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Abstract: Failure analysis and prevention are important to all of the engineering disciplines, especially for the 
aerospace industry. Aircraft accidents are remembered by the public because of the unusually high loss of life and 
broad extent of damage. In this paper, the artificial neural network (ANN) technique for the data processing of on-line 
fatigue crack growth monitoring is proposed after analyzing the general technique for fatigue crack growth data. A 
model for predicting the fatigue crack growth by ANN is presented, which does not need all kinds of materials and 
environment parameters, and only needs to measure the relation between a (length of crack) and N (cyclic times of 
loading) in-service. The feasibility of this model was verified by some examples. It makes up the inadequacy of data 
processing for current technique and on-line monitoring. Hence it has definite realistic meaning for engineering 
application. 
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1. INTRODUCTION 

In spite of decades of investigation, fatigue 

response of materials is yet to be fully understood. 

This is partially due to the complexity of loading at 

which two or more loading axes fluctuate with time. 

Examples of structures experiencing such complex 

loadings are automobile, aircraft, off-shores, 

railways and nuclear plants. Fluctuations of stress 

and/or strains are difficult to avoid in many practical 

engineering situations and are very important in 

design against fatigue failure. There is a worldwide 

need to rehabilitate civil infrastructure. New 

materials and methods are being broadly 

investigated to alleviate current problems and 

provide better and more reliable future services. 

While most industrial failures involve fatigue, the 

assessment of the fatigue reliability of industrial 

components being subjected to various dynamic 

loading situations is one of the most difficult 

engineering problems. This is because material 

degradation processes due to fatigue depend upon 

material characteristics, component geometry, 

loading history and environmental conditions. 

Fatigue is one of the most important problems of 

aircraft arising from their nature as multiple-

component structures, subjected to random dynamic 

loads. The analysis of fatigue crack growth is one of 

the most important tasks in the design and life 

prediction of aircraft fatigue-sensitive structures (for 

instance, wing, fuselage) and their components (for 

instance, aileron or balancing flap as part of the 

wing panel, stringer, etc.). 

An example of in-service cracking from B727 

aircraft (year of manufacture 1981; flight hours not 

available; flight cycles 39,523) [1] is given on Fig.1. 
 

 

 
 

 

 STA 380                                         STA 360 
 

Fig. 1 − Example of in-service cracking  

from B727 aircraft. 
 

 

A test program carried out at DSTO in the early 

1970s involved the full-scale testing of a Mirage 

wing. Final failure and collapse of the wing occurred 
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after 32,372 flights (31,230 simulated test flights 

plus 1,142 pre-test equivalent flights) at a blind hole 

in the AU4SG aluminum alloy lower boom of the 

main spar. This crack surface was measured using 

QF [2]. A simple crack prediction was also carried 

out using a Paris growth law together with a look-up 

table of da/dN data and cycle-by-cycle addition, 

although with no retardation or closure allowances. 

The two curves are presented in Fig. 2. As can be 

seen the measured growth appears to be exponential, 

while the handbook solution is not. A picture of the 

fracture surface is also included. The hole from 

which the crack initiated was about 10 mm in 

diameter. 
 

 
         15,000             25,000             35,000     

 

Flight No. 
 

Fig. 2 − Crack growth in Mirage 1110  

full-scale fatigue test wing. 

 

Fatigue is a mechanism of crack growth. Fatigue 

cracks occur by cyclic loading under lower stress 

condition than the maximum allowable stress. The 

fatigue lifetime prediction of materials subject to 

fatigue crack propagation and the calculation of 

defect tolerance are related with the relationship 

between the crack’s growth rate per cycle (da/dN) 

and the stress intensity factor range ΔK (Fig. 3). 
 

 
                  ΔK (MPa.m)

1/2 

 

Fig. 3 − Result of the fatigue crack growth experiment 

on a aluminum alloy. 

The fatigue crack growing process is classified in 

three regions according to the change of fatigue 

crack growth rate, da/dN (Fig. 3, where the result of 

the fatigue crack growth experiment on a aluminum 

alloy obtained by [3] is presented).  

Region I is a state of crack initiation. The value 

of the stress intensity factor (K) is as low as the 

fatigue threshold (Kth), and the crack growth rate is 

very slow.  

In region II, the crack growth rate increases 

according to the crack length. The crack growth 

condition in region II is the so-called stable crack 

growth.  

In region III, the crack-growth rate quickly 

increases and failure of the material occurs. It is 

called unstable crack growth.  

The boundary between regions II and III is the 

transition point (KTr) [4], and the stress intensity 

factor at failure is known as the fracture toughness 

(Kc).  

The stress intensity factor defines the amplitude 

of the crack tip singularity and is a function of the 

applied nominal stress (σ), the crack length (a), and 

a geometric function (F) [5]: 
 

.πaFK σ=  (1) 
 

In region I, in order to characterize the time-to-

crack initiation (TTCI), X, it may be used the 

following probability density functions (PDF) [6]: 

• Gaussian PDF: 
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where μ and σ are the location and scale parameters, 

respectively; 

• 2 parameters lognormal PDF: 
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where σ and ϑ are the shape and scale parameters, 

respectively; 

• 3 parameters lognormal PDF: 
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where σ, ϑ and γ are the shape, scale and threshold 

parameters, respectively; 

• 2 parameters Weibull PDF: 
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where β and δ are the scale and shape parameters, 

respectively; 

• 3 parameters Weibull PDF: 
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where β, δ and γ are the scale, shape  and threshold 

parameters, respectively. 

From an engineering standpoint, crack initiation 

is considered to be one of the two major periods (I 

and II) in the fatigue life of a component or 

structure. The period of crack initiation or the time-

to-crack initiation (TTCI) is defined as the time in 

cycles or flights or flight hours it takes for a non-

detectable crack from the beginning of fatigue 

loading to grow to a reference crack size a°. The 

reference-crack-size is commonly selected on the 

basis of a detectable crack by the nondestructive 

inspection (NDI) technique. The TTCI distribution is 

physically observable and can be obtained by 

experiments and tests results. Fatigue crack initiation 

and early crack growth in a SENT specimen tested 

with the Fokker 100 Reduced Basic (RB) gust 

spectrum [7] is shown in Fig. 4. The spacings of the 

bands on the fracture surface above the fatigue 

origin correspond to blocks of 5000 flights. 
 

 
                                           fatigue origin 

 

Fig. 4 − Fatigue crack initiation and early crack 

growth in a SENT specimen. 

In region II stable fatigue crack growth 

conditions prevail and the fatigue crack growth rate 

(FCGR) is given by the well-known Paris-Erdogan 

relation [8-10]. In this region, generally, the Paris–

Erdogan formula: 
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is used to analyze fatigue crack growth process data 

and predict remaining life, where da/dN is the crack 

growth per cycle, a is the crack length, N is the 

number of loading cycles, ΔK is the stress intensity 

range, and C and m are material constants that are 

determined experimentally. 

In the linear region II (see Fig. 3), the Paris-

Erdogan Equation (7) is used as follows. Integrating 
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Thus, the crack growth equation representing the 

solution of the differential equation for the Paris-

Erdogan law is given by 
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It should be remarked that (10) could be obtained 

immediately from the Paris−Erdogan law written in 

the form: 
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in which q and b are parameters depending on 

loading spectra, structural/material properties, etc. 

The initial crack size, a0, is usually either found 

by inspection (in this case, a0=a°) or a reasonable 

minimum size of crack is assumed for the analysis 

(in this case, a0 is approximately between 0.02 and 

0.05 mm that was found through quantitative 
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fractography for typical aircraft metallic materials 

[11]). 

The critical crack size, ac, is found from: 
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where Kc is the critical value of stress intensity, K, 

which at the point of fracture is known as fracture 

toughness. When the combination of stress and 

crack size reach the fracture toughness of the 

material, failure occurs. Knowing the fracture 

toughness, Kc, of the material, we can use the stress 

intensity solution (13) to determine the critical crack 

length ac (if we know the stress level σ), or the stress 

level σmax (if we know the crack size a). For 

example, progression of small crack growth with 

cycling is shown in Fig. 5. 

 

 
N = 110,000 cycles N = 130,000 cycles 

 
N = 140,000 cycles N = 160,000 cycles 

 
N = 170,000 cycles N = 180,000 cycles 

 

Fig. 5 − Progression of small crack growth  

with cycling. 

 

The traditional analytical method of engineering 

fracture mechanics (EFM) usually assumes that 

crack size, stress level, material property and crack 

growth rate, etc. are all deterministic values which 

will lead to conservative or very conservative 

outcomes. However, according to many 

experimental results and field data, even in well-

controlled laboratory conditions, crack growth 

results usually show a considerable statistical 

variability (as shown in Fig. 6).  

There are many factors influencing fatigue crack 

growth, including random material inhomogeneities, 

loading frequency, stress ratio, loading waveform, 

geometric size of components and specimens, 

composition, concentration and temperature of 

environment mediums, metallurgical composition 

and heat treatment of materials and many other 

factors. 

From experimental investigations [12-13], fatigue 

crack growth appears as a process with random 

properties. These random properties seem to vary 

both (1) from specimen to specimen and (2) during 

crack growth. 
 

 
                                                                      

Fig. 6 − Fatigue crack propagation curves. 

 
A great number of stochastic models that account 

for the random behavior have been proposed. They 

are based either on suitable “randomized” empirical 

crack growth laws or on data fitting [14-15]. There 

are several randomizations possible: q could be a 

random variable and b a constant; b could be a 

random variable and q a function of b; or both q and 

b could be random variables. This approach to the 

probabilistic modelling of material inhomogeneity 

captures the first type of inhomogeneous behavior, 

but not the second. A second probabilistic approach 

is to let the coefficients of the growth law be 

constants, but allow the fatigue crack growth rate to 

randomly deviate from the growth law from point to 

point along the crack path. This approach captures 

the second type of inhomogeneous behavior, but not 

the first. Models based on stochastic differential 

equations, in fact, are suited to account for this type 

of variability. E.g. Tsurui et al. [16] and Tang and 

Spencer [17] proposed crack growth equations with 

a time-correlated stochastic process. A model with a 
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jump process has been introduced by Lin et al. [18]. 

As the correlation should rather be attributed to the 

spatial dimension, Ortiz and Kiremidjian [19] 

proposed a model, where the correlation of the 

stochastic process depends on the crack length. 

Markov chain models [20] reflect the fact that the 

load process is often discretized into independent 

events. They can be directly fitted to experimental 

data. However, this makes predictions for other load 

conditions or geometrical configurations a difficult 

task. This problem can be circumvented by using a 

suitable stochastic crack growth model for the 

determination of the transition probabilities [21]. A 

combination of the two approaches described above 

allows one to capture both types of inhomogeneous 

behavior. 

The aircraft industry has leaded the effort to 

understand and predict fatigue crack growth. They 

have developed the safe-life or fail-safe design 

approach. In this method, a component is designed 

in a way that if a crack forms, it will not grow to a 

critical size between specified inspection intervals. 

Thus, by knowing the material growth rate 

characteristics and with regular inspections, a 

cracked component may be kept in service for an 

extended useful life. This concept is shown 

schematically in Fig. 7.  
 

 

 
 

Fig. 7 − Extended service life of a cracked component. 
 

 

It should be noted that it is very difficult to 

analyze and predict fatigue life of different fatigue 

structures under various surroundings. Even if a 

suitable formula can be applied, the calculated result 

will be conservative for its generality.  

In this paper, the authors attempt to forecast what 

will happen to the structure according to the current 

work condition, and to predict the fatigue life of 

structures during the continuous learning process by 

ANN technique. 

In recent years, an artificial neural network 

(ANN) has emerged as a new branch of computing, 

which tries to mimic the structure and operations of 

biological neural systems. An ANN is able to learn 

by example and does not have to know the theory 

behind a phenomenon. This quality is useful to 

describe problems where the relationships of inputs 

and outputs are not clear enough or the solutions are 

not easily formulated in a short time. 

Pidaparti and Palakal [22] developed an ANN 

model to represent the fatigue crack growth behavior 

under spectrum loading. The inputs were 

information about the features in the spectrum 

loading and crack growth behavior, and the output 

was the corresponding loading cycles. A material 

parameter network for modified Paris Law was also 

developed in their study.  

Haque and Sudhakar [23] described an ANN 

model to analyze corrosion fatigue crack growth rate 

in dual phase steel. The inputs were the stress 

intensity factor range, ΔK, and volume percent of 

martensite content and outputs were crack growth 

rate. Six groups of da/dN versus ΔK relationship 

corresponding to different martensite contents were 

trained, and the neural network (NN) analysis 

provided a good match with the experimental data.  

Aymerich and Serra [24] used a neural network 

to predict fatigue strength of a graphite-peek 

composite with 63% of fiber content. The input 

parameters were the number of cycles at failure and 

the stacking sequence of the laminate. The neural 

network used showed the capability of predicting 

fatigue life for laminated composites. 

Lee et al. [25] investigated the feasibility of using 

ANN to predict fatigue lives of five carbon and one 

glass fiber-reinforced laminates. A three-parameter 

Weibull distribution was used to estimate the 

number of cycles for various levels of failure 

probability from experimental data. The peak stress, 

minimum stress and the failure probability level 

were the most appropriate inputs from the root-

mean-square trials. They applied ANN to train 

fatigue data for four CFRP systems to predict the 

response of HTA/982. The results showed the log-

life was well within the normal experimental spread 

of data for composite materials.  

Artymiak et al. [26] applied ANN to estimate 

finite life fatigue strength and fatigue limit. The 

notch factor, tensile strength, yield strength and 

nominal stress were employed as input parameters. 

The output parameter was the endurable number of 

load cycles. The results showed that NN was capable 

of describing the expected S–N curve.  

Pleune and Chopra [27] studied the effect of light 

water reactor coolant environments on fatigue 

resistance of plain carbon steel and low alloy steel 

using ANN. The authors showed that ANN had a 

great potential of predicting environmentally 

influenced fatigue. The ANN output of the effects of 

sulfur content, strain rate and temperature on the 
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fatigue lives in air showed good agreement with the 

statistical model.  

Venkatesh and Rack [28] developed an ANN for 

predicting the elevated temperature creep fatigue 

behavior of Ni-based alloy INCONEL 690. Five 

extrinsic parameters (strain range, tensile strain rate, 

compressive strain rate, tensile hold time, and 

compressive hold time) and one intrinsic parameter 

(grain size) were training inputs. Fatigue life defined 

by complete fracture of the specimen was the 

predicted output. Close agreement between 

experimental and predicted life for the test points 

was observed with the NN approach.  

Fujii et al. [29] used a Bayesian NN for analysis 

of fatigue crack growth rate of nickel-based super-

alloys. The database consisted of 1894 combinations 

of fatigue crack growth and 51 inputs. The output 

was the logarithm of fatigue crack growth rate. A 

group of seven of the best models showed minimum 

test error and provided a close agreement with 

experimental data. This NN method demonstrated 

the ability of revealing new phenomena in cases 

where experiments cannot be designed to study each 

variable in isolation.  

Biddlecome et al. [30] developed an optimization 

based NN method to predict fatigue crack growth 

and fatigue life for multiple site damage panels. In 

the NN optimization each neuron represented a hole 

and contained pertinent information relevant to 

existing crack conditions. As the crack extended, the 

neuron gained energy. A set of energy functions was 

developed to define how the neurons gain energy as 

the system begins to converge to an optimal 

solution. The proposed NN was able to detect a 

panel failure and provide the path of crack 

propagation.  

Kang and Song [31] determined the crack 

opening load the input of 100 data points of the 

differential displacement signal on the loading stage. 

The accuracy and precision of the prediction of 

crack opening point by the NN were estimated for 

42 different cases, and the results were in good 

agreement with experiments.  

Al-Addaf and El Kadi [32] used ANN to predict 

fatigue life of unidirectional glass fiber/epoxy 

composite laminates with a range of fiber orientation 

angles under various loading conditions. The best set 

of inputs was the fiber orientation angle, stress ratio 

and maximum stress. The data points for different 

fiber orientation    angles    and    load   ratios   were   

tested. Although a small number of experimental 

data points were used for training, the results were 

comparable to other current methods for fatigue life 

prediction.  

Han et al. [33] discussed an ANN method aided 

by a special learning set to calculate the fatigue life 

of flawed structures. The input data included 

dimensions of the fracture section, defect 

information and stress value. The learning results 

from calculated fatigue life of the back propagation 

(BP) network alone and from BP network with a 

special learning set were compared with the 

experimental fatigue life. The results showed the 

feasibility of a NN in treating fatigue life calculation 

problems of flawed structures both for the special 

learning set and normal learning set.  

Choi et al. [34] presented models to predict the 

fatigue damage growth in notched composite 

laminates using an ANN, which was found to work 

better than the Power Law model as a predictive tool 

for split growth. ANN models showed the ability to 

capture more of the nonlinear characteristics. The 

linear cumulative damage rule worked well when 

combined with ANN models. 

Smith et al. [35] explored the use of the ANN to 

predict the plate end debonding in FRP-plated RC 

beams. The ANN trained with existing data showed 

relatively accurate predictions, and indicated 

capability to be applied in parametric study and 

structural design to provide new insights and 

predictions. 

In this paper, a model for predicting the fatigue 

crack growth by ANN is presented, which does not 

need all kinds of materials and environment 

parameters, and only needs to measure the relation 

between a (length of crack) and N (cyclic times of 

loading) in-service. The feasibility of this model was 

verified by some examples. It makes up the 

inadequacy of data processing for current technique 

and on-line monitoring. Hence it has definite 

realistic meaning for engineering application. 

 
2. ARTIFICIAL NEURAL NETWORKS 

An ANN can be considered as a black box that 

has the capacity to predict an output pattern when it 

recognizes a given input pattern [36].  

The neural network must first be “trained” by 

processing a large number of input patterns and 

evaluating the output that resulted from each input 

pattern. Once trained, the neural network is able to 

recognize similarities when presented with a new 

input pattern, and is able to predict an output pattern.  

Neural networks are based on models of 

biological neurons and form a parallel information 

processing array based on a network of 

interconnected artificial neurons (also called cells, 

units, nodes, or processing elements). The function 

of artificial neurons is similar to that of real neurons: 

they are able to communicate by sending signals to 

each other over a large number of biased or 

weighted connections. Each of these neurons has an 

associated transfer function which describes how the 

weighted sum of its inputs is converted to an output. 
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Computational models of a neural network try to 

emulate the physiology of real neurons. There are 

two principal functions for artificial neural networks. 

One is the input–output mapping or feature 

extraction. The other is pattern association or 

generalization. The mapping of input and output 

patterns is estimated or learned by the neural 

network with a representative sample of input and 

output patterns. The generalization of the neural 

network is an output pattern in response to an input 

pattern, based on the network memories that 

function like the human brain. Therefore, a neural 

network can learn patterns from a sample data set 

and determine the class of new data based on 

previous knowledge.  

Differing types of neural networks have evolved 

based on the neuron arrangement, their 

interconnections and training paradigm used. There 

are adaptive resonance theory, back-propagation, 

Boltzmann network, Hopfield network, general 

regression, learning vector quantization, modular 

neural network, neocognitron, probabilistic neural 

network, and so on. In general, the neural networks 

are trained either supervised or unsupervised 

learning paradigms. In the supervised learning case, 

the network is presented with pre-selected signals 

defining the various classes and is trained to 

recognize them. Back-propagation, Boltzmann, and 

Hopfield networks are prominent examples under 

this category. Neocognitron and adaptive resonance 

theory networks fall under the second category. The 

unsupervised learning algorithms are often used in 

pattern recognition applications. Patterns are 

recognized by the neural nets based on the features 

present in them.  

Among the various types of neural networks, the 

multi-layer perceptron trained with the back-

propagation algorithm (back-propagation neural 

network) has been proved to be most useful in 

engineering applications [37-45]. Thus back-

propagation neural network is used in this 

application study. The back-propagation network is 

given its name due to the way that it learns by back 

propagating the errors in the direction from output 

neurons to input neurons.  

The structure of a single artificial neuron is 

shown in Fig. 8. The weighted sum of input 

components are calculated as 
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where Sj is the weighted sum of the jth neuron for 

the input received from the preceding layer with n 
neurons, wij is the weight between the jth neuron and 

the ith neuron in the preceding layer, xi is the output 

of the ith neuron in the preceding layer, and θj is the 

intrinsic threshold that can be treated as an 

individual weight with a negative sign. Once the 

weighted sum Sj is computed, the output of the jth 

neuron yj is calculated with a sigmoid function as 

follows: 
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Fig. 8 − Schematic structure of an artificial  

neuron with input units. 
 

where η is a constant used to control the slope of the 

semi-linear region. The sigmoid nonlinearity 

activates in every layer except the input layer.  

The multi-layer perceptron network comprises an 

input layer, an output layer and a number of hidden 

layers. The presence of hidden layers allows the 

network to represent and compute more complicated 

associations between patterns. Many researchers 

proved that the multi-layer perceptron with three 

layers can perform arbitrarily complex classification 

while the complexity is dependent on the number of 

neurons in the hidden layer. The number of neurons 

in each layer may vary dependent on the problem. 

The basic structure of a feed-forward, back-

propagation network based on the multi-layer 

perceptron is shown in Fig. 9. Propagation takes 

place from input layer to the output layer. There is 

no connectivity between neurons in a layer. This 

type of neural network is trained using a process of 

supervised learning in which the network is 

presented with a series of matched input and output 

patterns and the connection strengths or weights of 

the connections automatically adjusted to decrease 

the difference between the actual and desired 

outputs. A gradient search technique is used to 

minimize a cost function which is equal to the mean 

square difference between the desired and the actual 

network outputs. The training of the network is 

carried out through a large number of training sets 

and training cycles (epochs). The criterion for 

convergence is determined by the root mean square 

error which adds up the squares of the errors for 

each neuron in the output layer, divides by the 

number of neurons in the output layer to obtain an 



K. Nechval, N. Nechval, I. Bausova, D. Šķiltere, V. Strelchonok / Computing, 2006, Vol. 5, Issue 3, 21-32 

 

 28 

average, and then takes the square root of that 

average. The root mean square error is expressed as 
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where di and yi are the desired and actual output 

values for ith output neuron, and m is the number of 

neurons in the output layer. 

 

 
            Input layer         Hidden layer         Output layer 

 

Fig. 9 − A typical multi-layer 

percetron neural network. 

 

3. DEVELOPMENT OF AN ANN MODEL 

Under a given working condition and loading, the 

data monitoring for the given equipment without 

affecting its normal work is called on-line 

monitoring. Of all factors that affect corrosion 

fatigue crack growth, the one by one corresponding 

relation of a and N is the main display of fatigue life 

(a indicates the length of crack, N indicates the 

cyclic times of loading or action cycle of 

equipment). 

After lots of simulation and calculation, the 

authors adopted the three-layer back-propagation 

neural network as the model in this paper. There is 

one input element whose input value is the real 

length of crack growth and one output element 

whose output value is the cyclic times of loading.  

It only needs five or six data to construct the 

normal model. We should get a measure value 

continuously to build a predicting model for on-line 

monitoring, that is to say, new data should be taken 

as the reference point. If there are k−1 data to build a 

predicting model at the beginning, we can predict 

the kth and its following data. When we get the kth 

data and incorporate it into the original set as new 

information, we should delete old information and 

always keep k−1 data points to construct a predicting 

model for the next step. That is to say every data set 

learns a part of a ~ N curve similarly.      

The interval between two data should not be too 

long, if not, the precision and safety will not be 

guaranteed. 

The three-layer back-propagation neural network 

was constructed using MATLAB software [46].  

In this study, the fatigue crack growth data were 

divided into two groups, a training set and a test set. 

The training set of the fatigue crack growth data was 

used to train the network and the trained ANN was 

evaluated with the test set, exclusively. The 

performance of the trained ANN was tested by 

evaluating the coefficient of determination (R2), 

standard error of calibration (SEC), standard error of 

prediction (SEP), and bias [47].  

The coefficient of determination, R2, is used to 

measure the closeness of fit and can be defined as: 
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where y is the actual measured value, ypredicted is the 

predicted value by the trained ANN and ymean is the 

mean of the y values. Clearly, the coefficient of 

determination is a reasonable measure of the 

closeness of fit of the trained ANN, since it equals 

the proportion of the total variation in the dependent 

variable, in this study the number of cycles that is 

explained by the trained ANN. The coefficient of 

determination cannot be greater than 1. A perfect fit 

would result in R2=1, a very good fit near 1, and a 

poor fit would be near 0.  

The SEC measures the scatter of the actual 

measured values (y) about the values calculated by 

the trained ANN (ypredicted) and can be defined as 

[47]: 
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where n is the number of data and p is the number of 

variables.  

The trained ANN was then used to predict the 

number of loading cycles using the measured data 

that were not used in training the ANN.  

The bias and SEP represent the mean and 

standard deviation of the differences between the 

actual measured values of the number of loading 

cycles and the predicted values of number of loading 

cycles, and are given by the following equations 

[48]: 

  



K. Nechval, N. Nechval, I. Bausova, D. Šķiltere, V. Strelchonok / Computing, 2006, Vol. 5, Issue 3, 21-32 

 

 29

,
)(

bias

2

predicted

n

yy∑ −
=    (19) 

.
1

]bias)[(
SEP

2/1
2

predicted

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

= ∑
n

yy
 (20) 

 

4. EXAMPLE 

The material used for the present example was 

0Cr18Ni9 austenitic stainless steel. Center crack 

tension specimens were machined for tests. Cyclic 

loading with sinusoidal waveforms at 5 Hz was used 

in tests. The pre-made crack length was 7.0 mm. 

Crack growing length was monitored by microscope.  

The testing results are shown in Table 1. Initial 

five couples of crack length and cyclic times of 

loading were selected in table as primary data sets 

before predicting the next. But only the next N is 

better-estimated value, and its follows only can be 

for reference.  

Table 1. Data of specimen 

a 

(mm) 

N 

(test) 

N 

(prediction) 

Absolute 

error 

7.000 0 − − 

7.810 6,080 − − 

8.570 11,520 − − 

9.330 16,580 − − 

10.05 20,680 − − 

10.58 23,680 23,715 35 

11.14 26,540 25,845 695 

11.88 29,480 28,323 1,157 

12.60 32,500 30,910 1,590 

13.20 34,760 33,543 1,217 

 

It will be noted that N (prediction) is the value 

predicted by the forward five data sets. 

From Table 1 we can see that the absolute error is 

in the normal region with the stochastic of fatigue 

problem. The feasibility is shown with better 

calculating result.  

The behavior of fatigue crack growth can be 

divided into two stages: stable crack growth stage 

and accelerating crack growth stage. To avoid 

damage to the testing machine caused by specimens 

fracturing, the upper tests were all stopped in the 

stable crack growth stage. According to the form of 

a∼N curve, we can judge whether the crack state is 

in accelerating growth stage or not by the following 

criterion: when continuous several estimated values 

are clearly bigger than measure values. This means 

the crack in the component may have been in 

accelerating stage. Its physical meaning is that the 

slope of the estimated curve is clearly a lot bigger 

than that of real curve (Fig. 10). This is an alarm for 

the supervisors that the component will possibly 

fracture, and some protective measures should be 

taken. 
 

 

Fig. 10 − Phisical meaning of the criterion. 

 

Using on-line data processing method the risk of 

equipment damage before reaching its design life is 

cut down, and it is a good monitoring method for 

extending in-service equipment, too. So material 

behaviors are brought into full play. It makes up for 

the inadequacy of causing material waste by 

considering safety factor in design.  

Applying ANN technique to predict the fatigue 

life of structures, complex calculation of ΔK and 

determination of the constant C, m are omitted, 

environment factor need not be thought about, and 

Paris formula need not be revised and integrated. All 

these make the predicting method simple. It 

especially fits for engineering application.  

ANN technique for data processing uses only one 

characteristic parameter. It does not consider the 

effect of the other parameters, in fact, the effect of 

all parameters were included in a N relation. So 

this method focuses on certain specimens, 

eliminating the effect of other cases for estimating 

the result.  

With the different effect of the changeable 

surroundings to the same component, the stable 

crack growth rate will change relevantly. So the 

constants C and m in Paris formula should often 

change, which makes Paris formula difficult to 

predict the correct remaining life. But they have the 

same loss-stability criterion to judge whether the 

crack is in accelerating growth stage or not by ANN 

technique. However, model of ANN can follow the 
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change, and make the right prediction. So this 

technique is especially fit for on-line fatigue crack 

growth monitoring.  

 

5. CONCLUSION 

High levels of uncertainty in current fatigue-life 

prediction techniques, and the often-catastrophic 

nature of fatigue failure, drive the continuing effort 

to develop techniques for detecting and 

characterizing fatigue damage. In this paper, an 

ANN technique for data processing of on-line 

fatigue crack growth monitoring was developed, 

which has a clear criterion and makes users employ 

it easily without enough special knowledge. This 

indicates that the proposed method has the potential 

for practical application in more complicated 

problems. But as an engineering technique it should 

be further tested and verified in factories.  
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