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Abstract

Background: Essential proteins are indispensable to the survival and development process of living organisms. To

understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and

design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental

methods designed to test out essential proteins are usually expensive and laborious, computational methods, which

utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein

interaction networks, together with other biological data, have been explored to improve the performance of

essential protein prediction.

Results: The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other

methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential

protein prediction.

Conclusions: In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified

PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation

coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is

promising in boosting essential protein prediction.

Keywords: Essential proteins, Subcellular localization information, Modified PageRank algorithm, Protein-protein

interaction networks

Background
Although essential proteins are only a small fraction of

all proteins, they are indispensable to maintain life for an

organism [1, 2]. Without these essential proteins provid-

ing all available nutrients [3], it will lead to lethality of

life. Therefore, reliable identification of essential proteins

is significant for biologists, for that it not only contributes

to understanding the basic requirements for subcellular
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survival, but also plays a key role in practical implica-

tions, such as diseases analysis [4, 5], drug design [6, 7]

and medical treatments [4]. This problem has attracted

enormous amount of researchers, and many experimen-

tal methods have been proposed to predict and discover

essential proteins through gene knock-out [8, 9], gene

knockdown [10–12] and RNA interference [13]. These

methods can provide an accurate prediction of essential

proteins. However, the poor efficiency and high cost of

experimental methods remains a significant challenge. In

addition, for identification of essential proteins in some

complex organisms, especially ones from humans, these

experimental methods are not suitable.

To break through these experimental constraints, some

researchers proposed computational methods to predict
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essential proteins based on features developed in exper-

imental studies. Especially, due to the high-throughput

techniques, abundant data of essential proteins has been

collected, which served as the basis for several studies

that investigate the relationship between characteristics

of experimentally identified essential proteins and their

topological properties in protein-protein interaction net-

works (PPI). With the help of computational methods, the

burden to test all proteins in experiments can be greatly

relieved, so that only tests of top-ranked proteins based

on their score of essentiality are prioritized. Jeong et al.

used centrality-lethality rule to identify essential proteins

in protein-protein interaction networks, whichmeans that

proteins most highly connected in the networks tend

to be essential proteins [14]. Pereira-Leal et al. reported

that there is higher-level correlation among essential pro-

teins compared to that among nonessential proteins [15].

To explain this phenomenon, He and Zhang proposed

the concept of essential protein-protein interactions [16].

These studies support the view that evolution of essential

PPI networks are more conservative than nonessential PPI

networks. Inspired by these studies that explored topolog-

ical features of PPI networks, some researchers proposed

computational methods to identify essential proteins,

based on metrics such as betweenness centrality (BC)

[17, 18], degree centrality (DC) [19], edge clustering coef-

ficient centrally (NC) [20] and so on. However, all these

methods relying on centrality metrics share some limita-

tions. First, PPI networks generated by high-throughput

technologies are often incomplete and contain false pos-

itive interactions [21]. Second, many of these methods

neglect other intrinsic properties of essential proteins. To

overcome these limitations, several methods are proposed

to incorporate these PPI networks with other biological

data. Based on the weighted PPI networks generated by

gene expression profiles, Li et al. proposed an edge-aided

approach named PeC to predict essential proteins [22].

Then Tang et al. proposed a modified approach named as

WDC to improve the prediction performance [23].

Moreover, recently many studies found that the sub-

cellular localization of proteins may play an important

role in identifying essential proteins. Acencio and Lemke

discover that integration of information from multiple

sources including subcellular localization of proteins can

improve the accuracy of essential proteins prediction

[24]. Peng et al. proposed a Compartment Impor-

tance Centrality (CIC) method [25] that incorporate

the subcellular localization information in PPI networks.

One limitation of CIC method is that it may not dif-

ferentiate varieties of the interactions among proteins

of a large community. To overcome this limitation, in

this paper, we propose a novel method that combines

information of subcellular compartments with that of

Pearson Correlation coefficient (SCP), based on weighted

PPI networks to predict essential proteins. Additionally, a

modified PageRank method is proposed to assign weights

in the PPI networks more accurately.

This paper is organized into four sections. Our algo-

rithm is presented in “Methods” section. Numerical

experiments and results analysis are described in “Results

and discussion” section. Several conclusions are drawn

in “Conclusion” section.

Methods
In this section, we will present our method SCP, that

can rank the importance of proteins with computed

scores. The final importance scores of our SCP method

is determined by two components: the results ranked by

our modified PageRank algorithm (MPR) from subcel-

lular localization information, and the results ranked by

Pearson correlation coefficient (IPCC) from gene expres-

sion data:

SCP = λ·NIS(MPR)+(1−λ)·NIS(IPCC), λ ∈[ 0, 1]

(1)

where λ is an adjusting parameter for weighting the two

components. In this paper the parameter λ is set as 0.5.

The MPR is the importance scores computed from mod-

ified PageRank algorithm. The IPCC is the importance

scores predicted by Pearson Correlation coefficient. In

order to predict essential proteins, we propose a novel

algorithm combining MPR with IPCC. We expect that

protein with a higher SCP score would be more likely to

be an essential protein. As the scores of MPR and IPCC

may have different range, they should be scaled into [ 0, 1]

first. We normalize the two importance scores as follows:

NIS(Scorei) =
Scorei − min(Score)

max(Score) − min(Score)
,

i = 1, 2, · · · ,N

(2)

MPR importance score of proteins

We first create a weighted PPI networks derived from sub-

cellular compartments information, and then perform a

modified PageRank algorithm on the network to com-

pute importance score of proteins. For most eukaryotes,

the subcellular compartments generate a specific environ-

ment that regulates the biological processes of proteins

within cells. Therefore, knowing the subcellular localiza-

tion of proteins may shed light on understanding the func-

tions of these proteins. Many studies found that proteins

interactions in vivo tend to co-locate in the same cellular

compartment or adjacent compartments [26]. For exam-

ple, 76 percent of protein-protein interactions in yeast

cells are carried out in the same subcellular compartments

[27]. Therefore it may be beneficial to weigh the protein-

protein interactions by subcellular localization, and then
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predict the importance of proteins based on the weighted

protein-protein interactions.

Based on this intuition, we develop ametric to weigh the

protein-protein interactions based on the information of

subcellular localization. We assume that protein-protein

interactions co-located in a small subcellular compart-

ment can be more reliable in predicting essential proteins

than those within a large subcellular compartment.

The importance of subcellular compartments

We model the importance of subcellular compartments

based on their scales. Suppose there are K subcellu-

lar compartments C1,C2, · · · ,CK , and the numbers of

them areNC1 ,NC2 , · · · ,NCK respectively. Then the impor-

tance of subcellular compartment Ci, denoted by ISC, is

defined as:

ISC(Ci) =
1

NCi

, i = 1, 2, . . . ,K (3)

Theweight of protein-protein interactions based on

subcellular compartments

The importance of protein-protein interactions can be

impacted by different subcellular compartments they

share. For a given protein Pi, let SCL(Pi) be the subcellu-

lar compartments where protein Pi located. The weight of

Pi and Pj interaction is denoted by WPPI(Pi,Pj), which is

defined as:

WPPI

(

Pi,Pj
)

=

⎧

⎨

⎩

max
Ci∈SC(Pi,Pj)

{ISC(Ci)}, SCL(Pi)
⋂

SCL(Pj) �= ∅,

min
Ci∈SC(Pi,Pj)

{ISC(Ci)}, otherwise

(4)

where

SC
(

Pi,Pj
)

=

{

SCL(Pi)
⋂

SCL(Pj), SCL(Pi)
⋂

SCL(Pj) �= ∅,

SCL(Pi)
⋃

SCL(Pj), otherwise

(5)

A pair of proteins may be co-located in several

subcellular compartments because many proteins are

annotated by multiple subcellular compartments. Here

SCL(Pi)
⋂

SCL(Pj) means the common subcellular com-

partments that protein Pi and Pj are co-located in. We

assume that a pair of proteins in the smaller subcellular

compartments is most likely to interact with each other

than them in the bigger compartments. Therefore, if a

pair of proteins are co-located in at least one subcellular

compartment, that is SCL(Pi)
⋂

SCL(Pj) �= ∅, we choose

the maximum of the importance of their common sub-

cellular compartments as the importance of the protein-

protein interaction between the two proteins. Otherwise,

the importance between a pair of proteins which do not

share any subcellular compartments will be the mini-

mum of all their subcellular compartments, defined as

SCL(Pi)
⋃

SCL(Pj).

The importance of proteins

By analyzing the weighted protein-protein interaction

network, we can achieve prior estimate on the importance

of each protein. The proteins which have stronger interac-

tions with others to be more important proteins (essential

proteins). Guided by this idea, we sum up all the weights

of protein-protein interactions related to a protein Pi as its

prior importance (denoted by IPSC(Pi)):

IPSC(Pi) =
∑

Pj∈SCL(Pi)

WPPI

(

Pi,Pj
)

(6)

Modified PageRank algorithm

PageRank is one of themost famousmethods that rank the

importance of nodes in networks based on link structures

of nodes. The basic idea of PageRank algorithm is that the

importance of a node is determined by the importance

of their parents nodes and the number of their parents

nodes. Therefore, by analyzing the quantity and quality of

their parents nodes, PageRank algorithm can give a rough

importance estimates for all nodes in networks.

In the classic PageRank algorithm, the importance of

nodes can be defined as follows:

PR(Pi) = α
∑

Pj∈SCL(Pi)

1

L(Pj)
PR(Pj) + (1 − α)

1

N
(7)

whereN is the number of the nodes, and L(Pj) is the num-

ber of outbound links for node Pj, which belongs to the

set of nodes that link to Pi, also denoted by SCL(Pi). α is a

dampening factor set to 0.85 in this paper.

Equation 7 can be re-written in a matrix form as:

PR = M × PR (8)

where

M = αM1 + (1 − α)M2, α ∈ [0, 1] (9)

and

M1(i, j) =

{

1
L(Pj)

, if Pj ∈ SCL(Pi),

0, otherwise
(10)

M2 =
1

N
1N×N (11)

We propose a modified PageRank algorithm to calculate

the importance of nodes MPR, defined as follows:

˜MPR
k+1

= M̂ × MPRk (12)

Here the modified iterator matrix M̂ is divided into two

matrices:

M̂ = αM̂1 + (1 − α)M̂2, α ∈ [0, 1] (13)
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where sparse hyperlink matrix M̂1 are generated from the

weighted protein-protein interaction networks:

M̂1(i, j)

=

{

WPPI(Pi,Pj)
∑

Pk∈SCL(Pi)
WPPI(Pi,Pk)

, if Pj ∈ SCL(Pi),

0, otherwise

(14)

and the reset probability matrix M2 comes from the prior

importance of proteins:

M̂2(i, j) =
IPSC(Pi)

∑N
k=1 IPSC(Pk)

(15)

Finally, the importance of nodes is normalized as

follows:

MPRk+1 =
˜MPR

k+1

∥

∥

∥

˜MPR
k+1

∥

∥

∥

(16)

Pearson correlation coefficient

Pearson correlation coefficient (PCC) is a popular method

to measure linear correlation between two variables. Here

we utilize PCC, derived from gene expression data, to

calculate the importance of protein-protein interactions.

Given gene expression data of two proteins, denoted by

X = (x1, · · · , xm) and Y = (y1, · · · , ym), the importance

of protein-protein interactions between the two proteins

can be calculated as follows:

PCC(X, Y) =
Cov(X,Y )

σXσY

=

∑m
i=1(xi − x̄) (yi − ȳ)

√

∑m
i=1 (xi − x̄)2

√

∑m
i=1 (yi − ȳ)2

(17)

Finally, the importance of each protein Pi, denoted as

IPCC(Pi), is computed by summing up all weights of

protein-protein interaction importance of protein Pi:

IPCC(Pi) =
∑

Pj∈SCL(Pi)

PCC(Pi,Pj) (18)

Results and discussion
In this section, experiments are carried out to evaluate

the effectiveness of our algorithm. We take advantage of

three types of datasets, namely protein-protein interac-

tions data, gene expression data and subcellular localiza-

tion data, to predict essential proteins for Saccharomyces

cerevisiae. We compare the performance of our algo-

rithm SCP against other five methods (CIC, DC, NC, PeC,

WDC) on real dataset of essential proteins. The results

show that our method SCP outperforms the other five

methods.

Experimental data

Protein-protein interactions data

We downloaded protein-protein interaction networks

from the Biogrid database (BIOGRID-3.2.111), which is a

freely accessible database to provide physical and genetic

interactions [28]. The network consists of 6304 proteins

and 81,614 interactions between them.

Gene expression data

The gene expression data of yeast was obtained from the

NCBI Gene Expression Omnibus website. This dataset

was collected at 36 different times from 9335 probes

(uploaded on April 14, 2011), since there is evidence

that the expression of gene is periodic during metabolic

cycle of Saccharomyces cerevisiae [29]. In total 6777 genes

are present in the dataset, some of which have more

than one expression profiles. For genes that have multiple

expression profiles, we select the profile whose average is

maximum.

Subcellular localization data

The COMPARTMENTS database [30] contains subcel-

lular localization information from several data sources,

such as literature, high-throughput microscopy-based

screens, prediction from primary sequence and text min-

ing. The dataset includes 819 subcellular compartments in

total, which was downloaded on April 20, 2014.

Essential protein set

This set of essential proteins were downloaded from DEG

[3], MIPS [31], SGD [32] and SGDP. It contains 1204

essential proteins in all.

ROC curves

The proteins of Saccharomyces cerevisiae are classified

into essential and nonessential proteins, so the prediction

Fig. 1 ROC curves of all methods
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Fig. 2 Number of essential proteins in ranked proteins

of essential proteins is actually a two-class classification

problem. Hence, ROC curve is a proper metric to evaluate

the performance of a binary classifier, plotted at different

thresholds. In an ROC curve, the horizontal axis repre-

sents the values of false positive rate (FPR) and vertical

axis represents the values of the true positive rate (TPR).

The false positive rate is also known as specificity and the

true positive rate is also known as sensitivity or recall.

They are defined as follows:

FPR =
FP

FP + TN
(19)

TPR =
TP

TP + FN
(20)

Fig. 3 Jackknife curves of all methods

where FP is the number of false positive, which means a

prediction is positive and the actual value is negative. Con-

versely, FN is the number of false negative, which means

the prediction is negative while the actual value is positive.

Then TP is the number of true positive when both the pre-

diction and actual value are positive. TN is the number of

true negative when both the prediction and true value are

negative.

Furthermore, the size of the area under the curve,

named AUC, is used to evaluate the performance of a

binary classifier. Therefore, the larger the AUC value is,

the better classifier is. In Fig. 1, ROC curves are plot-

ted to analyze the top 1204 proteins ranked by all six

algorithms, because our dataset contains 1204 essential

proteins in total. As DC is a simple topological central-

ity algorithm, the AUC for DC is only 0.5570. Then NC

Fig. 4 Precision-recall curves of all methods
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is a method applying the edge-clustering coefficient to

predict essential proteins, which achieves a litter better

performance than DC. PeC and WDC have higher AUC

values than DC and NC since they both incorporate gene

expression data with PPI data to boost classification per-

formance. CIC performs better than PeC, WDC, NC and

DC, since it combines the subcellular localization infor-

mation with other types of data. Lastly, our method SCP

outperforms all the other five methods with a consider-

able margin. This shows the effectiveness of our fusion

method.

Analysis of essential proteins of top ranked proteins

In this section, we attempt to visualize the proportion of

essential proteins in top ranked proteins by all methods,

including our method SCP and other five methods. First,

we rank proteins by their importance scores in descend-

ing order computed by all six methods. Second, we select

the top 1, 5, · · · , 25 percent of all 6304 proteins in their

ranked order as essential protein candidates. Then we

count the number of real essential proteins in these essen-

tial protein candidates according to the golden standard

dataset of real essential proteins. The comparative results

are shown in Fig. 2. From this figure, we can observe that

the SCP outperforms all the other five algorithms on all

six proportions of essential proteins.

In the Fig. 2, let us take the top 1% ranked proteins

as an example: our method achieves considerable margin

compared to other five methods (51 true essential pro-

teins versus 42,32,28,39 and 33 for CIC, DC, NC, PeC

and WDC respectively). In addition, Fig. 2 shows that DC

and PeC performs better at top 1% and 5% than NC and

WDC. However, from top 15 to 25%, the performances

of NC and WDC are better than those of DC and PeC.

The performance of CIC is good except at the top 25%

ranked proteins, when it ranks fourth, and is only better

than DC and PeC. In summary, our method achieves the

best performances consistently at various percentage of

top ranked proteins.

Jackknife curves

In this section, we compare our method with five other

methods by the jackknife curves, which is proposed by

Holman et al. [33] to show the ability to recover known

(a) (b) (c)

(d) (e) (f)

Fig. 5 The comparative results of protein-protein interaction links by six methods. The figure shows the networks of the proteins ranked in top 50 by

all six methods, and the links between them. The pink nodes represent the essential proteins, and the yellow nodes represent the nonessential

proteins. Red, blue and green links represent Noness-Noness, Ess-Noness and Ess-Ess interactions respectively. a CIC. b DC. c NC. d PeC. eWDC. f SCP
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essential proteins. The results are shown in Fig. 3. The

horizontal axis of the jackknife curves represents the

proteins ranked by scores of importance in descending

order from left to right. In this section, we choose the

top 1204 proteins of all the six methods to analyze the

performance.The vertical axis is the cumulative count of

essential proteins. Compared with other five methods, the

AUC of our method is the largest. The Jackknife curves

also reveal that the performance of our method SCP is

better than the other methods.

Precision-recall curves

In this section, we employ precision-recall (PR) curves

to compare the performance of our method SCP with

the other methods. The recall has been defined as the

true positive rate (TPR) in “ROC curves” section. The

precision is defined as follows:

Precision =
TP

TP + FP
(21)

To analyze a binary classification, precision is a measure

of the proportion of results that are relevant to the

query, and recall is a measure of the proportion of results

relevant to the query that are successfully retrieved. If

AUC is high, both precision and recall are high. High

score of precision suggests the classifier achieves accurate

results, while high recall indicates the classifier obtains

a majority of all positive results. Because there are

1204 essential proteins in our dataset, we also plot PR

curves to analyze the top 1204 proteins ranked by all six

algorithms. It is shown in Fig. 4 that SCP achieves the best

performance among all the methods.

The analysis of links between top ranked proteins

In this section, we will do some further analysis of the

links between top ranked proteins for all the methods. We

construct small PPI networks based on the top 50 ranked

proteins and the links depending on the whole yeast PPI

networks. The results are shown in Fig. 5. Pink nodes

represent essential proteins, while yellow nodes represent

nonessential proteins identified by six methods. In this

study, 43 essential proteins are obtained by our method

SCP in the top 50 proteins, while for CIC, DC, NC, PeC,

WDC, it is only 33, 22, 23, 34 and 28 respectively. Mean-

while, we analyze the links between top ranked proteins.

As the number of links between top ranked proteins is dif-

ferent for various methods, we calculate the proportion

of the links between essential proteins (Ess-Ess), between

essential proteins and nonessential proteins (Ess-Noness),

and between nonessential proteins (Noness-Noness). In

Fig. 5, red, blue and green links represent Noness-Noness,

Ess-Noness and Ess-Ess interactions respectively. From

the Fig. 5, it is easy to find for SCP, the number of Noness-

Noness interactions is much less than those of the other

methods. For Ess-Ess and Ess-Noness interactions, it is

not easy to distinguish the difference of all the meth-

ods as these kinds of links are too many. Therefore, in

order to show more details of the comparison of SCP and

other methods, many experiments are carried out shown

in Table 1. It shows the proportions of Ess-Ess, Ess-Noness

and Noness-Noness from top 100 to top 400 ranked pro-

teins for all six methods. From the table, it shows SCP

obtained the best performance of all the methods. For

instance, in the top 100 ranked proteins, the proportion

of Noness-Noness for our method is only 4.11%, which

is much lower than other methods, while the proportion

of Ess-Ess for our method is up to 63.58%, which is the

highest of all the methods.

Table 1 Analysis of link proportion

Top Link CIC DC NC PeC WDC SCP

100 Ess-Ess 44.64% 27.82% 18.34% 42.22% 26.43% 63.58%

Ess-Noness 43.21% 45.86% 45.52% 35.91% 44.92% 32.31%

Noness-Noness 12.15% 26.32% 36.14% 21.87% 28.64% 4.11%

200 Ess-Ess 45.91% 26.78% 23.86% 35.74% 34.03% 66.05%

Ess-Noness 41.70% 47.80% 42.88% 35.94% 41.50% 28.21%

Noness-Noness 12.39% 25.33% 33.27% 28.32% 24.46% 5.74%

300 Ess-Ess 45.74% 23.58% 30.33% 37.20% 35.02% 53.90%

Ess-Noness 41.68% 47.01% 42.62% 36.18% 40.96% 35.84%

Noness-Noness 12.58% 29.41% 27.05% 26.62% 24.02% 10.26%

400 Ess-Ess 46.15% 23.74% 30.89% 39.58% 35.35% 51.23%

Ess-Noness 40.94% 46.22% 42.36% 36.39% 40.96% 37.20%

Noness-Noness 12.92% 30.04% 26.75% 24.04% 23.70% 11.56%

(Optimal values are denoted by boldface)
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Table 2 Number of essential proteins in top ranked proteins

from SCP on various value of λ

λ 1% 5% 10% 15% 20% 25%

0 45 173 335 437 521 589

0.5 51 224 399 520 609 714

1 49 216 403 517 603 700

(Optimal values are denoted by boldface)

The analysis of parameter λ

In this section, we discuss the selection of parameter λ.

As the prediction of essential proteins is an unsupervised

learning procedure, we can’t learn a best parameter λ from

the data. Therefore, we only choose λ ∈ {0, 0.5, 1} to

analyze the performance of our algorithm SCP. In reality,

when λ = 0, the results of SCP only come from IPCC.

Conversely, the results will only be calculated by MPR

when λ = 1. In this paper, we chose λ as 0.5, which means

the results of SCP integrate MPR and IPCC. In order to

compare the performance of the method on various λ,

we calculate the number of essential proteins at differ-

ent top percentages of ranked proteins (top 1%, 5%, 10%,

15%, 20%, 25%). From Table 2, it demonstrates that when

λ = 0.5, SCP obtains the best performance. Therefore, in

this paper the parameter λ is set as 0.5. As a result, SCP

successfully integrates the results of MPR and IPCC and

has achieved a great boost on the performance of essential

proteins prediction.

The analysis of the performance of CIC and SCP

In this section, we will analyze the performance of CIC

and SCP. Both CIC and SCP utilize the subcellular local-

ization information to predict the essential proteins, while

SCP also use the information of the gene expression data.

Therefore, we will compare CIC with modified PageR-

ank (MPR), part of our method SCP, which only uses the

subcellular localization information as CIC does to pre-

dict essential proteins. The results are shown in Table 3.

Although the performance of MPR is worse than SCP,

MPR achieves better performance than CIC inmost cases,

except for top 15 and 20 percentages, where the number

of essential proteins identified by MPR is a little less than

those does by CIC.

Table 3 Number of essential proteins in top ranked proteins

identified by CIC, MPR and SCP

Method 1% 5% 10% 15% 20% 25%

CIC 42 209 384 518 608 675

MPR 49 216 403 517 603 700

SCP 51 224 399 520 609 714

(Optimal values are denoted by boldface)

Conclusion
Essential proteins are crucial to the development and sur-

vival of life. Many computational methods are proposed

to detect essential proteins based on biological and topo-

logical features of proteins. In our study, we also found

that integration of information from multiple sources can

boost the identification of essential proteins. Specifically,

the utilization of subcellular localization information

can make a remarkable contribution to the prediction

of essential proteins. In this paper, a SCP method is

proposed, which integrates the ranking function by a

modified PageRank algorithm with weighted subcellular

localization with Pearson correlation coefficient based on

gene expression data. Several experiments are carried out

to compare the performance of SCP with five other meth-

ods in identification of essential proteins. Experimental

results show that our method SCP performs the best

among all six methods.
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