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Abstract. The occurrence of climate warming is unequivo-

cal, and is expected to be experienced through increases in

the magnitude and frequency of extreme events, including

flooding. This paper presents an analysis of the implications

of climate change on the future flood hazard in the Beijiang

River basin in South China, using a variable infiltration ca-

pacity (VIC) model. Uncertainty is considered by employing

five global climate models (GCMs), three emission scenarios

(representative concentration pathway (RCP) 2.6, RCP4.5,

and RCP8.5), 10 downscaling simulations for each emis-

sion scenario, and two stages of future periods (2020–2050,

2050–2080). Credibility of the projected changes in floods is

described using an uncertainty expression approach, as rec-

ommended by the Fifth Assessment Report (AR5) of the In-

tergovernmental Panel on Climate Change (IPCC). The re-

sults suggest that the VIC model shows a good performance

in simulating extreme floods, with a daily runoff Nash–

Sutcliffe efficiency coefficient (NSE) of 0.91. The GCMs and

emission scenarios are a large source of uncertainty in pre-

dictions of future floods over the study region, although the

overall uncertainty range for changes in historical extreme

precipitation and flood magnitudes are well represented by

the five GCMs. During the periods 2020–2050 and 2050–

2080, annual maximum 1-day discharges (AMX1d) and an-

nual maximum 7-day flood volumes (AMX7fv) are expected

to show very similar trends, with the largest possibility of in-

creasing trends occurring under the RCP2.6 scenario, and the

smallest possibility of increasing trends under the RCP4.5

scenario. The projected ranges of AMX1d and AMX7fv

show relatively large variability under different future sce-

narios in the five GCMs, but most project an increase during

the two future periods (relative to the baseline period 1970–

2000).

1 Introduction

Recent research indicates that extreme precipitation is very

likely (greater than 90 % probability) to become more intense

and more frequent over most of the mid-latitude land masses

and wet tropical regions (IPCC, 2013). Increases in extreme

precipitation are expected to trigger floods, and the associ-

ated impacts will cause probable loss of life and economic

damage. It is therefore extremely important to gain an un-

derstanding of the projected changes in extreme flood events

under climate change.

The most useful tool for investigating the impacts of cli-

mate change on floods is a hydrological model driven by out-

puts from global climate models (GCMs). GCMs are consid-

ered to be the most essential and feasible tools for use in sup-

plying useful climate information on global or large scales.

However, GCMs generate outputs at a relatively coarse grid

scale (of a few hundred kilometres), and therefore their out-

puts cannot be directly used in climate impact studies at

a catchment scale (Sachindra et al., 2014a). Downscaling

techniques (e.g. dynamical downscaling and statistical down-

scaling) are therefore normally used to link coarse resolu-

tion GCM outputs with catchment-scale climatic variables

(Sachindra et al., 2014b). Dynamical downscaling is per-

formed through regional climate models (RCMs) or limited-

area models (LAMs) (Fowler et al., 2007), whereas sta-

tistical downscaling defines the empirical relationships be-

tween large-scale variable fields (e.g. climate model outputs)
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and local-scale surface conditions, and translates large-scale

GCM outputs onto a finer resolution (Fowler et al., 2007;

Tisseuil et al., 2010). Because of the lower computational

requirement of statistical downscaling in comparison with

those required of dynamical downscaling, it has been widely

used in climate-impact-related research work (Sachindra et

al., 2014a, b; Tisseuil et al., 2010). However, despite the

increase in resolution, downscaling simulation results (e.g.

RCM) often remain too biased to be used directly in impact

models such as hydrological models (Bennett et al., 2014).

Therefore, to obtain a realistic output for hydrological sim-

ulations forced by future climate, certain statistical bias cor-

rection methodologies that involve particular forms of trans-

fer function derived from cumulative distribution functions

of observations and model simulations have been developed

to produce corrected GCM/RCM simulations (e.g. Bennett

et al., 2014; Li et al., 2010). Based on the data provided by

GCMs, numerous studies have investigated the effects of cli-

mate change on regional floods over the world, including in

Europe (Feyen et al., 2012), Germany (Huang et al., 2013),

Bangladesh (Mirza et al., 2003), Britain (Kay and Jones,

2012), and China (e.g. Liu et al., 2013; Wu et al., 2014b;

Xiao et al., 2013; Xu et al., 2013).

In southern China, there has been a proven increase in the

frequency of flood occurrence since the 1980s, particularly

in the Beijiang River basin, a northeastern tributary of the

Zhujiang River (Wu et al., 2013). To our knowledge, only

two studies have previously investigated the effects of cli-

mate change on extreme floods over the Beijiang River basin

(Wu et al., 2014b; Xiao et al., 2013). Furthermore, a large un-

certainty is apparent in the projected values of these studies.

It is well known that a multitude of sources of uncertainty

are involved in analysis of the impact of climate change, in-

cluding GCM structure, downscaling from GCMs, emission

scenarios, and the hydrological models used and their param-

eters (Chen et al., 2011; Kay et al., 2009; Liu et al., 2013).

Among these, GCM structure uncertainty is likely to be the

largest source of uncertainty in relation to the hydrological

impacts of climate change (Kay et al., 2009; Prudhomme and

Davies, 2009). It is therefore necessary to perform additional

comparative analyses on the prediction of future floods over

the Beijiang River basin to lower the uncertainty of future

climate projections.

As a case study, we use a typical high-risk flooding area

of the Beijiang River basin, and aim to explore the response

of floods to climate change as derived from the CMIP5 cli-

mate models, using a large-scale semi-distributed hydrologi-

cal model. However, this study differs from previous studies,

as it focuses on a comparison of the different GCMs and dif-

ferent climate change scenarios using different stages of the

future period. In addition, to highlight the uncertainty of the

results, this study uses a new approach in uncertainty expres-

sion to describe the credibility of projected changes in floods.

2 Data and methodology

2.1 Study area

The study area called the Feilaixia catchment is located in

the upstream of the Beijiang River (Fig. 1). Feilaixia catch-

ment has a drainage area of approximately 34 097 km2 and

accounts for 73 % of the Beijiang River basin. It consists of

four main tributaries, the Wujiang River, Zhenjiang River,

Lianjiang River, and Wengjiang River (Fig. 1). The Hengshi

hydrologic station, located at the outlet of the basin, is the

discharge station of the Feilaixia catchment (Fig. 1). The re-

gion is an important water source for Guangdong province,

one of the most developed areas of China. The climate of the

region is warm, wet tropical to subtropical, and precipitation

during the flood season (April to September) accounts for

70–80 % of the annual precipitation. Due to climate warm-

ing, extreme rainfall events are recently occurring more fre-

quently in the Feilaixia catchment (Wu et al., 2014a), which

leads to more intense and frequent flooding (e.g. the large

floods in June and August 1994, June 1998, June 2005, and

July 2006), causing extensive inundations and severe flood

damage. This is a serious threat to the flood control safety of

Guangzhou city (one of the largest cities in South China) and

other areas located in the downstream of the Beijiang basin.

For example, the study region experienced the worst flood of

the twentieth century in 1994, affecting two million people,

and leading to the loss of RMB 3.2 billion (Wong and Zhao,

2001). It is therefore imperative to understand the projected

changes in flood risk of this basin.

2.2 Data sets

Data used in this study include digital elevation model

(DEM), vegetation cover, soil properties, and observed

hydro-meteorological data. The DEM (at a resolution of

90 m) was derived from the International Scientific & Techni-

cal Data Mirror Site, Computer Network Information Center,

Chinese Academy of Sciences. Vegetation coverage data sets

were collected from the University of Maryland, and provide

information on global land classification at a 1 km resolu-

tion (Hansen et al., 2000). The classification of soil texture

at a resolution of 1 km based on the Harmonized World Soil

Database (HWSD) was provided by the Food and Agricul-

ture Organization of the United Nations and the International

Institute for Applied Systems Analysis.

Daily hydrological data as recorded at 27 rainfall stations

and 1 discharge station (Fig. 1) were provided by the Hydrol-

ogy Bureau of Guangdong Province, China. Daily maximum

and minimum temperature data from four stations were pro-

vided by Meteorological Data Sharing Service System, Na-

tional Meteorological Information Center, China Meteoro-

logical Administration (http://cdc.cma.gov.cn/home.do). The

data sets from all the stations spanned over the period from

1969 to 2011.
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Figure 1. Map showing the location of study catchment.

2.3 CMIP5 climate models

CMIP5 is the Coupled Model Intercomparison Project Phase

5, which provides a framework for coordinated climate

change experiments for the next several years and includes

simulations for assessment in the AR5 as well as for other

assessment reports that extend beyond the AR5 (Taylor et

al., 2012). Relative to earlier phases, CMIP5 focuses on a set

of experiments that include higher spatial resolution mod-

els, improved model physics, and a richer set of output fields

(Gulizia and Camilloni, 2015; Taylor et al., 2012). Addition-

ally, the CMIP5 climate change projections are driven by new

climate scenarios that use a time series of emissions and con-

centrations from the representative concentration pathways

(RCPs) described in Moss et al. (2010). Accordingly, GCMs

provided by the CMIP5 have been widely used in the assess-

ment of climate change (Gulizia and Camilloni, 2015; Pierce

et al., 2013; Smith et al., 2013).

When using multiple GCMs to assess future climate

change, the underlying assumption is that different models

provide statistically independent information. In fact, mod-

els usually share physical parameterization schemes, and at

times, even large parts of the same code (Pincus et al., 2008),

which could lead to similar weaknesses among the mod-

els. Pennell and Reichler (2011) evaluated 24 state-of-the-

art models of the CMIP3 and their ability to simulate broad

aspects of twentieth-century climate, and found that the ef-

fective number of models (the amount of statistically inde-

pendent information in the simulations) was significantly less

than the actual number of models. Xiao et al. (2013) applied

the hierarchical cluster analysis to analyse the precipitation

simulation similarity of 47 CMIP5 GCMs over the Zhujiang

River basin, and suggested that the 47 GCMs can be classi-

fied into five types.

According to Xiao et al. (2013), five CMIP5 GCMs

(i.e. BCC-CSM1.1, CanESM2, CSIRO-Mk3.6.0, GISS-E2-

R, and MPI-ESM-LR), which are independent from each

other and have a good performance in current climate sim-

ulation for the Zhujiang River basin, were used in this study.

The GCMs data (precipitation and temperature) used include

(1) an historical simulation for the period 1970–2000 and (2)

three new scenarios (RCP2.6, RCP4.5, and RCP8.5) for two

different future periods (2020–2050 and 2050–2080).

To generate local climate conditions (e. g. temperature and

precipitation) from GCMs, a simple statistical downscaling

method was performed as follows. First, the model data and

observed station data were interpolated to 0.25◦ resolution

using bilinear interpolation. Second, the bias between the

monthly precipitation and temperature of the observed and

GCM output data was corrected using a quantile-based map-

ping method (Li et al., 2010) to reduce system errors in GCM

simulations. Finally, a stochastic weather generation method

was employed to temporally disaggregate the monthly cor-

rected climate projections into the daily weather forcings re-

quired by the hydrological model. To consider the range of

variability that this randomness could induce, multiple down-

scaling simulations were performed for each emissions sce-

nario (Raff et al., 2009). The simulation set size of this study

was arbitrarily set to 10 simulations (i.e. 10 downscaling

samples).

2.4 Methodology

Variable infiltration capacity (VIC) model developed by

Liang et al. (1994) is a semi-distributed hydrological model

based on a spatial distribution grid. It can simulate the physi-

cal exchange of water and energy among the atmosphere, soil

and vegetation in a surface vegetation–atmospheric trans-

fer scheme. Further detailed information relating to the

VIC can be obtained from University of Washington’s web-

site (www.hydro.washington.edu/Lettenmaier/Models/VIC/

index.shtml). As a typical land surface hydrological model,

the VIC model has been successfully applied to assess the

impact of climate change on hydrology over the Zhujiang

River basin (Wang et al., 2012; Wu et al., 2014b; Xiao et

al., 2013). In this study, the model VIC 4.1.2b is used to

simulate only the water balance, and is run over a regional

domain consisting of 69 grid points at a spatial resolution

of 0.25◦
× 0.25◦ . Meanwhile, the Dag Lohmann model (Ni-

jssen et al., 1997), a routing model, is used for transporting

the grid cell surface runoff and baseflow produced by the VIC

model within each grid cell to the outlet of that grid cell and

then into the river system.

The Mann–Kendall trend test (Mann, 1945; Kendall,

1975) is a nonparametric method to detect the significance

of monotonic trends in hydrometeorological series. In this

study, we apply the Mann–Kendall method to detect statisti-

cal significance of trends in future streamflow series as pro-

jected by GCMs. Here, two styles of trends tested are consid-
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ered: trends tested without considering a level of significance

and statistically significant trends at the 0.1 level. In addition,

the Sen (1968) nonparametric trend slope estimator was used

to estimate the trends magnitude in discharge.

The qualifier of likelihood, which provides calibrated lan-

guage for describing quantified uncertainty, can be used to

express a probabilistic estimate of the occurrence of a single

event or of an outcome (IPCC, 2013). In this study, a total of

50 simulations for each projection of five GCMs were con-

sidered as a whole, and then likelihood terms associated with

outcomes were defined as follows (IPCC, 2013): very likely:

90–100 %; likely: 66–90 %; more likely than not: 50–66 %;

about as likely as not: 33–50 %; unlikely: 10–33 %; very un-

likely: 0–10 %.

We also use the qualifier very likely when, for example,

the percentage of samples for one emission scenario shows

increasing or decreasing trends of up to 90 %, we conclude

that this trend (either increasing or decreasing) is very likely

to occur.

3 Results and analysis

3.1 VIC Model validation

Observed forcing data required by VIC model were gener-

ated based on 27 rainfall stations with daily precipitation

data, and four temperature stations with daily maximum and

minimum temperature data. The recorded data series was

divided into two periods: the period 1969–1990 for model

calibration and the period 1991–1999 for model validation.

The efficacy of the simulation results was evaluated using the

Nash–Sutcliffe efficiency coefficient (NSE) and relative error

(RE). Simulated and observed daily discharge and maximum

1(7)-day runoff depths at the Hengshi hydrologic station are

illustrated in Fig. 2.

As shown in Fig. 2a, the values of the NSE for the cali-

bration and validation stages are 0.88 and 0.91, respectively,

while the values of the RE are 11.88 and 3.67 %, respec-

tively. The VIC model is accurate in simulating daily stream-

flow, with a high simulation precision of the flood peak in the

flood season. In addition, VIC is also successful at simulat-

ing maximum 1-day and 7-day runoff depths, with high cor-

relation coefficients above 0.95 (Fig. 2b and c). These results

indicate that the model has a good performance in simulat-

ing both daily streamflow and extreme floods in the selected

catchment, and can therefore be used to estimate the potential

impacts of climate change on floods.

3.2 Comparison of GCM simulations with observations

To assess the performance of the downscaling outputs from

GCMs in simulating extreme precipitation, we compared

the empirical cumulative distribution functions (ECDFs) of

downscaled annual maximum 1-day and 7-day precipita-

tion (AMX1p and AMX7p, respectively) against the corre-
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Figure 2. Comparison of the simulated and observed runoff at the

Hengshi hydrologic station during the period 1969–1999. (a) A

comparison of simulated and observed discharges, (b) a compari-

son of simulated and observed maximum 1-day runoff depth, and

(c) a comparison of simulated and observed maximum 7-day runoff

depth.

sponding observations (Fig. 3a and b). The ECDFs of the

10 simulations for each GCM are able to encompass a rel-

atively wide distribution of AMX1p and AMX7p. In terms

of the five models, BCC-CSM1.1 and MPI-ESM-LR per-

form better than the others, but there are relatively large

differences between the performances of all the models.

For example, CanESM2 underestimates AMX1p for non-

exceedance probabilities up to approximately 0.8, and un-

derestimates AMX7p for non-exceedance probabilities up to

approximately 1.0. In addition, some models have a tendency

to overestimate maximum values. For example in the case
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Figure 3. ECDFs for precipitation and floods during the period 1970–2000: (a) observed and downscaled AMX1p, (b) observed and down-

scaled AMX7p, (c) observed and simulated AMX1d, and (d) observed and simulated AMX7fv. Red line represents the observed. Grey lines

represent model simulations.
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of CSIRO-Mk3.6.0, the tail of the distribution of projection-

driven extreme precipitation begins to deviate significantly at

the non-exceedance probability of approximately 0.9 to 1.0.

Nevertheless, overall the five GCMs are able to simulate the

range of extreme precipitation variability.

3.3 Evaluation of flood simulations by GCMs

This section is devoted to an evaluation of the flood simu-

lation ability of each GCM. The VIC model was driven by

10 downscaling simulations for each GCM during the period

1970–2000. Figure 3c and d show the ECDFs of observed

and simulated annual maximum 1-day discharges (AMX1d)

and maximum 7-day flood volumes (AMX7fv) at the Heng-

shi hydrologic station during the period 1970–2000.

Compared to Fig. 3a and b, it can be seen that the fre-

quency distribution of extreme floods is very similar to that of

precipitation. In contrast, results from individual model en-

sembles show different characteristics. For example, an over-

estimation of floods is present in CSIRO-Mk3.6.0, while an

underestimation of floods is found in CanESM2 and GISS-

E2-R; such differences can be explained by the patterns

of temperature and precipitation behaviour in each model.

However, overall, the simulation sequences from the five

GCMs proficiently capture the observed historical extreme

floods in the study catchment (five GCMs simulation in

Fig. 3c and d); the uncertainty range for changes in flood

magnitude is well represented by the five GCMs as a whole.

3.4 Trend analysis for extreme floods in future periods

To understand the trends in projected extreme flood events,

the trends magnitudes in AMX1d and AMX7fv during two

different future periods were calculated (Fig. 4). Overall, the

trends magnitudes in the samples for AMX1d and AMX7fv

show very similar characteristics during the two future pe-

riods. GCMs are often considered to produce a large uncer-

tainty in predictions of future floods, and as expected, there

is a difference in projected trends over the study area from

the different GCMs. Using the RCP2.6 scenario for exam-

ple, most samples of AMX1d experience increasing trends

in the BCC-CSM1.1, CanESM2 and CSIRO-Mk3.6.0 mod-

els during the period 2020–2050. However, few samples with

increasing trends can be found in the GISS-E2-R and MPI-

ESM-LR models. Additionally, the uncertainty produced by

the emission scenarios is also large here. For the same GCM,

the number of samples with increasing trends varies from

scenario to scenario. If we examine the BCC-CSM1.1 model

for example, there is an increasing trend for most samples of

AMX1d and AMX7fv during the period 2020–2050 under

the RCP2.6 scenario, but for few samples under the RCP4.5

scenario, and then for approximately half of samples under

the RCP8.5 scenario.

Table 1 shows the percentage of samples with increasing

trends of AMX1d and AMX7fv in two different future peri-

ods, based on five GCMs. According to the definition of as-

sessed likelihood in Sect. 2.4, the credibility of occurrence of

the trends in AMX1d and AMX7fv can be described here. In

terms of emission scenarios, the largest possibility of increas-

ing trends in AMX1d and AMX7fv is found for the RCP2.6

scenario. In this case, the increasing trends are projected to

be more likely than not to occur from 2020–2050, and likely

to occur from 2050 to 2080. In contrast, there is the smallest

possibility (about as likely as not) of increasing trends un-

der the RCP4.5 scenario during two different future periods.

Under the RCP8.5 scenario, both AMX1d and AMX7fv are

more likely than not to show increasing trends in 2020–2050,

but in 2050–2080 they are likely and more likely than not to

show increasing trends, respectively.

It should be noted here that the uncertainty analysis above

focuses on the trend direction without considering the signif-

icance level. However, if we consider the trends with a sig-

nificance level, it can be seen that among the samples with

increasing trends, few (no more than 10 % probability) pass

the significance test at the 0.1 level, indicating that most of

trends in this study are not significant.

3.5 Uncertainty range for extreme floods in future

periods

This section discusses the uncertainty range of extreme

floods during two future periods. Each simulated projection

is a 31-year time period for a total of 310 simulated years

per scenario. All 310 simulated AMX1d and AMX7fv were

pooled to create an uncertainty range for each emission sce-

nario.

From Fig. 6 it can be seen that the projected ranges of

AMX1d and AMX7fv display very similar characteristics

in all of the different future scenarios of five GCMs. How-

ever, there is a relatively large difference in projected changes

from different GCMs and emission scenarios. Furthermore,

the uncertainty from GCMs is generally larger than that of

the emission scenarios. For example, under the RCP2.6 sce-

nario in 2020–2050, the maximum value of AMX1d pro-

jected by CanESM2 is less than 18 000 m3 s−1, whereas the

maximum value of AMX1d projected by CSIRO-Mk3.6.0

even exceeds 42 000 m3 s−1. In addition, overall, the largest

and smallest ranges of AMX1d and AMX7fv are projected

by CSIRO-Mk3.6.0 and GISS-E2-R, respectively. Compared

to the baseline period 1970–2000, the boxes in Fig. 6 are lo-

cated in the higher position for most future scenarios of five

GCMs, especially for BCC-CSM1.1 and MPI-ESM-LR. This

means that the possibility of a projected increase in extreme

floods is larger than that of a projected decrease. When com-

paring two different future periods, it can be found that the

projected changes in 2050–2080 would be larger than those

in 2020–2050 for most of future scenarios.

To explore the elasticity of floods to extreme precipitation,

we show the uncertainty range of precipitation (AMX1p and

AMX7p) (Fig. 5), and the percent changes of floods (AMX1d

www.hydrol-earth-syst-sci.net/19/1385/2015/ Hydrol. Earth Syst. Sci., 19, 1385–1399, 2015
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Figure 4. Trends per annum for ten simulated samples of (a) AMX1d and (b) AMX7fv under different emission scenarios.

Table 1. Percentage of samples with increasing trends of AMX1d

and AMX7fv in future periods based on five GCMs.

Flood Emissions 2020–2050 2050–2080

index scenarios IT SIT IT SIT

AMX1d

RCP2.6 60 10 74 10

RCP4.5 44 2 38 2

RCP8.5 54 2 72 8

AMX7fv

RCP2.6 60 8 68 10

RCP4.5 44 2 44 0

RCP8.5 58 2 62 10

IT, increasing trend; SIT, significant increasing trend (significant at the

0.1 level)

and AMX7fv) in response to the precipitation (AMX1p and

AMX7p) (Table 2). A comparison of Figs. 5 and 6 shows

that the projected ranges of precipitation and floods display

very similar characteristics in all of the different future sce-

narios of five models. In addition, the projected changes in

floods are found to be closely associated with the changes

in precipitation during the two future periods (Table 2). For

example in the case of CanESM2, when the AMX1p in-

creases 4.55, 17.84, and 9.72 % during the period 2020–

2050 under the RCP2.6, RCP4.5, and RCP8.5 scenarios, re-

spectively, the AMX1d increases 2.35, 19.86, and 11.94 %,

respectively. In contrast, there are some inconsistences be-

tween precipitation and floods for some models. For exam-

ple, the AMX1p increases 0.52 % in 2020–2050 under the

RCP2.6 scenario of the BCC-CSM1.1 model, whereas the

AMX1d decreases −5.54 %. This indicates that the projected

changes in floods are influenced not only by precipitation

but also by other climate-related factors, such as tempera-

ture. However, overall, the flood changes are very sensitive

to precipitation changes in the study region.

3.6 Average changes in extreme floods in future periods

Based on 10 simulations for each emission scenario, the av-

erage changes in extreme floods for each future scenario are

analysed in this section. Here, the average for each future

scenario is the arithmetic average of 10 simulations. To com-

pare the frequency of extreme floods between baseline and

Hydrol. Earth Syst. Sci., 19, 1385–1399, 2015 www.hydrol-earth-syst-sci.net/19/1385/2015/
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Figure 5. Uncertainty range of (a) AMX1p and (b) AMX7p under different emission scenarios. Box plots: the central mark is the median;

the small square inside the box is the average; the box edges are the 25th and 75th percentiles; the whiskers extend to the 1st and 99th

percentiles.

future periods, P-III frequency distributions are plotted for

comparison (Fig. 7). When the frequency is less than 10 %,

most future scenarios of the five models suggest a rather

similar increasing trend in AMX1d and AMX7fv, where the

largest projected increases (absolute change) are found for

the CSIRO-Mk3.6.0 model, and the smallest increases for the

GISS-E2-R model. In terms of two different future periods,

the projected increases in 2050–2080 are larger than those in

2020–2050 for most future scenarios. In particular, the BCC-

CSM1.1 model projects a maximum increase (p < 10 %) in

AMX1d and AMX7fv for the RCP4.5 and RCP8.5 scenarios

during 2050–2080 and a minimum increase for the RCP2.6

scenario during 2020–2050. For the CanESM2 model, a

maximum increase (p < 10 %) is found for the RCP4.5 sce-

nario during 2020–2050, while the opposite tendency (de-

crease) is found for the RCP2.6 scenario during both 2020–

2050 and 2050–2080. CSIRO-Mk3.6.0 projects a large in-

crease in AMX1d and AMX7fv for the RCP2.6 scenario

during 2020–2050 and for the RCP8.5 scenario in 2050–

2080, but projects a clear reduction for the RCP4.5 scenario

in 2020–2050. Compared to other models, the GISS-E2-R

model projects a relatively small change in future periods,

where there is a maximum increase for the RCP2.6 scenario

during 2050–2080 and a maximum decrease for the RCP8.5

scenario during 2020–2050. For the MPI-ESM-LR model,

the projected increases are found for all of the different fu-

ture scenarios, which is similar to that of the BCC-CSM1.1

model.

To further investigate the percentage changes in AMX1d

and AMX7fv, three different return periods (100 yr, 50 yr and

20 yr) were chosen (Table 3). Due to the uncertainty from

GCMs, there is a relatively large variability in the results
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Table 2. Percentage changes (%) in AMX1p, AMX7p, AMX1d and AMX7fv under different scenarios (relative to the baseline period

1970–2000)

Index Emissions 2020–2050 2050–2080

scenarios a b c d e a b c d e

AMX1p

RCP2.6 0.52 4.55 8.60 3.99 3.52 13.33 4.42 15.01 1.87 2.01

RCP4.5 17.19 17.84 5.78 2.09 11.45 24.51 15.33 25.20 −1.32 16.42

RCP8.5 9.57 9.72 13.55 −3.78 7.48 20.85 8.37 27.74 −1.73 8.61

AMX1d

RCP2.6 −5.54 2.35 1.70 4.52 5.62 12.59 3.01 14.26 1.18 0.55

RCP4.5 17.09 19.86 1.08 1.55 8.75 32.57 21.46 26.69 −2.09 13.57

RCP8.5 7.50 11.94 6.36 −10.05 0.78 22.27 13.06 30.05 −5.08 4.93

AMX7p

RCP2.6 −6.69 5.54 5.78 −0.12 0.66 8.88 4.58 12.25 0.39 −2.89

RCP4.5 9.43 14.17 5.79 0.22 6.18 22.02 17.79 23.25 −2.42 9.96

RCP8.5 3.88 6.58 11.08 −6.60 0.14 14.03 11.98 21.43 −5.18 3.00

AMX7fv

RCP2.6 −6.85 2.97 1.00 3.31 5.62 11.95 2.81 14.41 1.29 −1.32

RCP4.5 12.55 18.25 0.44 1.21 7.40 29.77 22.03 27.80 −2.33 11.09

RCP8.5 4.01 10.35 6.37 −10.25 −0.91 18.70 13.32 28.03 −4.91 3.41

a, BCC-CSM1.1; b, CanESM2; c, CSIRO-Mk3.6.0; d, GISS-E2-R; e, MPI-ESM-LR
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Figure 6. Uncertainty range of (a) AMX1d and (b) AMX7fv under different emission scenarios. Box plots: the central mark is the median;

the small square inside the box is the average; the box edges are the 25th and 75th percentiles; the whiskers extend to the 1st and 99th

percentiles.
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Figure 7. P-III frequency distributions of (a) AMX1d and (b) AMX7fv under different emission scenarios during two different future periods.
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from the five GCMs. Nevertheless, most of GCMs project

an increase during two future periods. As shown in Table 3,

the largest percentage increases in AMX1d and AMX7fv

are mainly found for the RCP4.5 scenario of the CanESM2

model in 2020–2050 (91.0 % in AMX1d and 80.1 % in

AMX7fv for the 100 yr return period). In comparison, the

largest percentage decreases in AMX1d and AMX7fv are

mainly found for the RCP4.5 scenario of the CSIRO-Mk3.6.0

model in 2020–2050 (−11.3 % in AMX1d and −16.8 % in

AMX7fv for the 100 yr return period). When considering the

results from all future scenarios of the five models, the range

of percentage changes are described here. For AMX1d, the

percentage changes in the 100-year return period range from

−11.3 to 91 % in 2020–2050, and from −1.2 to 74.7 % in

2050–2080. For AMX7fv, the percentage changes in the 100-

year return period range from −16.8 to 80.1 % in 2020–2050,

and from −2.9 to 71.8 % in 2050–2080 (Table 3).

4 Discussion

The impact of climate change on extreme floods in the

Beijiang River basin were analysed in this study, and the

majority of modelling results informed by the five CMIP5

GCMs show a projected increase in floods. These findings

are somewhat consistent with several previous studies. Xiao

et al. (2013) concluded that the risk of flood in the Beijiang

River basin would be more likely than not to increase un-

der the RCP4.5 scenario. Based on four emission scenar-

ios (A1B, RCP2.6, RCP4.5, and RCP8.5), Wu et al. (2014b)

found an increase of 4.35–9.18 % in the 500-year return pe-

riod for daily discharge in the upstream of the Beijiang River

basin. Evidence has been obtained to show that the Beijiang

River basin is likely to experience an increase in episodes of

flooding in the following several decades.

In this study, we used five GCMs, three emission scenar-

ios, 10 downscaling simulations for each emission scenario,

two stages of the future period, and one hydrological model

to discuss the possible range of projected changes in extreme

floods. The results indicate that GCMs and emission scenar-

ios produce a large range of uncertainty in flood projections

in future climate conditions, which corroborates the previous

findings of Chen et al. (2011), Kay et al. (2009), and Prud-

homme and Davies (2009). In other words, the inconsistency

in the projected changes (as produced by the various GCMs

and the emission scenarios) highlights the impact of poten-

tial misleading conclusions if only one GCM scenario were

to be used for impact studies. Meanwhile, it should be kept

in mind that some other uncertainty sources, such as down-

scaling techniques and the hydrological model structure and

its parameters, were overlooked in this study. Several pre-

vious studies have shown that the uncertainty sourced from

the GCMs is much larger than those in downscaling tech-

niques and hydrological models (Prudhomme and Davies,

2009; Teng et al., 2012), although this does not imply that

uncertainty stemming from downscaling techniques and hy-

drological models should be ignored in impact studies. Tak-

ing the VIC model used in this study as an example, daily es-

timations of evapotranspiration (ET) in the model are made

according to information received for relative humidity, wind

speed, and long- and short-wave incoming radiation (Bohn et

al., 2013). However, due to the limited coverage of meteoro-

logical data, VIC is normally forced by daily data of maxi-

mum and minimum temperatures and precipitation, which is

a common practice in many studies worldwide (e.g. Wu et al.,

2014b; Xiao et al., 2013). Pierce et al. (2013) found that this

approach can result in opposite humidity trends for GCMs,

which then affect simulated runoff under future scenarios. In

addition, when using a hydrological model to assess the im-

pact of climate change, there is an implicit assumption that

the hydrological model parameters calibrated from observa-

tions remain valid for future climatic conditions (Xu et al.,

2013). However, Merz et al. (2011) pointed that hydrologi-

cal model parameters may potentially change if calibrated to

different periods, and such a concept has important implica-

tions in climate impact analyses. Therefore, a next step of this

study is a thorough investigation of the uncertainty produced

by hydrological model (VIC) structure and its parameters in

the projection of impact of climate change on floods.

To highlight the uncertainty of the results, this paper at-

tempts to describe the credibility of projected flood changes

with an approach using uncertainty expressions, as recom-

mended by the AR5. This provides a quantitative basis for

estimating likelihoods for many aspects of future climate

change. However, the results should be taken with care, as

the likelihood scheme itself is inappropriate for use in sub-

jective evaluation and needs to be supplemented with a quali-

tative framework (Risbey and Kandlikar, 2007). Use of a best

combination of levels of confidence with likelihood, which

provides more powerful means for analysts to express uncer-

tainty, should be considered in future work.

5 Conclusions

Based on five CMIP5 GCMs, this paper discusses the po-

tential impacts of climate change on extreme floods in the

Beijiang River basin. The VIC model was employed to sim-

ulate daily discharge, using 0.25◦ grid cells across the study

area for the historical period (1970–2000) and for two differ-

ent future periods (2020–2050 and 2050–2080). Two flood

indexes (AMX1d and AMX7fv) were chosen for use in anal-

ysis, and uncertainty in future flood trends was considered by

using an uncertainty expressions approach.

Validation of the VIC model suggests that it performs well

in simulating both daily streamflow and extreme floods, and

can thus be used to estimate the potential impacts of climate

change on floods. Modelling results show that there are large

uncertainties sourced from GCMs and emission scenarios.

Overall, the uncertainty range for changes in historical ex-
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Table 3. Percentage changes (%) in AMX1d and AMX7fv for different return periods under different scenarios (relative to the baseline

period 1970–2000).

Flood Return GCM RCP2.6 RCP4.5 RCP8.5

index period (yr) T1 T2 T1 T2 T1 T2

AMX1d

100

BCC-CSM1.1 11.4 40.2 37.1 62.9 39.8 49.6

CanESM2 −8.5 −1.2 91 42.7 25.2 19.7

CSIRO-Mk3.6.0 32 6 −11.3 18.2 8 74.7

GISS-E2-R 19.5 25.7 −0.5 12 −8.2 12.8

MPI-ESM-LR 15 2.1 36.8 41.3 10.3 23

50

BCC-CSM1.1 8.3 36.6 33.9 59.3 34.1 45.1

CanESM2 −7.1 −0.4 77.4 39 23.3 18.4

CSIRO-Mk3.6.0 26.7 8.1 −8.5 20.2 8.2 68.4

GISS-E2-R 16.8 20.5 −0.5 8.7 −9.4 9.6

MPI-ESM-LR 11.9 1.3 31.5 36.3 8 20.4

20

BCC-CSM1.1 3.5 30.9 29.0 53.5 25.5 38.3

CanESM2 −4.8 0.7 57.3 33.5 20.4 16.3

CSIRO-Mk3.6.0 17.8 11.4 −4.0 23.3 8.4 57.6

GISS-E2-R 12.9 12.9 −0.6 3.9 −10.9 4.9

MPI-ESM-LR 7.5 0.2 23.5 28.8 4.6 16.3

AMX7fv

100

BCC-CSM1.1 8.6 50.3 35.8 58.1 27.6 57.8

CanESM2 −5.2 −2.9 80.1 49.5 31.6 29.2

CSIRO-Mk3.6.0 30.2 1.8 −16.8 15.2 9 71.8

GISS-E2-R 14.5 29.5 0.9 18.7 −6.8 9.8

MPI-ESM-LR 12.4 3.4 42.9 45.2 12.2 23

50

BCC-CSM1.1 5.9 44.4 31.5 54.7 23.5 50.3

CanESM2 −4.2 −1.7 68.5 44.7 28.2 26.1

CSIRO-Mk3.6.0 25.1 4.8 −13.4 18 9.3 66

GISS-E2-R 12.3 23.1 0.6 13.9 −8.4 7.3

MPI-ESM-LR 10.6 2.2 36.1 38.6 9.2 20

20

BCC-CSM1.1 1.7 35.5 25.2 49.3 17.3 39.2

CanESM2 −2.7 0.0 51.4 37.6 23.0 21.4

CSIRO-Mk3.6.0 16.7 9.6 −7.9 22.5 9.7 55.9

GISS-E2-R 9.1 14.0 0.1 7.0 −10.6 3.6

MPI-ESM-LR 8.0 0.4 26.2 28.9 4.9 15.5

T1, 2020–2050; T2, 2050–2080

treme precipitation and flood magnitude can be well repre-

sented by the five GCMs.

Trend analysis of projected extreme floods indicates that

AMX1d and AMX7fv show very similar trends during the

two future periods (2020–2050 and 2050–2080). The largest

possibilities (more likely than not and likely) of increasing

trends in AMX1d and AMX7fv were found for the RCP2.6

scenario, whereas the smallest possibilities (about as likely as

not) of increasing trends were found for the RCP4.5 scenario.

There is a relatively large variability in the projected ranges

of AMX1d and AMX7fv under the different future scenarios

in the five GCMs. However, most of models projected an in-

crease during the two future periods (relative to the baseline

period 1970–2000). Overall, the percentage changes in the

100-year return period AMX1d ranged from −11.3 to 91 %,

while the percentage changes in the 100-year return period

AMX7fv ranged from −16.8 to 80.1 %. It must be empha-

sized here that these results should be taken with care, as

some other uncertainty sources, such as downscaling tech-

niques and the hydrological model structure and its parame-

ters, were overlooked in this study. A thorough investigation

of more uncertainty in the projection of impact of climate

change on floods should be considered in future work.
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