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Abstract 

In aerospace industry, Fatigue Crack Propagation pose a serious threat in designing mechanical assembly of the aircraft 

structures. In these structures crack growth is a problem to be handled seriously, as human life risk is concerned in addition to 

economic loss. Fatigue Crack Growth (FCG) Rate is the rate at which crack grows with number of cycles subjected to constant 

amplitude loading. Upon analyzing the curve it becomes obvious that the correlation between Stress Intensity Factor (SIF) range 

“∆𝐾” with FCG rate “𝑑𝑎 𝑑𝑁⁄ ” is deviating linear relationship considering region II of the curve that is also called Paris Region. 

Empirical formulation methods cannot deal with linearity factor satisfactorily. In contrast to the prior methods, machine learning 

algorithms are capable to deal with the non-linearity issue in a much better way owing to their admirable learning ability and 

flexible nature. In this research work Genetic Algorithm, Hill Climbing Algorithm and Simulated Annealing Algorithm based 

Optimized Neural Networks were utilized for prediction of FCG rate. Proposed technique was validated by testing on different 

aerospace aluminum alloys including 2324-T39, 7055-T7511 and 6013-T651. The least predicted MSE was 1.0559 × 10−9 

achieved for aluminum alloy 6013-T651 by Simulated Annealing based optimized Neural Network. Moreover, the results 

demonstrate an exceptional conformity to the data conceived during experimentation process. 

Keywords: Artificial Neural Network; Genetic Algorithm; Hill Climbing; Simulated Annealing; Stress Intensity Factor  

_____________________________________________________________________________________________________________________ 

1. Introduction 

In material sciences, damage tolerance is gaining immense significance. The structural failures especially in aircrafts 

and high speed trains are mostly due to Fatigue Crack Growth. In engineering, fatigue is a procedure in which 

material fails during the application of considerable cyclic loading. Under this type of failure, engineering 

components distort as a result of internal force that is further down the standard strength of the material. These types 

of accidents pose great dares in locomotive and airplane industries as it involves the human lives most importantly. 

Versailles Train Crash in 1842, De Havilland Comet Plane Crashes in 1954 and Eschede Train Disaster in 1998 are 

some of the examples in which structure failure occurred due to material fatigue, causing many causalities besides 

enormous financial loss. These types of accidents urged the professionals in this sector to predict Fatigue Crack 

Growth Rate (FCG). The accurate prediction of FCG became the next challenge for the experts as there was no 

room for error considering the life risk of passengers. 

Due to this reason, Fatigue Crack Growth Rate (FCG) turn out to be crucial and essential that need to be considered 

on a regular basis. The performance of crack development due to fatigue is described by growth rate 𝑑𝑎/𝑑𝑁 and 

Stress Intensity Factor (SIF) range ∆𝐾. This specific graph contains 𝛥𝐾 and 𝑑𝑎/𝑑𝑁 on x-axis and y-axis 

respectively in which 𝑎 represents the size of crack while 𝑁 represents total number of cycles leading to failure. This 

graph is distributed into three specific sections. Among these regions, region II is of maximum importance in which 

Paris Law holds and is called Paris region. In the above mentioned section, a claim was made by researchers that the 

curve depicts a linear correlation amongst the concerned quantities. Afterwards, with the help of healthy 

experimentation taking various materials under consideration, it is witnessed that relationship between FCG rate and 

SIF deviates from linear behavior even in Paris region 

To fix the non-linear relationship between the above mentioned variables, many models have been proposed since 

the discovery of the problem. The following proposed prototypes are centered at the principle of Linear Elastic 

Fracture Mechanics. Paris et al. [1] presented an analytical formulation for comparison of an extensive collection of 

data for certification of crack propagation laws. The authors claimed that in preceding approaches a wider span of 

data in order to authenticate these laws was not used but the disadvantage in this technique is that non-linearites are 

not taken into consideration for not even the Paris region (region II). Moreover, this methodology was proposed 



without considering various other parameters. Other authors continued their research to devise the models that 

would cater for the non-linearity and other factors. Forman et al. [2] proposed an improved method in order to 

analyze crack growth rate subjected to cyclic loading. This theory takes into account other ignored parameters in 

previous methods that include load ratio, R and fracture toughness, 𝐾𝑐. The main weakness in Forman’s technique is 

that it does not cater for fracture toughness at threshold, 𝛥𝐾𝑡ℎ. Moreover, it was unable to explain the deviation from 

linear behavior in Paris region. In Priddle’s model [3], essential factors are taken into account that are capable to suit 

the deviation from rectilinear behavior in Paris region of the characteristic curve. On the other hand, the limitation in 

the explained methodology is that it is unable to accommodate R-ratio effect. Elber et al. [4], on the basis of the 

mechanism upon which fatigue crack grows introduced the concept of crack closure effect. He explained that under 

the time span of cyclic loading (tension), crack induced as a result of fatigue closes automatically provided that the 

load applied is half the maximum load. This model has an advantage that it cannot only be applied to three regions 

of crack propagation but it includes stress ratio effects ignored earlier. The major drawback in this model is that 

theoretically this model only covers limited range of stress ratio, R. Furthermore, many researchers carried on their 

research to rectify the issue of non-linearity. Kujawski et al. [5], Donald et al. [6] and Sandananda et al. [7] are 

amongst them. They proposed a new concept of mechanical driving force for both long and short crack growth rates 

instead of crack closure concept. According to the authors ΔK and Kmax are the two parameters that help in 

calculating fatigue crack propagation. Making this research as a base Dinda et al. [8] proposed an approach to 

predict stress-ratio effects on fatigue crack growth rate. This method is named as 𝐾∗ method where 𝐾∗ is the fatigue 

crack driving force. Mathematically, K* and fatigue crack growth rate can be expressed as: 𝐾∗  =  (𝐾𝑚𝑎𝑥)𝛼 (𝛥𝐾+)1−𝛼   (1) 𝑑𝑎/𝑑𝑁 =  𝑓 (𝐾∗)   (2) 

where α is correspondence constraint, and 𝛥𝐾+ is the positive portion of useful 𝛥𝐾. In correlation with the previous 

study, this approach is equally effective or better by taking into account 𝐾𝑚𝑎𝑥 and 𝐾+ as it excellently deals with the 

non-linearity in region II. On the other hand, this method cannot calculate the correlation parameter, 𝛼 and 𝑅-ratio 

effects for different materials accurately in all the three regions of 𝑑𝑎/𝑑𝑁 − 𝛥𝐾 curve. Since the discovery of the 

problem, many researchers have been struggling to provide an analytical formula in order to solve the non-linearities 

in FCG rate. In such efforts, many parameters like 𝛥𝐾𝑡ℎ, 𝑅, 𝐾𝑐 and 𝛥𝐾𝑒𝑓𝑓 are involved. In reality, mathematical 

formulas are obstinate to provide a solution for ordinary as well as multi-variable problems. It is quite challenging to 

discover an exclusive and general methodical relation for such circumstances. 

Analytical methods could not address the case well. To overcome the limitations, researchers started thinking other 

ways and more multidisciplinary methods were brought together. Amongst many, numerical approach and machine 

learning based methods are proved to be most operative. A hybrid approach combining numerical methods and 

machine learning algorithms was also presented in different ways. Bui [9] developed an efficient and improved 

knowledge based neural network (KBNN) accompanied with Finite Element Analysis (FEA) to predict to accurately 

predict spring back angles in bending of metal sheet. Bhattacharya et al. [10] used extended finite element method 

(XFEM) to examine crack growth in dual coated materials. Hu et al. [11] proposed a new technique of singular finite 

element which includes fracture process zone (FPZ) lying in front of crack tip by utilizing cohesive zone model 

(CZM). The aim was to learn fatigue crack growth under variable amplitude cyclic loading. Presently, machine 

learning based methods showed the better results and are being considered to be most interesting and capable while 

catering the case due to the admirable tolerance and estimation to non-linear and multi-variable complications. 

Amongst those algorithms, support vector machine (SVM), genetic algorithms, artificial neural network (ANN), 

fuzzy logic, neural-fuzzy system and particle swarm optimization (PSO) are prominent. Mohanty et al. [12] used 

artificial neural network (ANN) to predict fatigue crack propagation life of aluminum alloys. Rodríguez [13] and 

Rafiq [14] also used ANN for different engineering applications. Venkatesh et al. [15] used back propagation neural 

network for accurate life prediction of materials subjected to creep-fatigue behavior at raised temperature. He 

demonstrated his idea using Ni-based alloy. Artymiak et al. [16], Kang et al. [17], Haque et al. [18] and Cheng et al.  

[19] used machine learning algorithms for different fatigue problems. Zio et al. [20] utilized a Bayesian elaboration 

of support vector machine (SVM) called relevance vector mechine (RVM) in oreder to give a prediction of the 

remaining useful life of a structure under a safety-critical standard. Mohanty et al. [21] proposed a genetic algorithm 

in order to predict fatigue life of a material. He demonstrated it using 2024-T3 aluminum alloy. Zhang et al. [22] 

used an ANN based algorithm, RBF-NN for proposal of a fatigue life prediction model. Wang et al. [23] compared 

three MLA based algorithm in order to predict FCG rate. These include GABP-NN, RBF-NN and ELM. ELM has 

come out to be most accurate among others. 



Firstly, a 2-input and a single output data is extracted from the literature. For this proposed technique ∆K and 𝑅 are 

taken as input and 𝑑𝑎/𝑑𝑁 as output. After that the experimental data is prepared and processed in order to make it 

able to be used in the MLA’s. The data is segregated amongst training and testing arrays. The neural networks are 

trained for maximum iterations using training set of data until a preset mean square error (MSE) is achieved or 

maximum iterations are performed. After achieving required value of MSE or running maximum iterations, the 

undergoing network is trained and the weights are freezed. This trained neural networks are tested to see which of 

the algorithm best fits the linearity issue in Paris region during the process of crack propagation. 

2. Background theory 

 

2.1. Introduction to Fracture Mechanics: 

 

The engineering structures are exposed to mechanical discontinuities. One of the prone discontinuities includes 

that are produced in fuselages in aircraft structures. Fracture Mechanics describes as an arrangement of theories 

depicting the conduct of solids or structures with geometrical irregularities at the size of the structure. Usually, the 

application of force is in any of the following manners as shown in Fig. 1.  

 

 

Fig. 1. Modes of Failure during Engagement of Crack Propagation 

The fatigue rate curve is a graph between da dN⁄  and ∆𝐾 as shown in Fig. 2. The graph has three regions 

i.e. Region I, II and III. In region I, the early crack rate development is represented. In this region, crack propagation 

rate is less than or equal to 10-6 mm/cycle. Region II is also named as intermediary region. In this zone, the FCG rate 

is between 106-103 mm/cycle. FCG rate is stable throughout this region. Finally, region III starts. In this region, Fig. 

2 depicts clearly that the curve again starts inclining. It is generally in the order of 103 mm/cycle or even more. This 

is remembered as extraordinary fatigue crack growth rates that are the results of frequent and unbalanced growth 

preceding to absolute failure of the specimen. 



 

Fig. 2. Generalized Fatigue Crack Growth Rate Curve 

2.2. Artificial Neural Networks: 

There are a number of problems that cannot be dealt with a computer algorithm. Human beings have learning 

capability which computer processor lacks. The impressive quality of a brain of living things is that they learn on 

their own accompanied with prior knowledge and information gathered from environment. Computers have a 

program on which it works depending upon the application. What do we need in computers to replicate brain like 

capability to decide on their own? The idea is developed from a biological process of transferring information and 

decision making i.e. neurons. So, an artificial neural network is made to serve the purpose. A structure of an 

artificial neural network is shown in Fig. 3. 

 

Fig. 3. A Structure of a Feed Forward Neural Network 

To have a better understanding of an Artificial Neural Network it is necessary to have an insight on how 

conventional computer works. A computer has a Central Processing Unit that addresses a memory location where a 

data or instruction is stored depending upon the program. The processing unit perform an operation and results are 

stored in a specific memory location according to the requirement. In this computational system, instructions are 



sequential or logical and a state of a given variable can be traced from operation to operation. In contrast to serial 

computers, ANN’s working is not sequential or deterministic. They do not execute program directions; they react to 
the information source provided as they come across. Moreover, updated information is stored in activation “state” 
of the system instead of storing it in the separate memory location like serial computers. ANN is briefly explained as 

follows.      

An Artificial Neural Network (ANN) is formed by inter linkage of connecting elements. The data is treated by 

their active reaction to outer inputs. The motivation comes from biological neural networks. ANN’s may include a 
hardware computing device or an algorithm that are modeled after observing a neuronal structure of mammals but 

on a much smaller scale obviously. Some larger networks contain hundreds or thousands of connections and 

processing units but a biological neural network contains billions of neurons. An Artificial Neural Network is 

structured in the form of layers. The layers consist of nodes interconnected with each other which are powered by an 

Activation Function. The pattern of the systems is presented to the network by an input layer which communicates 

to one or more hidden layers for processing. Hidden layers possess weighted functions which is the actual driving 

force of processing. After processing, hidden layers involved in the process communicate to the output layers where 

information is transferred as output of the network. An ANN has the learning rule which continuously modifies the 

weights of the connections according to the input presented. So, the basic components of a network come out to be 

as follows: 

• Neurons 

• Connection and Weights 

• Propagation Function 

• Learning Rule 

 

2.3. Artificial Neural Network Optimization: 

Generally, when we talk about optimization of Artificial Neural Networks the main concern is objective 

function which is the mean square error function. The aim is to optimize the values of weighted connections in order 

to minimize mean square error i.e. objective function. The following is a brief introduction of the optimization 

techniques used in this paper 

2.4. Hill Climbing based Optimized Neural Network:  

 

Hill climbing is a type of an optimization techniques in artificial intelligence the is very useful in solving the 

problems with complex hierarchy. It always keeps itself busy in monitoring current state and future state and tends 

to improve the current state with the help of an evaluation function while performing iterations. Basically, it is seen 

as a loop that continuously keep on moving towards the increasing value and terminates when highest peak is met. 

i.e. no neighbor is around with the higher value. The loop is run in a way that best known solution at the present 

stage mcurrent is reproduced in the form of an offspring mneighbor. If the reproduced offspring mneighbor is better in value 

than mcurrent, it is updated and becomes mcurrent, otherwise it is neglected and cycle continues to search for a new 

solution or cessation condition. It is a local search algorithm that only looks for its immediate neighbors. Following 

is the pseudo code for the presented algorithm.  

 

function CLIMB-HILL(QUESTION)  

return a condition which is acting as some local maxima 

inputs: QUESTION 

static: mcurrent, mneighbor, node 

mcurrent←current-NODE(QUESTION.START-CONDITION) 
loop do 

mneighbor←a largest successor of mcurrent 
if mneighbor≤ mcurrentthen  
return mcurrent.STATE 

mcurrent = mneighbor 
end 

 

 



Following is the flowchart explaining the application of Hill Climbing based Optimized Neural Network for the 

proposed technique 

 

 
 

Fig. 4. A Flowchart of Proposed Technique using Hill Climbing Based Optimized Neural Network 

 

2.5. Simulated Annealing Based Optimized Neural Network: 

Simulated Annealing is a probabilistic search which look for a single suitable solution. It takes its concept form 

the process of annealing in the field of metallurgy. Annealing is a process where metals are heating above their 

melting points, hold and then cooled slowly to solidified form attaining minimum energy configuration in order to 

get a perfect crystalline molecular structure. The purpose is to find a global minimum when various algorithms stuck 

in local minima. The innermost loop of this algorithm runs same as of hill climbing but the difference between these 

two is that it searches for random move instead of best move. If that move is better than current, it is updated 

otherwise the algorithm searches for another one. Following is the flowchart of the simulated annealing process 

 
Fig. 5. A Flowchart of Generalized Simulated Annealing Based Optimized Neural Network 



Following is the pseudo code for Simulated Annealing based Optimized Neural Network: 

function ANNEALING-SIMULATED (QUESTION, program)  

return a resolution state 

inputs: QUESTION 

program: “time” to “temperature” mapping 
mcurrent←MAKE-NODE(QUESTION.START-CONDITION) 
for t = 1 to∞do 

T ←program(t) 
if T = 0 then  

return mcurrent 

mnext←a arbitrarily nominated descendant of mcurrent 
ΔE ←mnext.VALUE – mcurrent.VALUE 
if ΔE >0  

 mcurrent=mnext 

else  

mcurrent=mnext having likelihood e
ΔE/T 

end 

 

A flowchart shown in Fig. 6 explains the application of Simulated Annealing based Optimized Neural Network for 

the proposed technique 
 

 
 

Fig. 6. A Flowchart of Proposed Technique using Simulated Annealing Based Optimized Neural Network 

 
2.6. Genetic Algorithm Based Optimized Neural Network:  

For hard, non-linear capacities Genetic Algorithm has been performing exceptionally good in acquiring 

worldwide arrangements. Fundamentally, a goal, for example, minimization of the sum of squared errors or total of 

absolute errors, is decided for optimizing the neural system. Having a benefit of selected goal point, each candidate 

acquires attention to the fundamental population of randomly selected initial points are used for analyzing the goal 



position. The mentioned characteristics are then used as a part of assigning chances for each of the emphases that are 

included in the population set. To achieve minimization, that is the case of sum of squared errors, the point having 

the lowest objective function is assigned the highest probability. When each point is assigned its respective 

probability, a new population of points is drawn from the present population as a replacement. The points are picked 

arbitrarily with the probability of acceptance, equal to a probability value that is allotted to it. Therefore, the points 

with minimum sum of squared errors are most favorites to be represented in the new population. The points 

consisting a new population are then arbitrarily made in pairs for crossover. Each point is represented as a string of n 

different weights. A position along a string is arbitrarily selected for sole set of points and previous constraints are 

swapped between these points. Each crossover gives a new point having constraints from both parent points. As a 

result, each weight has much less chance of being replaced with a value arbitrarily selected from the parameter 

space. This is called mutation. Mutation augments the Genetic Algorithm by occasionally inserting a random point 

for a better search of whole parameter space. In this way the Genetic Algorithm is permitted to escape from local 

optima provided the new generated point proves to be a better solution than those that have been previously found 

better. This provides a more robust solution. Thus, resulting set of points becomes the new population, and the cycle 

repeats until a best solution converges.  

 

As, this method seeks in numerous ways at times, the chance to discover a globally ideal increments. The 

arithmetic's comparability to regular choice inspires its name. As the Genetic Algorithm moves forward through 

ages, the superlative parameters to optimize the target capacity will repeat in finding who and what is to come, while 

the parameters that are ineffective comparatively vanish in survival of the best solution. Following is a pseudo code, 

explaining the algorithm 

 
Test Set P = ø 

for Condition C 

do 

search Start point Sn 

repeat 

for (a = 0; a < |Sn|/2; a++) 

do 

select randomly two parents from population 

reproduce two children by crossover operation 

insert children into new generated list 

if children satisfy the condition C 

P = P ∪ { Σ of new children} 
break 

end 

end 

continue mutation and add the children into generation list 

until Condition C is satisfied or maximum iteration is reached 

end 

 

Following flowchart as shown in Fig. 7 explains the application of Genetic Algorithm based Optimized Neural 

Network used in the proposed technique. 

 



 
Fig. 7. A Flowchart of Proposed Technique using Genetic Algorithm Based Optimized Neural Network 

 

3. Experimentation and Results 

 
3.1. Data Acquisition: 

The experimental information is carried out for some aluminum alloys with load ratios in the range of 0.1-0.7, 

acquired through experimentation on different alloys conducted in Fracture Technology Associates Laboratory. This 

data has previously been used by Wang et al. [23], Paris et al. [24] and Donald et al. [25] in their research work.  

Experimentation was held out on a hydraulic testing apparatus connected to a devoted PC to acquire the data 

efficiently and control other factors. Strain gauge based sensors are used for measurement purpose of the 

displacement. The data extracted through experimentation is plotted for the understudy materials inside a given span 

of load ratios. A summary of the testing environment undertaken during experimentation is as followed 

 

Table 1: Summary of Testing Environment of during Experimentation [25] 

Specimen Physical 

Characteristics 

M(T) 

Thickness (B) 2.3mm-3.3mm (Dissimilar for each 

sample) 

Width (W) 1.016×10-5m 

Notch Length (2a0) 1.02×10-4m 

Orientation L-T 

Test Frequency 15 Hz 

Environment Laboratory Ambience, 23oC, R.H=51-

55% 𝑑𝑎/𝑑𝑁 1×10-12 to 1×10-4 m/cycle 

 

 

 



The useful properties for 2324-T39 Aluminum Alloy are mentioned in the Table 2. 

Table 2. Useful properties for 2324-T39 Aluminum Alloy [25] 

Physical Properties (Metric) 

Density 2.77g/cc 

Mechanical Properties (Metric) 

UTS ≥470-475 MPa 

Tensile Strength at Yield 

Point 

≥365-370 MPa 

Extension at Breaking Point ≥7.9 % 

Young’s Modulus (E) 72.4 ×109 Pa µ 0.3 

Electrical Properties (Metric) 

Electrical Resistivity 4.5×10-8𝛺-m 

Thermal Properties (Metric) 

Co-efficient of Thermal 

Expansion (Linear) 

2.32×10-7 m/m-oC @ 20.0oC 

2.47×10-7 m/m-oC @  

20.0-300oC 

Specific Heat Capacity 8.749×10-1 J/g-oC 

Conductivity (Thermal) 151 W/m-K 

 

When 2324-T39 Al alloy is considered, the extracted data acquired from experimentation while taking diverse load 

ratios is plotted using MATLAB software and that is shown in Fig. 8. 

 

Fig. 8. Extracted data of Fatigue Crack Growth rate of 2324-T39 Al alloy through experimentation 

Likewise, in case of 7055-T7511 Al alloy, the extracted data acquired from experimentation while taking diverse 

load ratios is plotted using MATLAB software and that is shown in Fig. 9 



 

Fig. 9. Extracted data of Fatigue Crack Growth rate of 7055-T7511 Al alloy through experimentation 

The useful properties of 6013-T651 Aluminum Alloy are mentioned in the Table 3 

Table 3. Useful properties for 2324-T39 Aluminum Alloy [25] 

Physical Properties (Metric Units) 

Density 2.71 g/cc 

Mechanical Properties (Metric Units) 

Brinell’s Test 129 

Knoop’s Test 164 

Rockwell ‘A’ Test 50 

Rockwell ‘B’ Test 79.99 

Vicker’s Test 149.9 

UTS ≥3.79×108 Pa 

Tensile Strength at Yield Point ≥3.58×108 Pa 

Extension at Breaking Point 5.0 % 

Young’s Modulus (E) 6.69×1010 Pa 

Machinability 70 % 

Shear Strength 2.5×108 Pa 

Electrical Properties (Metric) 

Resistivity (Electrical) 4.90×10-8 Ω-m 

Thermal Properties (Metric) 

Co-efficient of Thermal 

Expansion (Linear) 

2.4×10-7 m/m-oC @  

20.0-100 oC 

Conductivity (Thermal) 164 W/m-K 

 

Similarly, in case of 6013-T651 Al alloy, the extracted data acquired from experimentation while taking diverse load 

ratios is plotted using MATLAB software and that is demonstrated in Fig. 10 



 

Fig. 10. Extracted data of Fatigue Crack Growth rate of 6013-T651 Al alloy through experimentation 

A feasible methodology to predict Fatigue Crack Growth rate is introduced that uses three Machine Learning 

Algorithms among Optimized Neural Networks. In order to validate the practical effectiveness of the algorithms, the 

experimental data for different materials specifically used for commercial aircrafts is extracted and employed in the 

form of data sets. The three Optimized Neural Network based Machine Learning Algorithms are compared with 

each other and with previously used MLAs for crack growth rate prediction. For it, the 2-input and a 1-output model 

is designed. This is done by examining the vital forces for FCG rate by the application of forces of uniform 

amplitude. 

    All of the above algorithms are indorsed on three distinct Al alloys, used for manufacturing of aircraft bodies. The 

tentative information of the above mentioned alloys for four different cases of load ratios is acquired followed by 

plotting of these values using MATLAB 2016 as shown in Fig. 8. To accurately predict non-linearity in behavior in 

the process of FCG, this data is then randomly segregated and separated into training and testing sub sets. 70 % 

section of sampling values are used for training while the remaining 30 % is utilized for validating the efficiency of 

Machine Learning Algorithms based Optimized Neural Networks. 

3.2. Results: 

    From Fig. 8, 9 & 10 a non-linear behavior is depicted even in Paris region. In order to predict this abnormality 

from linearity more accurately, three MLA based Optimized Neural Networks are used. The anticipated outcomes 

alongside the tentative outcomes are plotted having a total number of values on horizontal axis while actual output is 

plotted on vertical axis for three above mentioned alloys using above mentioned machine learning techniques. The 

results using Genetic Algorithm based Optimized Neural Network for 2324-T39 Aluminum Alloy are shown in 

figure 11. 



 

Fig. 11. Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 2324-T39 Aluminum Alloy 

Likewise, the results for 2324-T39 Aluminum Alloy are shown in figure 12 when Hill Climbing based Optimized 

Neural Network approach is used  

 

Fig. 12. Experimental and Predicted output graph of Hill Climbing Optimized Neural Network for 2324-T39 Aluminum Alloy 

Similarly, the results using Simulated Annealing based Optimized Neural Network for 2324-T39 Aluminum Alloy 

are shown in figure 13. 



 

Fig. 13. Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 2324-T39 Aluminum Alloy 

 

The forecasted MSE’s for the used techniques are demonstrated in Table 4.

 

Table 4. The parameters and results of FCG rate prediction using Optimized ANN algorithms on 2324-T39 Aluminum Alloy 

 

 

Fig. 14. Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 7055-T7511 Aluminum Alloy 

2324-T39 Aluminum Alloy 

 

Technique 

Number of 

Input 

Neurons 

Number of 

Hidden  

Neurons 

Number of 

Output 

Neurons 

 

Training  

MSE 

 

Predicted MSE 

 Genetic Algorithm optimized Neural 

Network 

2 2 1 7.1930×10-11 1.1687×10-7 

Hill Climbing optimized Neural 

Network 

2 2 1 3.2043×10-11 3.1069×10-8 

Simulated Annealing optimized 

Neural Network 

2 2 1 5.8576×10-10 2.1515×10-7 



 

Fig. 15. Experimental and Predicted output graph Hill Climbing Optimized Neural Network for 7055-T7511 Aluminum Alloy 

Likewise, the results for 7055-T7511 Aluminum Alloy are shown in figure 15 when Hill Climbing based Optimized 

Neural Network approach is used. Similarly, the results using Simulated Annealing based Optimized Neural 

Network for 7055-T7511 Aluminum Alloy are shown in figure 16. 

 

Fig. 16. Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 7055-T7511 Aluminum Alloy

 

The forecasted MSE’s for the used techniques are mentioned in Table 5.

Table 5. The parameters and results of FCG rate prediction using Optimized ANN algorithms on 7055-T7511 Aluminum Alloy 

 

7055-T7511 Aluminum Alloy 

 

Technique 

Number of 

Input Neurons 

Number of 

Hidden Neurons 

Number of 

Output Neurons 

Training MSE Predicted 

MSE 

 Genetic Algorithm optimized Neural 

Network 

2 2 1 1.3073×10-10 6.6669×10-8 

Hill Climbing optimized Neural 

Network 

2 2 1 8.3832×10-11 1.4284×10-9 

Simulated Annealing optimized Neural 

Network 

2 2 1 4.2147×10-10 1.4512×10-8 



The results using Genetic Algorithm based Optimized Neural Network for 6013-T651 Aluminum Alloy are depicted 

in Fig. 17.  

 

Fig. 17. Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 6013-T651 Aluminum Alloy 

Likewise, the results for 6013-T651 Aluminum Alloy are shown in Fig. 18 when Hill Climbing based Optimized 

Neural Network approach is used. 

 

 

Fig. 18. Experimental and Predicted output graph of Hill Climbing Optimized Neural Network for 6013-T651 Aluminum Alloy 

Similarly, the results using Simulated Annealing based Optimized Neural Network for 6013-T651 Aluminum Alloy 

are depicted in Fig. 19. 



 

Fig. 19. Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 6013-T651 Aluminum Alloy 

 

The forecasted MSE’s for the used techniques are mentioned in Table 6.

 
Table 6. The parameters and results of FCG rate prediction using Optimized ANN algorithms on 7055-T7511 Aluminum Alloy 

 

4. Conclusion 

Material failure is an important and serious problem. Many accidents in the past are the result of failure of structures 

occurred due to excessive fatigue which has claimed lives of many people besides economic loss. Non-linearity in 

FCG curve is addressed using various analytical, hybrid and machine learning techniques in order to predict FCG 

rate perfectly. In an attempt to do so, in this research MLA based FCG calculation method is proposed. The 

regression based ANN model is utilized in order to foretell FCG rate with minimum error. A 2-1 network is 

established for this purpose. Stress Intensity Factor range and R-ratio effects for the above mentioned materials that 

are in application for aircraft structures are taken into account as inputs of established optimized networks to predict 

their crack growth rate. A 2-1 network is undergone through training process contrary to definite stopping settings. 

Upon comparing results for three different commercially used alloys, it is observed that Hill Climbing based 

Optimized Neural Network shows better results when compared with other algorithms used in the proposed 

methodology for 2324-T39 aluminum alloy. For 7055-T7511 aluminum alloy as well, Hill Climbing based 

Optimized Neural Network has minimum predicted MSE as compared to Genetic Algorithm based Optimized 

Neural Network and Simulated Annealing based Optimized Neural Network. In contrast, Simulated Annealing 

based Optimized Neural Network shows better results for 6013-T651 aluminum alloy amongst other algorithms. 

Taking all the three algorithms used in the proposed technique into account for three alloys, it can be inferred upon 

looking at the results that Simulated Annealing based Optimized Neural Network has given better results for 6013-

T651 aluminum alloy when compared with others. The predicted MSE for SANN with 6013-T651 alloy is 𝟏. 𝟎𝟓𝟓𝟗 × 𝟏𝟎−𝟗. The projected data displays a decent correspondence with experimental data and Optimized Neural 

Networks address the non-linearities of FCG rate suitably. There is another observation upon viewing predicted and 

6013-T651 Aluminum Alloy 

 

Technique 

Number of 

Input  Neurons 

Number of 

Hidden Neurons 

Number of 

Output Neurons 

Training 

MSE 

Predicted 

MSE 

 Genetic Algorithm Optimized Neural 

Network 

2 2 1 6.4575×10-11 3.6246×10-8 

Hill Climbing Optimized Neural 

Network 

2 2 1 5.5249×10-12 6.2171×10-9 

Simulated Annealing Optimized 

Neural Network 

2 2 1 2.8805×10-10 1.0559×10-9 



experimental curves that the extrapolative curves over-fits the experimental curves at various stages. This behavior 

of over-fitting can be evaded through cross confirmation of the data and calculating correctness over and over again. 
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R = Stress Ratio 
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Figures

Figure 1

Modes of Failure during Engagement of Crack Propagation

Figure 2

Generalized Fatigue Crack Growth Rate Curve



Figure 3

A Structure of a Feed Forward Neural Network



Figure 4

A Flowchart of Proposed Technique using Hill Climbing Based Optimized Neural Network



Figure 5

A Flowchart of Generalized Simulated Annealing Based Optimized Neural Network



Figure 6

A Flowchart of Proposed Technique using Simulated Annealing Based Optimized Neural Network



Figure 7

A Flowchart of Proposed Technique using Genetic Algorithm Based Optimized Neural Network



Figure 8

Extracted data of Fatigue Crack Growth rate of 2324-T39 Al alloy through experimentation



Figure 9

Extracted data of Fatigue Crack Growth rate of 7055-T7511 Al alloy through experimentation

Figure 10

Extracted data of Fatigue Crack Growth rate of 6013-T651 Al alloy through experimentation

Figure 11

Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 2324-T39
Aluminum Alloy



Figure 12

Experimental and Predicted output graph of Hill Climbing Optimized Neural Network for 2324-T39
Aluminum Alloy

Figure 13

Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 2324-T39
Aluminum Alloy



Figure 14

Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 7055-T7511
Aluminum Alloy



Figure 15

Experimental and Predicted output graph Hill Climbing Optimized Neural Network for 7055-T7511
Aluminum Alloy

Figure 16

Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 7055-
T7511 Aluminum Alloy

Figure 17



Experimental and Predicted output graph of Genetic Algorithm optimized Neural Network for 6013-T651
Aluminum Alloy

Figure 18

Experimental and Predicted output graph of Hill Climbing Optimized Neural Network for 6013-T651
Aluminum Alloy



Figure 19

Experimental and Predicted output graph of Simulated Annealing Optimized Neural Network for 6013-
T651 Aluminum Alloy


