instruments connected. If we have 13 different frequencies,

and we do three repetitions of each experiment, we need

almost 40 experiments. In this paper we will show how it is

possible to obtain good predictions of the dissipated power

by measuring only four frequencies, reducing the number of

experiments by 70%.

3) PROBLEM SIZES SELECTION

The problem sizes for the experiments have to be defined.

In applications that do not vary the amount of memory used

throughout their execution, it will be enough selecting the size

of the problem before each experiment. The selected problem

sizes must not exceed the capacity of the main memory,

to avoid the use of swap. If there are no user requirements

for too-small problem sizes, it is preferable to avoid them,

as they show greater variability.

4) APPLICATION SELECTION

System characterization is done for different problem sizes,

therefore the selected application must allow to change this

value. Problem size refers to the size of the program data that

is stored in main memory. Checkpoint and restart operations

save the program state, which is mainly program data, and are

not affected by the application executed by the processor. Due

to this, the consumption of the application does not intervene

in the construction of the model and it is sufficient to char-

acterize the system using a single application. Applications

that allow to change the problem size in a simple and flexible

manner are preferred.

B. REGRESSION ANALYSIS: OBTAINING FUNCTIONS AND

COEFFICIENTS

The power and timemeasurements obtainedmust be analyzed

to find the function that best approximates them, and then

the coefficients of this function are obtained by the least

squares method. In the following subsections, this analysis

is shown (see section VI-A for the experimental platform

used).

1) POWER

Fig. 6 shows the dissipated power during the CR for

the four clock frequencies and the four per node prob-

lem sizes selected. When observing this cloud of points,

we see that a linear or quadratic function could represent

it. Applying the least squares method with both functions,

we obtained smaller errors with the quadratic function, both

for checkpoint and restart. The formulas obtained are the

following:

PC (f ) = 19.7 × f 2 − 37.7 × f + 99 (5)

PR(f ) = 9.55 × f 2 − 18.62 × f + 88.45 (6)

where f is clock frequency and its unit is in GHz.

FIGURE 6. Power measurements and regression. (a) Checkpoint.
(b) Restart.

Fig 6 also shows the regression obtained. As we can see,

the measurements are mostly within the range of +/− two

standard deviations (SD) from the curve. The exceptions are

given, for the case of the checkpoint, at the maximum fre-

quency, and in the case of the restart, at the lowest frequency.

The average of the absolute errors can be considered low

(3.2W for the checkpoint and 2W for the restart), as well as

the standard deviations (4.6W for the checkpoint and 2.4W

for the restart). It is worth mentioning that the standard devi-

ation of the checkpoint is almost twice the standard deviation

of the restart, which indicates a greater variability.

Fig. 7 shows the corresponding box graph. A few out-

liers can be observed. The outliers are values that are more

than one and a half times away from the inter-quartile

range. Another interesting observation is that checkpoint and

restart higher boxes, that is, the greater dispersion of data,

are given for the case of the maximum clock frequency

(2.667 GHz).

2) TIME

Fig. 8 shows the execution times obtained for the four clock

frequencies and the four per node problem sizes. When
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FIGURE 7. Power measurements box plots. (a) Checkpoint. (b) Restart.

observing this cloud of points, we see that a linear or quadratic

function could represent it. We applied the least squares

method on both functions andwe obtained smaller errors with

the quadratic function, both for checkpoint and restart. The

formulas obtained are the following:

TC (ps, f ) = 1.42 × ps2 + 6.07 × f 2 + 23.74 × ps

− 23.87 × f − 7.67 × ps× f + 26.97 (7)

TR(ps, f ) = 2.11 × f 2 + 7.45 × ps− 9.31 × f − 0.46

× ps × f + 10.75 (8)

where f is clock frequency in GHz and ps is the problem

size per node in GiB. Fig. 8 also shows the regression,

where 94% and 96% of the measurements fall within the

band defined by +/− two standard deviations for the case

of the checkpoint and restart respectively. The correlation

coefficient obtained is high (0.99 in both cases, checkpoint

and restart), and the standard deviations give very accept-

able values (1 s for the checkpoint and 0.42 s for the

restart).

VI. RESULTS ANALYSIS

In this section, the experimental platforms and experimental

design are detailed, the power and time models are vali-

dated for new clock frequencies (1.466 GHz, 1.999 GHz and

2.533 GHz) and new problem sizes (1 GiB, 1.5 GiB and

FIGURE 8. Time measurements and regression. (a) Checkpoint.
(b) Restart.

2.25 GiB), errors in the energy estimation are calculated, and

the dissipated power on the two experimental platforms is

compared.

A. EXPERIMENTAL PLATFORMS

The experiments were carried out on two platforms. Plat-

form 1, on which most of the analysis of this work is carried

out, and Platform 2, which is used to contrast the results

obtained with a different hardware. Platform 1 is a cluster of

computers, with a 1 Gbps Ethernet network. Each node, both

computing and storage, has 4 GiB of main memory, a SATA

hard disk of 500 GB and 7200 rpm, and an Intel Core i5-

750 processor, with a frequency range of 1.2GHz to 2.66GHz

(with the Intel Turbo Boost3 disabled), four cores (without

multithreading), 8 MiB of cache and 95 W TDP. Platform

2 is a compute node connected to a storage node with a

1 Gbps Ethernet network. The compute node has an Intel

Xeon E5-2630 processor, a frequency range of 1.2 GHz to

2.801 GHz (with the Intel Turbo Boost mechanism disabled),

six cores (with multithreading disabled), 16 GiB of main

memory, 15 MiB of cache and TDP of 95 W. It uses a Debian

9 ‘‘Stretch’’ operating system. The storage computer has

an Intel Core 2 Quad Q6600 processor, four cores (without

3https://www.intel.com/content/www/us/en/architecture-and-
technology/turbo-boost/turbo-boost-technology.html

VOLUME 7, 2019 71797



M. Morán et al.: Prediction of Energy Consumption by Checkpoint/Restart in HPC

multithreading), 8 GiB of main memory and 4 MiB of cache

memory.

The nodes of Platform 1 and the computing node of

Platform 2 use the GNU/Linux operating system Debian

8.2 Jessie (kernel version 3.16 of 64 bits), OpenMPI ver-

sion 1.10.1 as an MPI message passing library, and the tool

checkpoint DMTCP version 2.4.2, configured to compress

the checkpoint files. The network file system used to make

the remote writing of the checkpoint files is NFS v4 (Network

File System).

For power measurements we use the PicoScope 2203 oscil-

loscope (whose accuracy is 3%), the TA041 active differential

probe, and the PP264 60 A AC/DC current clamp, all Pico

Technology products. The electrical signals captured by the

two-channel oscilloscope are transmitted in real time to a

computer through a USB connection. The voltage is mea-

sured using the TA041 probe that is connected to an input

channel of the oscilloscope. The current of the phase con-

ductor, which provides energy to the complete node (includ-

ing the power source) is measured using the current clamp

PP264, which is connected to the other input channel of the

oscilloscope.

The selected application4 for system characterization is

a SPMD heat transfer application written in MPI that uses

the float data type. This application describes, by means of

an equation, the change of temperature in time, on a plane,

given an initial temperature distribution and certain edge

conditions.

4.2.6 Limits of the formalization. El segundo párrafo sep-

ara lo que es estrictamente ‘‘tamaño del problema’’ y ‘‘tra-

bajo/dificultad’’. Entonces, en el artículo se podría aclarar

que aquí no hacemos referencia a la ‘‘dificultad’’ de la tarea

sino al tamaño de los datos que se almacenan en memoria

principal.

B. EXPERIMENTAL DESIGN

Each compute node writes to a dedicated storage node

through an NFS configured in asynchronous mode. The

sampling rate used for both channels of the oscilloscope

was set at 1000 Hz. The power measurements correspond

to the power dissipated by the complete node including

the source. The tests were performed with the proces-

sor C states option active. For the measurements of the

checkpoint and restart time, we use the option provided

by DMTCP. To change the frequency of the processor,

the GNU/Linux userspace governor is used, which permits

modifying the file sysfs scaling_setspeed available for each

core. The same frequency is used in all cores at the same

time.

Each experiment consists of launching the application with

one process per core, letting it run during a preheating period

(20 seconds), performing a checkpoint manually, aborting the

application from the DMTCP coordinator and re-starting the

application from the command line with the script generated

4https://computing.llnl.gov/tutorials/parallel_comp/#ExamplesHeat

FIGURE 9. Checkpoint and restart power regression validation.
(a) Checkpoint. (b) Restart.

by DMTCP. The experiment is repeated three times for each

frequency and problem size due to the low variability of the

measurement instruments used.

C. MODEL VALIDATION

1) POWER VALIDATION

In order to validate our power model, we measured the

dissipated power for new clock frequencies and calculate

the errors obtained. Fig. 9 shows the graph with the regres-

sion and the new measurements. We can observe how most

of the new values fall within the range between +/− one

standard deviation. The average of the errors’ absolute val-

ues is low (3.7 W for the checkpoint and 4 W for the

restart), and the standard deviations increase slightly when

compared with the previous experiments (5.4 W for the

checkpoint and 5.1 W for the restart), but they are still

acceptable.

POWER ON PLATFORM 2

In order to observe the behavior of the power dissipated in

a different computer, the same experiments were performed

on Platform 2. Fig. 10 shows the initial observations (marked

with circles), the regression function that best fits those obser-

vations, and validation measurements (marked with squares).

As we can see, most measurements fall within the band
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FIGURE 10. Platform 2 power linear regression and validation.

TABLE 1. Power on Platform 2: Correlation coefficient, standard
deviations and average of absolute errors.

defined by +/− two standard deviations. Table 1 shows the

indicators that validate the obtained regressions.

We will mention two differences with respect to the results

obtained with Platform 1. On the one hand, in this case

it is a lineal function that best fits the point cloud of the

power, whereas on Platform 1 it was a curve. On the other

hand, on this platform we observed that there is a rela-

tionship between power and problem size. For example,

in the checkpoint case, we see large problem sizes to be

mostly above the regression line, and small sizes, below.

In any case, the estimation obtained is good enough and

we don’t consider it justified to make the model more

complex.

Fig. 11 shows the real power of Platform 2. It presents

a high and a low phase during the checkpoint, not present

in Platform 1. The high phase indicates that the CPU is

compressing, and the low phase that it is transferring and has

finished compressing. In graphics not shown here, we can

see how the high phase becomes shorter as the frequency

increases (since it compresses faster).

2) TIME VALIDATION

In order to validate the model for the CR time, measure-

ments were made for new frequencies and problem sizes, and

the errors obtained were calculated. The errors in absolute

value have an average of 0.7 seconds for the checkpoint and

0.4 seconds for the restart. The standard deviations are kept

low, these being 1.03 seconds for the checkpoint and 0.6 sec-

onds for the restart. With these new measurements, we can

verify that the proposed model can predict CR time very

well.

FIGURE 11. Real power dissipation during checkpoint and restart.
(a) Platform 1 at 2.667 GHz. (b) Platform 2 at 2.5 GHz.

TABLE 2. Energy consumption prediction: Percentage of measurements
that fall within +/- one and two standard deviation.

3) ENERGY VALIDATION

We will now calculate the errors obtained in the predic-

tion of the CR energy consumption. Fig. 12 shows the

prediction function of the energy and the values observed

in the experiment. More than 90% of the measurements

fall within the range defined by +/− two standard devi-

ations (for both checkpoint and restart), as summarized

in Table 2.

Table 3 shows the average error incurred for each size

and frequency, in the prediction of the energy consumption.

In the case of the checkpoint, the highest error percentages are

around 6%, except for one case, corresponding to the smallest

size and the maximum frequency (24.15%). In the case of the

restart, the highest error percentages are around 7.5%, except

for two cases, corresponding to the smallest size (10.54% and

12.16%). In this way, without taking outliers, we have been
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FIGURE 12. Energy measurements and prediction. (a) Checkpoint.
(b) Restart.

TABLE 3. Average errors (in %) by frequency and problem size.

able to estimate the energy consumed by the CR with an error

of less than 7.5%.

USE OF THE PREDICTION MODEL FOR THE CHECKPOINT

ENERGY CONSUMPTION

Table 4 shows the prediction of the checkpoint energy con-

sumption for a fixed problem size and ten clock frequen-

cies. This allows us to know what clock frequency to use

if we decide to prioritize the energy consumption. In this

FIGURE 13. Power dissipated with C states enabled and disabled.
(a) Checkpoint.(b) Restart.

TABLE 4. Predicted and measured energy (1.25 GiB problem size).

case, the frequency with the lowest energy consumption is

2.266 GHz. The table also shows the errors incurred.

VII. FACTORS THAT AFFECT THE ENERGY CONSUMPTION

AND/OR THE PREDICTION QUALITY

In this section we analyze some system and application fac-

tors that influence the energy consumption of CR operations.

A. C STATES

During the writing or reading of a checkpoint file it is possible

that the processor becomes idle and therefore transitions

occur between the C states (section II-D) that affect the

power dissipation of the processor. To study its behavior,
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FIGURE 14. Power dissipated, time and energy consumed during checkpoint with sync and async
NFS mode.

CR operations were performed with C states enabled and dis-

abled, for all processor frequencies. In Fig. 13 it is observed

that the power measurements with the C states enabled show

greater variability, especially in the restart. This variability

affects the prediction. In any case, the best option is to keep

the C states enabled, since they reduce the energy consump-

tion by up to 13% for the checkpoint, and up to 20% for

the restart. The execution times showed no variation when

enabling or disabling the C states.

B. NFS CONFIGURATION

The NFS allows folders to be mounted synchronously (sync

option) or asynchronously (async option). If an NFS folder

is mounted with the sync option, the writes at that mount

point will cause the data to be completely downloaded to the

NFS server and written to persistent storage before returning

control to the client.5 Thus, the time of a write operation is

affected by varying this configuration.

Fig. 14 shows the comparison of the power dissipated,

the execution time and the energy consumed by a checkpoint

stored on a network file system mounted with the option sync

and async, for three different clock frequencies (minimum,

medium and maximum available in the processor). For all

three frequencies, the dissipated power is greater and the

execution time is shorter when the asynchronous configura-

tion is used. This is because the idle time of the processor

decreases when using this configuration (and therefore the

average power increases).

For the small and middle frequency, the differences in time

and power are small, resulting in a similar energy consump-

tion. However, for the maximum frequency, this difference

gets higher, reaching an energy saving of up to 25% when

using the asynchronous mode.

5https://linux.die.net/man/5/nfs

It was also observed that the checkpoint times (for the same

problem size and clock frequency) show greater variability in

the synchronous mode, differences of up to 40% (in this case

we carry out more experiments), when compared to the asyn-

chronous mode, differences less than 1%. The low variability

of the checkpoint time with the asynchronous mode benefits

its prediction.

Due to its lower dissipated power, and its lower time

variability, it is preferable to store the checkpoints in an

NFS mounted with the async option.

C. COMPRESSION OF CHECKPOINT FILES

The compression or not of the checkpoint files impacts the

time and the power demanded, therefore it is another factor

that affects the energy consumption.

Fig. 15 compares the power dissipated, the time and the

energy consumed by the checkpoint and restart, with and

without compression of the checkpoint files, for three dif-

ferent clock frequencies (minimum, medium and maximum

values available in the processor). The experiments were

performed on a single compute node, writing to a single

storage node. We can make the following observations when

using compression compared with no compression:

• With regard to power: The dissipated power and its

variability are greater, both for checkpoint and restart.

• With regard to time: The time variability is greater,

both for checkpoint and restart. The restart is always

faster. The checkpoint is faster only for the maximum

frequency and slower for the minimum frequency.

• With regard to energy: The checkpoint consumes more

energy (up to 55%) and the restart consumes less energy

(up to 20%).

Taking into account that, in general, checkpoint is per-

formedmanymore times than restart, it is advisable not to use

compression to reduce energy consumption in this platform.
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FIGURE 15. Comparison of compression/no compression of checkpoint
files. (a) Power dissipated. (b) Time consumed. (c) Energy consumed.

VIII. CONCLUSIONS

This work shows how it is possible to estimate the energy

consumption of system level coordinated CR operations,

on an SPMD application executed in a homogeneous cluster.

We proposed a method for constructing a model to predict

the dissipated power and time of CR operations. The method,

based on regression analysis, was applied and validated in

an experimental platform. Besides, a regression analysis and

validation was performed for the dissipated power of a dif-

ferent machine. With this model, it is possible to know the

energy consumption for new CPU frequencies and problem

sizes without the need to execute the checkpoint and restart

of the application and to take measurements.

In addition, the impact of different system and application

factors on energy consumption was evaluated in an experi-

mental platform. In particular, the impact of the processor’s

C states, the synchronous and asynchronous configuration of

the NFS, and the compression or not of the checkpoint files

were evaluated. We saw how it is better, from an energy point

of view, to use an asynchronous configuration of the NFS to

enable the C states of the processor and so as not to compress

the checkpoint files. These results show how it is possible to

influence the energy consumption of CR.

This work contributes to the objective of predicting energy

consumption in the execution of applications that use CR. Not

counting the outliers, we can estimate the energy consumed

by the CR with errors lower than 7.5%. Among future work

it is expected to evaluate the energy behavior of other types

of applications, of uncoordinated CR, as well as to evaluate

the energy consumed by the storage node.
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